BgeeCall
is a collection of functions that uses Bgee expertise to create gene expression present/absent calls
The BgeeCall
package allows to:
list_bgee_species()
function).If you find a bug or have any issues with BgeeCall
please write a bug report in our GitHub issues manager available at (URL).
In Bgee present/absent gene expression calls for RNA-seq are generated using a threshold specific of each RNA-Seq library, calculated using reads mapped to reference intergenic regions. This is unlike the more usual use of an arbitrary threshold below which a gene is not considered as expressed (e.g log2(TPM) = 1).
Bgee is a database to retrieve and compare gene expression patterns in multiple animal species, produced from multiple data types (RNA-Seq, Affymetrix, in situ hybridization, and EST data). It notably integrates RNA-Seq libraries for 29 species.
Reference intergenic regions are defined in the Bgee RNA-Seq pipeline. Candidate intergenic regions are defined using gene annotation data. For each species, over all available libraries, reads are mapped to these intergenic regions with kallisto, as well as to genes. This “intergenic expression” is deconvoluted to distinguish reference intergenic from non annotated genes, which have higher expression. Reference intergenic regions are then defined as intergenic regions with low expression level over all RNA-Seq libraries, relative to genes. This step allows not to consider regions wrongly considered as intergenic because of potential gene annotation quality problem as intergenic. For more information please refer to the Bgee RNA-Seq pipeline.
BgeeCall pipeline allows to download reference intergenic regions resulting from the expertise of the Bgee team. Moreover BgeeCall allows to use these reference intergenic regions to automatically generate gene expression calls for your own RNA-Seq libraries as long as the species is integrated to Bgee The present/absent abundance threshold is calculated for each library using the formula :
\[ \frac {proportion\ of\ reference\ intergenic\ present}{proportion\ of\ protein\ coding\ present} = 0.05 \]
In R:
BgeeCall is highly tunable. Do not hesitate to have a look at the reference manual to have a precise descripton of all slots of the 4 main S4 classes (AbundanceMetadata, KallistoMetadata, BgeeMetadata and UserMetadata) or of all available functions. BgeeCall needs kallisto to run. If you do not have kallisto installed you will find more information how to install it here
With the BgeeCall package it is easy to generate present/absent gene expression calls. The most time comsuming task of this calls generation is the generation of the kallisto transcriptome index. As the time needed for this step depend on the size of the transcriptome, we choose, as an example, the smallest transcriptome file among all species available on Bgee (C. elegans). To generate these calls you will need :
For this vignette we created a toy fastq file example based on the SRX099901 library using the ShortRead R package
library("ShortRead")
# keep 48.000 reads
sampler <- FastqSampler(file.path("absolute_path","/SRX099901/SRR350955.fastq.gz"), 48000)
set.seed(1); SRR350955 <- yield(sampler)
writeFastq(object = SRR350955, file =file.path( "absolute_path","SRX099901_subset", "SRR350955_subset.fastq.gz"), mode = "w", full = FALSE, compress = TRUE)
In this example we used the Bioconductor AnnotationHub to load transcriptome and gene annotations but you can load them from wherever you want.
ah <- AnnotationHub::AnnotationHub()
ah_resources <- AnnotationHub::query(ah, c("Ensembl", "Caenorhabditis elegans", "84"))
annotation_object <- ah_resources[["AH50789"]]
transcriptome_object <- rtracklayer::import.2bit(ah_resources[["AH50453"]])
Once you have access to transcriptome, gene annotations and your RNA-Seq library, an object of class UserMetadata
has to be created.
# create an object of class UserMetadata and specify the species ID
user_BgeeCall <- new("UserMetadata", species_id = "6239")
# import annotation and transcriptome in the user_BgeeCall object
# it is possible to import them using an S4 object (GRanges, DNAStringSet) or a file (gtf, fasta)
user_BgeeCall <- setAnnotationFromObject(user_BgeeCall, annotation_object, "WBcel235_84")
user_BgeeCall <- setTranscriptomeFromObject(user_BgeeCall, transcriptome_object, "WBcel235")
# provide path to the directory of your RNA-Seq library
user_BgeeCall <- setRNASeqLibPath(user_BgeeCall,
system.file("extdata",
"SRX099901_subset",
package = "BgeeCall"))
And that’s it… You can run the generation of your present/absent gene expression calls
#>
#> Querying Bgee to get intergenic release information...
#> Note: importing `abundance.h5` is typically faster than `abundance.tsv`
#> reading in files with read_tsv
#> 1
#> summarizing abundance
#> summarizing counts
#> summarizing length
#> Note: importing `abundance.h5` is typically faster than `abundance.tsv`
#> reading in files with read_tsv
#> 1
#> summarizing abundance
#> summarizing counts
#> summarizing length
#> Generate present/absent expression calls.
