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1 The ropls package

The ropls R package implements the PCA, PLS(-DA) and OPLS(-DA) approaches with
the original, NIPALS-based, versions of the algorithms (Wold, Sjostrom, and Eriksson 2001,
Trygg and Wold (2002)). It includes the R2 and Q2 quality metrics (Eriksson et al. 2001,
Tenenhaus (1998)), the permutation diagnostics (Szymanska et al. 2012), the computation
of the VIP values (Wold, Sjostrom, and Eriksson 2001), the score and orthogonal distances to
detect outliers (Hubert, Rousseeuw, and Vanden Branden 2005), as well as many graphics
(scores, loadings, predictions, diagnostics, outliers, etc).

The functionalities from ropls can also be accessed via a graphical user interface in the
Multivariate module from the Workflow4Metabolomics.org online resource for computa-
tional metabolomics, which provides a user-friendly, Galaxy-based environment for data
pre-processing, statistical analysis, and annotation (Giacomoni et al. 2015).

2 Context

2.1 Orthogonal Partial Least-Squares

Partial Least-Squares (PLS), which is a latent variable regression method based on covari-
ance between the predictors and the response, has been shown to efficiently handle datasets
with multi-collinear predictors, as in the case of spectrometry measurements (Wold, Sjostrom,
and Eriksson 2001). More recently, Trygg and Wold (2002) introduced the Orthogonal Par-
tial Least-Squares (OPLS) algorithm to model separately the variations of the predictors
correlated and orthogonal to the response.

OPLS has a similar predictive capacity compared to PLS and improves the interpretation of
the predictive components and of the systematic variation (Pinto, Trygg, and Gottfries 2012).
In particular, OPLS modeling of single responses only requires one predictive component.

Diagnostics such as the Q2Y metrics and permutation testing are of high importance to avoid
overfitting and assess the statistical significance of the model. The Variable Importance
in Projection (VIP), which reflects both the loading weights for each component and the
variability of the response explained by this component (Pinto, Trygg, and Gottfries 2012;
Mehmood et al. 2012), can be used for feature selection (Trygg and Wold 2002; Pinto, Trygg,
and Gottfries 2012).

2.2 OPLS software

OPLS is available in the SIMCA-P commercial software (Umetrics, Umea, Sweden; Eriksson
et al. (2001)). In addition, the kernel-based version of OPLS (Bylesjo et al. 2008) is available
in the open-source R statistical environment (R Development Core Team 2008), and a single
implementation of the linear algorithm in R has been described recently (Gaude et al. 2013).


http://bioconductor.org/packages/release/bioc/html/ropls.html
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3 The sacurine metabolomics dataset

3.1 Study objective

The objective was to study the influence of age, body mass index (bmi), and gender on
metabolite concentrations in urine, by analysing 183 samples from a cohort of adults with
liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS; Thevenot
et al. (2015)).

3.2  Pre-processing and annotation

Urine samples were analyzed by using an LTQ Orbitrap in the negative ionization mode. A
total of 109 metabolites were identified or annotated at the MSI level 1 or 2. After retention
time alignment with XCMS, peaks were integrated with Quan Browser. Signal drift and batch
effect were corrected, and each urine profile was normalized to the osmolality of the sample.
Finally, the data were logl0 transformed (Thevenot et al. 2015).

3.3 Covariates

The volunteers’ age, body mass index (bmi), and gender were recorded.

