Installation

To install and load NBAMSeq

Introduction

High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq is a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation. Specifically, we model the logarithm of mean gene counts as sums of smooth functions with the smoothing parameters and coefficients estimated simultaneously by a nested iteration. The variance is estimated by the Bayesian shrinkage approach to fully exploit the information across all genes.

The workflow of NBAMSeq contains three main steps:

Here we illustrate each of these steps respectively.

Data input

Users are expected to provide three parts of input, i.e. countData, colData, and design.

countData is a matrix of gene counts generated by RNASeq experiments.

      sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8
gene1       3       1      83     212      27     186      23     123
gene2       1       1       1       1      49      40     199     159
gene3       1      25       1       1      12      45      47       2
gene4      22     520      38     224     630     108       1       1
gene5       2      13     534      90      13      45      80      27
gene6       7      51       2      77      36       4       2      12
      sample9 sample10 sample11 sample12 sample13 sample14 sample15
gene1       1      228      107        2      190       99        5
gene2      12       34      230      239       22       36       50
gene3      93     1130        1        2       12        8       51
gene4       1        1        1       10      447        5        5
gene5       7      192        1        3       51        1       19
gene6       1      181      548       32        1       36        2
      sample16 sample17 sample18 sample19 sample20
gene1        3      164       27       12       16
gene2        4        9        9      122       16
gene3      234        1      127      195       12
gene4       20       30      101       20        1
gene5      301       77       41       86        6
gene6        2        3      202      312        7

colData is a data frame which contains the covariates of samples. The sample order in colData should match the sample order in countData.

           pheno          var1       var2        var3 var4
sample1 73.48350  1.8946133351  0.2329225 -2.39279372    0
sample2 43.78128 -0.0223295003 -0.5085798 -0.07212285    2
sample3 31.55925 -1.1120726498 -0.3234962  0.17000859    1
sample4 35.72086 -0.2277942437 -0.5378307  0.33124949    0
sample5 68.17951 -0.0005914057  1.5002634 -1.70024985    1
sample6 56.99346 -1.0167425600 -0.1612027  0.79429525    1

design is a formula which specifies how to model the samples. Compared with other packages performing DE analysis including DESeq2 (Love, Huber, and Anders 2014), edgeR (Robinson, McCarthy, and Smyth 2010), NBPSeq (Di et al. 2015) and BBSeq (Zhou, Xia, and Wright 2011), NBAMSeq supports the nonlinear model of covariates via mgcv (Wood and Wood 2015). To indicate the nonlinear covariate in the model, users are expected to use s(variable_name) in the design formula. In our example, if we would like to model pheno as a nonlinear covariate, the design formula should be:

Several notes should be made regarding the design formula:

We then construct the NBAMSeqDataSet using countData, colData, and design:

class: NBAMSeqDataSet 
dim: 50 20 
metadata(1): fitted
assays(1): counts
rownames(50): gene1 gene2 ... gene49 gene50
rowData names(0):
colnames(20): sample1 sample2 ... sample19 sample20
colData names(5): pheno var1 var2 var3 var4

Differential expression analysis

Differential expression analysis can be performed by NBAMSeq function:

Several other arguments in NBAMSeq function are available for users to customize the analysis.

Pulling out DE results

Results of DE analysis can be pulled out by results function. For continuous covariates, the name argument should be specified indicating the covariate of interest. For nonlinear continuous covariates, base mean, effective degrees of freedom (edf), test statistics, p-value, and adjusted p-value will be returned.

DataFrame with 6 rows and 5 columns
              baseMean              edf              stat
             <numeric>        <numeric>         <numeric>
gene1 60.1439359481175 1.00022272575496 0.316000194956739
gene2 53.7980655537633 1.00008144024126  4.62497481355467
gene3 81.9227093471244 1.00004309149727  4.81046585712738
gene4 76.7885705326382  1.0003016147766  9.04907194096506
gene5 60.6609249390823 1.40265671190118  2.51448966662445
gene6 60.2352020433357 1.00010385936164  2.47158637765086
                   pvalue               padj
                <numeric>          <numeric>
gene1   0.574056880273728  0.718323722964759
gene2  0.0315157299791885  0.143253318087221
gene3  0.0282900627200019  0.142456266401811
gene4 0.00262877972770797 0.0328597465963496
gene5   0.348960070126902  0.545250109573284
gene6    0.11596835986316  0.305179894376736

For linear continuous covariates, base mean, estimated coefficient, standard error, test statistics, p-value, and adjusted p-value will be returned.