#>
#> TPM cutoff for which 95% of the expressed genes are coding found at TPM = 4.64724e-06
Each analyze generates 4 files and return path to each one of them.
head.DataTable(x = read.table(calls_output$calls_tsv_path, header = TRUE), n = 5)
#> id abundance counts length biotype type call
#> 1 WBGene00000001 27.0993 2 1556.20 protein_coding genic present
#> 2 WBGene00000002 0.0000 0 1761.00 protein_coding genic absent
#> 3 WBGene00000003 0.0000 0 1549.00 protein_coding genic absent
#> 4 WBGene00000004 13.8730 1 1519.92 protein_coding genic present
#> 5 WBGene00000005 0.0000 0 1487.00 protein_coding genic absent
read.table(calls_output$cutoff_info_file_path)
#> V1 V2
#> 1 libraryId SRX099901_subset
#> 2 cutoffTPM 4.64724e-06
#> 3 proportionGenicPresent 25.3210509597495
#> 4 numberGenicPresent 5580
#> 5 numberGenic 22037
#> 6 proportionCodingPresent 27.1433462121583
#> 7 numberPresentCoding 5550
#> 8 numberCoding 20447
#> 9 proportionIntergenicPresent 0.490998363338789
#> 10 numberIntergenicPresent 21
#> 11 numberIntergenic 4277
#> 12 ratioIntergenicCodingPresent 0.05
head.DataTable(x = read.table(calls_output$abundance_tsv, header = TRUE), n = 5)
#> target_id length eff_length est_counts tpm
#> 1 Y110A7A.10 1787 1556.20 2 27.0993
#> 2 F27C8.1 1940 1761.00 0 0.0000
#> 3 F07C3.7 1728 1549.00 0 0.0000
#> 4 F52H2.2 1739 1519.92 1 13.8730
#> 5 T13A10.10a 1734 1555.00 0 0.0000
calls_output$TPM_distribution_path
#> [1] "/tmp/RtmpHIDSuI/Rinst4fc9444d5903/BgeeCall/extdata/intergenic_0.1/all_results/SRX099901_subset/gene_TPM_genic_intergenic+cutoff.pdf"
calls_output$abundance_tsv
#> [1] "/tmp/RtmpHIDSuI/Rinst4fc9444d5903/BgeeCall/extdata/intergenic_0.1/all_results/SRX099901_subset/abundance.tsv"
The function run_from_object()
is perfect to generate calls for one library. You will potentialy be also interested to run more than one call generation at the same time. It is possible to do that by using the run_from_file()
or the run_from_dataframe()
functions. With these functions you will be able to run calls generation for different:
A template of the file usable as input of the function run_from_file()
is available at the root directory of the package with the name userMetadataTemplate.tsv
. In this template each column correspond to one parameter used to generate gene expression calls. Each line will correspond to one expression calls generation analyze. It is not mandatory to add a value to the run_ids
column except if you want to generate expression calls for a subset of the runs of one RNA-Seq library as described in Generate calls for a subset of RNA-Seq runs Once the file has been fill in expression calls can be generated with :
BgeeCall allows to generate gene expression call for any RNA-Seq libraries as long as the species is present in Bgee. To see all species in the last version of Bgee run :
list_bgee_species()
#>
#>
#> Querying Bgee to get release information...
#>
#> Building URL to query species in Bgee release 14...
#>
#> Submitting URL to Bgee webservice... (https://r.bgee.org/?page=r_package&action=get_all_species&display_type=tsv&source=BgeeDB_R_package&source_version=2.10.0)
#>
#> Query to Bgee webservice successful!
