## ---- echo=FALSE, results="hide", message=FALSE---------------------------- require(knitr) opts_chunk$set(error=FALSE, message=FALSE, warning=FALSE, dpi = 30) knitr::opts_chunk$set(dev="png") ## ----library, echo=FALSE--------------------------------------------------- library("BASiCS") library("BiocStyle") library("SingleCellExperiment") ## ----quick-start-MCMC------------------------------------------------------ Data <- makeExampleBASiCS_Data() Chain <- BASiCS_MCMC(Data = Data, N = 1000, Thin = 10, Burn = 500, PrintProgress = FALSE, Regression = TRUE) ## ----ExampleDataTest------------------------------------------------------- set.seed(1) Counts <- matrix(rpois(50*40, 2), ncol = 40) rownames(Counts) <- c(paste0("Gene", 1:40), paste0("Spike", 1:10)) Tech <- c(rep(FALSE,40),rep(TRUE,10)) set.seed(2) SpikeInput <- rgamma(10,1,1) SpikeInfo <- data.frame("SpikeID" = paste0("Spike", 1:10), "SpikeInput" = SpikeInput) # No batch structure DataExample <- newBASiCS_Data(Counts, Tech, SpikeInfo) # With batch structure DataExample <- newBASiCS_Data(Counts, Tech, SpikeInfo, BatchInfo = rep(c(1,2), each = 20)) ## ----ExampleDataNoSpikes--------------------------------------------------- set.seed(1) CountsNoSpikes <- matrix(rpois(50*40, 2), ncol = 40) rownames(CountsNoSpikes) <- paste0("Gene", 1:50) # With batch structure DataExampleNoSpikes <- SingleCellExperiment(assays = list(counts = CountsNoSpikes), colData = data.frame(BatchInfo = rep(c(1,2), each = 20))) ## ----LoadSingleData-------------------------------------------------------- data(ChainSC) ## ----quick-start-HVGdetection, fig.height = 20, fig.width = 20------------- par(mfrow = c(2,2)) HVG <- BASiCS_DetectHVG(ChainSC, VarThreshold = 0.6, Plot = TRUE) LVG <- BASiCS_DetectLVG(ChainSC, VarThreshold = 0.2, Plot = TRUE) ## ----quick-start-HVGdetectionTable----------------------------------------- head(HVG$Table) head(LVG$Table) ## ----quick-start-HVGdetectionPlot, fig.width=8, fig.height=8--------------- SummarySC <- Summary(ChainSC) plot(SummarySC, Param = "mu", Param2 = "delta", log = "xy") with(HVG$Table[HVG$Table$HVG,], points(Mu, Delta)) with(LVG$Table[LVG$Table$LVG,], points(Mu, Delta)) ## ----quick-start-LoadBothData---------------------------------------------- data(ChainSC) data(ChainRNA) ## ----quick-start-TestDE, fig.width=16, fig.height=8------------------------ Test <- BASiCS_TestDE(Chain1 = ChainSC, Chain2 = ChainRNA, GroupLabel1 = "SC", GroupLabel2 = "PaS", EpsilonM = log2(1.5), EpsilonD = log2(1.5), EFDR_M = 0.10, EFDR_D = 0.10, Offset = TRUE, PlotOffset = FALSE, Plot = TRUE) ## ----quick-start-DE-------------------------------------------------------- head(Test$TableMean) head(Test$TableDisp) ## ----quick-start-TestDE-2, fig.width=16, fig.height=8---------------------- Test <- BASiCS_TestDE(Chain1 = ChainSC, Chain2 = ChainRNA, GroupLabel1 = "SC", GroupLabel2 = "PaS", EpsilonM = 0, EpsilonD = log2(1.5), EFDR_M = 0.10, EFDR_D = 0.10, Offset = TRUE, PlotOffset = FALSE, Plot = FALSE) ## ---- fig.height = 8, fig.width = 8---------------------------------------- DataNoSpikes <- newBASiCS_Data(Counts, Tech, SpikeInfo = NULL, BatchInfo = rep(c(1,2), each = 20)) # Alternatively DataNoSpikes <- SingleCellExperiment(assays = list(counts = Counts), colData = data.frame(BatchInfo = rep(c(1,2), each = 20))) ChainNoSpikes <- BASiCS_MCMC(Data = DataNoSpikes, N = 1000, Thin = 10, Burn = 500, WithSpikes = FALSE, Regression = TRUE, PrintProgress = FALSE) ## ---- fig.height = 8, fig.width = 8---------------------------------------- DataRegression <- newBASiCS_Data(Counts, Tech, SpikeInfo, BatchInfo = rep(c(1,2), each = 20)) ChainRegression <- BASiCS_MCMC(Data = DataRegression, N = 1000, Thin = 10, Burn = 500, Regression = TRUE, PrintProgress = FALSE) ## ---- fig.height = 8, fig.width = 8---------------------------------------- data("ChainRNAReg") BASiCS_showFit(ChainRNAReg) ## ---- fig.height = 8, fig.width = 16--------------------------------------- data("ChainSCReg") Test <- BASiCS_TestDE(Chain1 = ChainSCReg, Chain2 = ChainRNAReg, GroupLabel1 = "SC", GroupLabel2 = "PaS", EpsilonM = log2(1.5), EpsilonD = log2(1.5), EpsilonR = log2(1.5)/log2(exp(1)), EFDR_M = 0.10, EFDR_D = 0.10, Offset = TRUE, PlotOffset = FALSE, Plot = FALSE) ## -------------------------------------------------------------------------- head(Test$TableResDisp, n = 2) ## ----MCMCNotRun------------------------------------------------------------ Data <- makeExampleBASiCS_Data() Chain <- BASiCS_MCMC(Data, N = 1000, Thin = 10, Burn = 500, Regression = TRUE, PrintProgress = FALSE, StoreChains = TRUE, StoreDir = tempdir(), RunName = "Example") ## ----LoadChainNotRun------------------------------------------------------- Chain <- BASiCS_LoadChain("Example", StoreDir = tempdir()) ## ----Traceplots, fig.height = 8, fig.width = 16---------------------------- plot(Chain, Param = "mu", Gene = 1, log = "y") ## ----AccessChains---------------------------------------------------------- displayChainBASiCS(Chain, Param = "mu")[1:2,1:2] ## ----Summary--------------------------------------------------------------- ChainSummary <- Summary(Chain) ## ----SummaryExample-------------------------------------------------------- head(displaySummaryBASiCS(ChainSummary, Param = "mu"), n = 2) ## ----OtherHPD, fig.width = 16, fig.height = 8------------------------------ par(mfrow = c(1,2)) plot(ChainSummary, Param = "mu", main = "All genes", log = "y") plot(ChainSummary, Param = "delta", Genes = c(2,5,10,50), main = "5 customized genes") ## ----Normalisation, fig.width = 16, fig.height = 8------------------------- par(mfrow = c(1,2)) plot(ChainSummary, Param = "phi") plot(ChainSummary, Param = "s", Cells = 1:5) ## ----DispVsExp, fig.width = 16, fig.height = 8----------------------------- par(mfrow = c(1,2)) plot(ChainSummary, Param = "mu", Param2 = "delta", log = "x", SmoothPlot = FALSE) plot(ChainSummary, Param = "mu", Param2 = "delta", log = "x", SmoothPlot = TRUE) ## ----DenoisedCounts-------------------------------------------------------- DenoisedCounts <- BASiCS_DenoisedCounts(Data = Data, Chain = Chain) DenoisedCounts[1:2, 1:2] ## ----DenoisedProp---------------------------------------------------------- DenoisedRates <- BASiCS_DenoisedRates(Data = Data, Chain = Chain, Propensities = FALSE) DenoisedRates[1:2, 1:2] ## ----DenoisedRates--------------------------------------------------------- DenoisedProp <- BASiCS_DenoisedRates(Data = Data, Chain = Chain, Propensities = TRUE) DenoisedProp[1:2, 1:2] ## ----SessionInfo----------------------------------------------------------- sessionInfo()