DataFrame with 6 rows and 6 columns
              baseMean                coef                SE
             <numeric>           <numeric>         <numeric>
gene1 60.1439359481175  -0.189515106223551 0.460435352306251
gene2 53.7980655537633 -0.0336790181847226 0.460417947364138
gene3 81.9227093471244  -0.602157329475525 0.518817249197619
gene4 76.7885705326382  -0.728019372159228 0.564805808621264
gene5 60.6609249390823   -1.08559336090974 0.456812920401545
gene6 60.2352020433357  -0.343217624369822 0.525486120346267
                     stat             pvalue              padj
                <numeric>          <numeric>         <numeric>
gene1  -0.411599815857532  0.680632766606654 0.816930888560405
gene2 -0.0731487953011667  0.941687712594463 0.941687712594463
gene3   -1.16063475223076  0.245790466455402  0.56451767814743
gene4   -1.28897288421375  0.197407513614538  0.56451767814743
gene5   -2.37645064845252 0.0174800995466672 0.182027042712979
gene6  -0.653143082339948  0.513664040009421 0.755388294131502

For discrete covariates, the contrast argument should be specified. e.g. contrast = c("var4", "2", "0") means comparing level 2 vs. level 0 in var4.

DataFrame with 6 rows and 6 columns
              baseMean               coef               SE
             <numeric>          <numeric>        <numeric>
gene1 60.1439359481175  -2.23976707879468 1.08066251417501
gene2 53.7980655537633 -0.698282501979672 1.08388368560424
gene3 81.9227093471244   2.71382962634417 1.23200298922903
gene4 76.7885705326382  0.484377525080048 1.33152463245247
gene5 60.6609249390823  -1.01926144013198 1.05397351329969
gene6 60.2352020433357 -0.132091887379934 1.23930964379266
                    stat             pvalue              padj
               <numeric>          <numeric>         <numeric>
gene1  -2.07258700048882 0.0382107318702782 0.233567545770985
gene2 -0.644241177585762  0.519419052809666 0.763851548249509
gene3   2.20277844296665 0.0276103682684035 0.230086402236696
gene4  0.363776616124554  0.716024825646518 0.895031032058148
gene5 -0.967065516609582  0.333511282576141 0.575019452717484
gene6 -0.106585055673167  0.915118174886399  0.95462962703433

Visualization

We suggest two approaches to visualize the nonlinear associations. The first approach is to plot the smooth components of a fitted negative binomial additive model by plot.gam function in mgcv (Wood and Wood 2015). This can be done by calling makeplot function and passing in NBAMSeqDataSet object. Users are expected to provide the phenotype of interest in phenoname argument and gene of interest in genename argument.

In addition, to explore the nonlinear association of covariates, it is also instructive to look at log normalized counts vs. variable scatter plot. Below we show how to produce such plot.

DataFrame with 6 rows and 5 columns
               baseMean              edf             stat
              <numeric>        <numeric>        <numeric>
gene38 73.5382588037963 1.00003781947477 14.6170177924649
gene41 86.5366383281467 2.33001242679733 17.1745521094085
gene29 49.7074912046266 1.00100734284745 9.17861460612215
gene4  76.7885705326382  1.0003016147766 9.04907194096506
gene18 57.7161446692709 1.00005088552113  5.0257909260987
gene50 81.6143352130087 1.16532778742788 5.13351608623441
                     pvalue                padj
                  <numeric>           <numeric>
gene38 0.000131743079059047 0.00658715395295235
gene41 0.000635873096794522  0.0158968274198631
gene29  0.00245030144071076  0.0328597465963496
gene4   0.00262877972770797  0.0328597465963496
gene18    0.024977160124219   0.142456266401811
gene50    0.025497117586886   0.142456266401811