#> ID GENUS SPECIES_NAME COMMON_NAME AFFYMETRIX
#> 1 6239 Caenorhabditis elegans nematode TRUE
#> 2 7217 Drosophila ananassae FALSE
#> 3 7227 Drosophila melanogaster fruit fly TRUE
#> 4 7230 Drosophila mojavensis FALSE
#> 5 7237 Drosophila pseudoobscura FALSE
#> 6 7240 Drosophila simulans FALSE
#> 7 7244 Drosophila virilis FALSE
#> 8 7245 Drosophila yakuba FALSE
#> 9 7955 Danio rerio zebrafish TRUE
#> 10 8364 Xenopus tropicalis western clawed frog FALSE
#> 11 9031 Gallus gallus chicken FALSE
#> 12 9258 Ornithorhynchus anatinus platypus FALSE
#> 13 9365 Erinaceus europaeus hedgehog FALSE
#> 14 9544 Macaca mulatta macaque TRUE
#> 15 9593 Gorilla gorilla gorilla FALSE
#> 16 9597 Pan paniscus bonobo FALSE
#> 17 9598 Pan troglodytes chimpanzee FALSE
#> 18 9606 Homo sapiens human TRUE
#> 19 9615 Canis lupus familiaris dog FALSE
#> 20 9685 Felis catus cat FALSE
#> 21 9796 Equus caballus horse FALSE
#> 22 9823 Sus scrofa pig FALSE
#> 23 9913 Bos taurus cattle FALSE
#> 24 9986 Oryctolagus cuniculus rabbit FALSE
#> 25 10090 Mus musculus mouse TRUE
#> 26 10116 Rattus norvegicus rat TRUE
#> 27 10141 Cavia porcellus guinea pig FALSE
#> 28 13616 Monodelphis domestica opossum FALSE
#> 29 28377 Anolis carolinensis green anole FALSE
#> EST IN_SITU RNA_SEQ
#> 1 FALSE TRUE TRUE
#> 2 FALSE FALSE TRUE
#> 3 TRUE TRUE TRUE
#> 4 FALSE FALSE TRUE
#> 5 FALSE FALSE TRUE
#> 6 FALSE FALSE TRUE
#> 7 FALSE FALSE TRUE
#> 8 FALSE FALSE TRUE
#> 9 TRUE TRUE TRUE
#> 10 TRUE TRUE TRUE
#> 11 FALSE FALSE TRUE
#> 12 FALSE FALSE TRUE
#> 13 FALSE FALSE TRUE
#> 14 FALSE FALSE TRUE
#> 15 FALSE FALSE TRUE
#> 16 FALSE FALSE TRUE
#> 17 FALSE FALSE TRUE
#> 18 TRUE FALSE TRUE
#> 19 FALSE FALSE TRUE
#> 20 FALSE FALSE TRUE
#> 21 FALSE FALSE TRUE
#> 22 FALSE FALSE TRUE
#> 23 FALSE FALSE TRUE
#> 24 FALSE FALSE TRUE
#> 25 TRUE TRUE TRUE
#> 26 FALSE FALSE TRUE
#> 27 FALSE FALSE TRUE
#> 28 FALSE FALSE TRUE
#> 29 FALSE FALSE TRUE
Different releases of Bgee reference intergenic sequences are available. It is possible to list all these releases :
list_intergenic_release()
#> Downloading release information of Bgee intergenic regions...
#> release releaseDate FTPURL
#> 1 0.1 2018-12-21 ftp://ftp.bgee.org/intergenic/0.1/
#> 2 0.2 2019-02-07 ftp://ftp.bgee.org/intergenic/0.2/
#> referenceIntergenicFastaURL
#> 1 ftp://ftp.bgee.org/intergenic/0.1/ref_intergenic/SPECIES_ID_intergenic.fa.gz
#> 2 ftp://ftp.bgee.org/intergenic/0.2/ref_intergenic/SPECIES_ID_intergenic.fa.gz
#> minimumVersionBgeeCall
#> 1 0.9.9
#> 2 0.9.9
#> description
#> 1 intergenic regions used to generate Bgee 14.
#> 2 cleaned intergenic sequences based on release 0.1 (remove blocks of Ns longer than 100 and sequences containing more than 5% of Ns).
#> messageToUsers
#> 1
#> 2 be careful, this intergenic release has not been tested by Bgee
It is then possible to choose one specific release to create a BgeeMetadata
object.
bgee <- new("BgeeMetadata", intergenic_release = "0.1")
#>
#> Querying Bgee to get intergenic release information...
By default the intergenic used when a BgeeMetadata
object is created is the last created one.
kallisto generates TPMs at the transcript level. In the Bgee pipeline we summarize this expression at the gene level to calculate our present/absent calls. In BgeeCall
it is now possible to generate present/absent calls at the transcript level. Be careful when using this feature as it has not been tested for the moment. To generate such calls you only have to create one object of the class KallistoMetadata
and edit the value of one attribute
By default BgeeCall
suppose that kallisto is installed. If kallisto is not installed on your computer you can either :
kallisto <- new("KallistoMetadata", install_kallisto = TRUE)
calls_output <- generate_calls_workflow(myAbundanceMetadata = kallisto, userMetadata = user_BgeeCall)
By default kallisto is run with the same parameters that we use in the RNA-Seq Bgee pipeline:
It is possible to modify them and use your favourite kallisto parameters
By default 2 indexes with 2 different kmer sizes can be used by BgeeCall
The default kmer size of kallisto (31) is used for libraries with reads length equal or larger than 50 nt. A kmer size of 21 is used for libraries with reads length smaller than 50 nt. We decided not to allow to tune kmers size because the generation of the index is time consuming and index generation takes even more time with small kmers size (< 21 nt). However it is possible to modify the threshold of read length allowing to choose between default and small kmer size.
By default gene expression calls are generated using all runs of the RNA-Seq library. It is possible to select only a subset of these runs.