4 Hands-on

4.1 Loading

We first load the ropls package:

library(ropls)

We then load the sacurine dataset which contains:

1. The dataMatrix matrix of numeric type containing the intensity profiles (logl0 trans-
formed),

2. The sampleMetadata data frame containg sample metadata,
3. The variableMetadata data frame containg variable metadata

data(sacurine)
names (sacurine)
## [1] "dataMatrix" "sampleMetadata" "variableMetadata"

We attach sacurine to the search path and display a summary of the content of the dataMa-
trix, sampleMetadata and variableMetadata with the strF Function of the ropls package
(see also str):


http://bioconductor.org/packages/release/bioc/html/ropls.html
http://bioconductor.org/packages/release/bioc/html/ropls.html
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attach(sacurine)

strF(dataMatrix)

## dim class mode typeof size NAs min mean median max
## 183 x 109 matrix numeric double 0.2 Mb 0 -0.3 4.2 4.3 6
## (2-methoxyethoxy)propanoic acid isomer (gamma)Glu-Leu/Ile ..
## HU_011 3.019766011 3.888479324 ..
## HU_014 3.81433889 4.277148905 ..
## ... aoc boa ooo
## HU_208 3.748127215 4.523763202 ..
## HU_209 4.208859398 4.675880567 ..
## Valerylglycine isomer 2 Xanthosine

## HU_011 3.889078716 4.075879575

## HU_014 4.181765852 4.195761901

##H ... ca .

## HU_208 4.634338821 4.487781609

## HU_209 4.47194762 4.222953354

strF(sampleMetadata)

## age bmi gender

## numeric numeric factor
## nRow nCol size NAs
## 183 30Mb O

## age bmi gender

## HU_011 29 19.75 M

## HU_014 59 22.64 F

## ... A A A

## HU_208 27 18.61 F

## HU_209 17.5 21.48 F
strF(variableMetadata)

## msilevel hmdb chemicalClass
##  numeric character character

## nRow nCol size NAs
## 109 30 Mb 0

## msilLevel hmdb chemicalClass
## (2-methoxyethoxy)propanoic acid isomer 2 Organi
## (gamma)Glu-Leu/Ile 2 AA-pep
##H ... C C C
## Valerylglycine isomer 2 2 AA-pep:AcyGly
## Xanthosine 1 HMDB00299 Nucleo

4.2  Principal Component Analysis (PCA)

We perform a PCA on the dataMatrix matrix (samples as rows, variables as columns), with
the opls method:

sacurine.pca <- opls(dataMatrix)

A summary of the model (8 components were selected) is printed:
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## PCA

## 183 samples x 109 variables
## standard scaling of predictors
## R2X(cum) pre ort

## Total 0.501 8 0

In addition the default summary figure is displayed:
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Figure 1: PCA summary plot. Top left overview: the scree plot (i.e., inertia barplot)
suggests that 3 components may be sufficient to capture most of the inertia; Top right
outlier: this graphics shows the distances within and orthogonal to the projection plane
(Hubert, Rousseeuw, and Vanden Branden 2005): the name of the samples with a high
value for at least one of the distances are indicated; Bottom left x-score: the variance
along each axis equals the variance captured by each component: it therefore depends on
the total variance of the dataMatrix X and of the percentage of this variance captured by
the component (indicated in the labels); it decreases when going from one component to a
component with higher indice; Bottom right x-loading: the 3 variables with most extreme
values (positive and negative) for each loading are black colored and labeled.

Note:
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1. Since dataMatrix does not contain missing value, the singular value decomposition
was used by default; NIPALS can be selected with the algoC argument specifying the
algorithm (Character),

2. The predI = NA default number of predictive components (/nteger) for PCA means
that components (up to 10) will be computed until the cumulative variance exceeds
50%. If the 50% have not been reached at the 10th component, a warning message
will be issued (you can still compute the following components by specifying the predI
value).

Let us see if we notice any partition according to gender, by labeling/coloring the samples
according to gender (parAsColFcVn) and drawing the Mahalanobis ellipses for the male and
female subgroups (parEllipsel).

genderFc <- sampleMetadata[, "gender"]
plot(sacurine.pca, typeVc = "x-score",
parAsColFcVn = genderFc, parEllipsesL = TRUE)
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Figure 2: PCA score plot colored according to gender.

Note:
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1. The plotting parameter to be used As Colors (Factor of character type or Vector
of numeric type) has a length equal to the number of rows of the dataMatrix (ie of
samples) and that this qualitative or quantitative variable is converted into colors (by
using an internal palette or color scale, respectively). We could have visualized the age
of the individuals by specifying parAsColFcVn = sampleMetadatal, "age"].