Session info

R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS

Matrix products: default
BLAS:   /home/biocbuild/bbs-3.9-bioc/R/lib/libRblas.so
LAPACK: /home/biocbuild/bbs-3.9-bioc/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] ggplot2_3.2.1               NBAMSeq_1.0.1              
 [3] SummarizedExperiment_1.14.1 DelayedArray_0.10.0        
 [5] BiocParallel_1.18.1         matrixStats_0.54.0         
 [7] Biobase_2.44.0              GenomicRanges_1.36.0       
 [9] GenomeInfoDb_1.20.0         IRanges_2.18.1             
[11] S4Vectors_0.22.0            BiocGenerics_0.30.0        

loaded via a namespace (and not attached):
 [1] bit64_0.9-7            splines_3.6.1          Formula_1.2-3         
 [4] assertthat_0.2.1       latticeExtra_0.6-28    blob_1.2.0            
 [7] GenomeInfoDbData_1.2.1 yaml_2.2.0             pillar_1.4.2          
[10] RSQLite_2.1.2          backports_1.1.4        lattice_0.20-38       
[13] glue_1.3.1             digest_0.6.20          RColorBrewer_1.1-2    
[16] XVector_0.24.0         checkmate_1.9.4        colorspace_1.4-1      
[19] htmltools_0.3.6        Matrix_1.2-17          DESeq2_1.24.0         
[22] XML_3.98-1.20          pkgconfig_2.0.2        genefilter_1.66.0     
[25] zlibbioc_1.30.0        purrr_0.3.2            xtable_1.8-4          
[28] scales_1.0.0           htmlTable_1.13.1       tibble_2.1.3          
[31] annotate_1.62.0        mgcv_1.8-28            withr_2.1.2           
[34] nnet_7.3-12            lazyeval_0.2.2         survival_2.44-1.1     
[37] magrittr_1.5           crayon_1.3.4           memoise_1.1.0         
[40] evaluate_0.14          nlme_3.1-141           foreign_0.8-72        
[43] tools_3.6.1            data.table_1.12.2      stringr_1.4.0         
[46] locfit_1.5-9.1         munsell_0.5.0          cluster_2.1.0         
[49] AnnotationDbi_1.46.0   compiler_3.6.1         rlang_0.4.0           
[52] grid_3.6.1             RCurl_1.95-4.12        rstudioapi_0.10       
[55] htmlwidgets_1.3        labeling_0.3           bitops_1.0-6          
[58] base64enc_0.1-3        rmarkdown_1.14         gtable_0.3.0          
[61] DBI_1.0.0              R6_2.4.0               gridExtra_2.3         
[64] knitr_1.24             dplyr_0.8.3            zeallot_0.1.0         
[67] bit_1.1-14             Hmisc_4.2-0            stringi_1.4.3         
[70] Rcpp_1.0.2             geneplotter_1.62.0     vctrs_0.2.0           
[73] rpart_4.1-15           acepack_1.4.1          tidyselect_0.2.5      
[76] xfun_0.8              

References

Di, Y, DW Schafer, JS Cumbie, and JH Chang. 2015. “NBPSeq: Negative Binomial Models for Rna-Sequencing Data.” R Package Version 0.3. 0, URL Http://CRAN. R-Project. Org/Package= NBPSeq.

Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for Rna-Seq Data with Deseq2.” Genome Biology 15 (12). BioMed Central:550.

Robinson, Mark D, Davis J McCarthy, and Gordon K Smyth. 2010. “EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26 (1). Oxford University Press:139–40.

Wood, Simon, and Maintainer Simon Wood. 2015. “Package ’Mgcv’.” R Package Version 1:29.

Zhou, Yi-Hui, Kai Xia, and Fred A Wright. 2011. “A Powerful and Flexible Approach to the Analysis of Rna Sequence Count Data.” Bioinformatics 27 (19). Oxford University Press:2672–8.