# RNA-Seq run SRR350955_subsetof from the RNA-Seq library will be used to generate the calls
user_BgeeCall <- setRunIds(user_BgeeCall, c("SRR350955_subset"))
calls_output <- run_from_object(myUserMetadata = user_BgeeCall)
When run IDs are selected, the name output directory combine the library ID and all selected run IDs. In our example the expression calls will be stored in the directory SRX099901_SRR350955_subset
.
By default the threshold of present/absent is calculated with the formula :
proportion of ref intergenic present / proportion of protein coding present = 0.05
This 0.05 corresponds to the ratio used in the Bgee pipeline. However it is possible to edit this value. Be careful when editing this value as it has a big impact on your present absent.
By default the arborescence of directories created by BgeeCall
is complex. This complexity allows to generate gene expression calls for the same RNA-Seq library using different transcriptomes or gene annotations. The UserMetadata
class has an attribute allowing to simplify this arborescence and store the result of all libraries in the same directory.
user_BgeeCall <- setRunIds(user_BgeeCall, "")
user_BgeeCall <- setSimpleArborescence(user_BgeeCall, TRUE)
calls_output <- run_from_object(myUserMetadata = user_BgeeCall)
Be careful when you use this option. If you run different analysis for the same RNA-Seq library the results will be overwritten.
#Session Info
sessionInfo()
#> R version 3.6.1 (2019-07-05)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 18.04.3 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.9-bioc/R/lib/libRblas.so
#> LAPACK: /home/biocbuild/bbs-3.9-bioc/R/lib/libRlapack.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] parallel stats4 stats graphics grDevices utils datasets
#> [8] methods base
#>
#> other attached packages:
#> [1] rtracklayer_1.44.4 GenomicRanges_1.36.1 GenomeInfoDb_1.20.0
#> [4] IRanges_2.18.3 S4Vectors_0.22.1 BiocGenerics_0.30.0
#> [7] BgeeCall_1.0.1
#>
#> loaded via a namespace (and not attached):
#> [1] Biobase_2.44.0 httr_1.4.1
#> [3] tidyr_1.0.0 bit64_0.9-7
#> [5] AnnotationHub_2.16.1 topGO_2.36.0
#> [7] shiny_1.4.0 assertthat_0.2.1
#> [9] interactiveDisplayBase_1.22.0 BiocManager_1.30.7
#> [11] BiocFileCache_1.8.0 blob_1.2.0
#> [13] BSgenome_1.52.0 GenomeInfoDbData_1.2.1
#> [15] Rsamtools_2.0.3 yaml_2.2.0
#> [17] progress_1.2.2 pillar_1.4.2
#> [19] RSQLite_2.1.2 backports_1.1.5
#> [21] lattice_0.20-38 glue_1.3.1
#> [23] digest_0.6.21 promises_1.1.0
#> [25] XVector_0.24.0 htmltools_0.4.0
#> [27] httpuv_1.5.2 Matrix_1.2-17
#> [29] XML_3.98-1.20 pkgconfig_2.0.3
#> [31] SparseM_1.77 biomaRt_2.40.5
#> [33] zlibbioc_1.30.0 GO.db_3.8.2
#> [35] purrr_0.3.2 xtable_1.8-4
#> [37] later_1.0.0 BiocParallel_1.18.1
#> [39] tibble_2.1.3 SummarizedExperiment_1.14.1
#> [41] GenomicFeatures_1.36.4 magrittr_1.5
#> [43] crayon_1.3.4 mime_0.7
#> [45] memoise_1.1.0 evaluate_0.14
#> [47] graph_1.62.0 data.table_1.12.4
#> [49] tools_3.6.1 prettyunits_1.0.2
#> [51] hms_0.5.1 lifecycle_0.1.0
#> [53] matrixStats_0.55.0 stringr_1.4.0
#> [55] Rhdf5lib_1.6.2 DelayedArray_0.10.0
#> [57] AnnotationDbi_1.46.1 Biostrings_2.52.0
#> [59] compiler_3.6.1 rlang_0.4.0
#> [61] rhdf5_2.28.1 grid_3.6.1
#> [63] RCurl_1.95-4.12 tximport_1.12.3
#> [65] rappdirs_0.3.1 bitops_1.0-6
#> [67] rmarkdown_1.16 DBI_1.0.0
#> [69] curl_4.2 R6_2.4.0
#> [71] GenomicAlignments_1.20.1 knitr_1.25
#> [73] dplyr_0.8.3 fastmap_1.0.1
#> [75] bit_1.1-14 zeallot_0.1.0
#> [77] readr_1.3.1 stringi_1.4.3
#> [79] Rcpp_1.0.2 BgeeDB_2.10.0
#> [81] vctrs_0.2.0 dbplyr_1.4.2
#> [83] tidyselect_0.2.5 xfun_0.10