2. The displayed components can be specified with parCompVi (plotting parameter speci-
fying the Components: Vector of 2 integers)

4.3  Partial least-squares: PLS and PLS-DA

For PLS (and OPLS), the Y response(s) must be provided to the opls method. Y can
be either a numeric vector (respectively matrix) for single (respectively multiple) (O)PLS
regression, or a character factor for (O)PLS-DA classification as in the following example
with the gender qualitative response:

sacurine.plsda <- opls(dataMatrix, genderFc)

## PLS-DA

## 183 samples x 109 variables and 1 response

## standard scaling of predictors and response(s)

## R2X(cum) R2Y(cum) Q2(cum) RMSEE pre ort pR2Y pQ2
## Total 0.275 0.73 0.584 0.262 3 0 0.05 0.05
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Figure 3: PLS-DA model of the gender response. Top left: significance diagnostic:
the R2Y and Q2Y of the model are compared with the corresponding values obtained after
random permutation of the y response; Top right: inertia barplot: the graphic here suggests
that 3 orthogonal components may be sufficient to capture most of the inertia; Bottom
left: outlier diagnostics; Bottom right: x-score plot: the number of components and the
cumulative R2X, R2Y and Q2Y are indicated below the plot.

Note:

1. When set to NA (as in the default), the number of components predI is determined
automatically as follows (Eriksson et al. 2001): A new component h is added to the
model if:

= R2Y}, > 0.01, i.e., the percentage of Y dispersion (i.e., sum of squares) explained by
component h is more than 1 percent, and

= Q2Y, =1— PRESS,/RSSr_1 > 0 for PLS (or 5% when the number of samples is
less than 100) or 1% for OPLS: Q2Y}, > 0 means that the predicted residual sum of
squares (PRESS}) of the model including the new component h estimated by 7-fold
cross-validation is less than the residual sum of squares (RSS),_1) of the model with
the previous components only (with RS'S; being the sum of squared Y values).
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2. The predictive performance of the full model is assessed by the cumulative Q2Y

metric: Q2Y =1 — [] (1 — Q2Y}). We have Q2Y € [0, 1], and the higher the Q2Y,
h=1
the better the performance. Models trained on datasets with a larger number of features

compared with the number of samples can be prone to overfitting: in that case, high
Q2Y values are obtained by chance only. To estimate the significance of Q2Y (and
R2Y) for single response models, permutation testing (Szymanska et al. 2012) can
be used: models are built after random permutation of the Y values, and Q2Y,¢rm
are computed. The p-value is equal to the proportion of QQ2Y,c,, above Q2Y (the
default number of permutations is 20 as a compromise between quality control and
computation speed; it can be increased with the permI parameter, e.g. to 1,000, to
assess if the model is significant at the 0.05 level),

3. The NIPALS algorithm is used for PLS (and OPLS); dataMatrix matrices with (a
moderate amount of ) missing values can thus be analysed.

We see that our model with 3 predictive (pre) components has significant and quite high R2Y
and Q2Y values.

4.4  Orthogonal partial least squares: OPLS and OPLS-DA

To perform OPLS(-DA), we set orthoI (number of components which are orthogonal;
Integer) to either a specific number of orthogonal components, or to NA. Let us build an
OPLS-DA model of the gender response.

sacurine.oplsda <- opls(dataMatrix, genderFc,
predI = 1, orthoI = NA)

## OPLS-DA

## 183 samples x 109 variables and 1 response

## standard scaling of predictors and response(s)

## R2X(cum) R2Y(cum) Q2(cum) RMSEE pre ort pR2Y pQ2
## Total 0.275 0.73 0.602 0.262 1 2 0.05 0.05
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Figure 4: OPLS-DA model of the gender response.
Note:
1. For OPLS modeling of a single response, the number of predictive component is 1,

2. In the (x-score plot), the predictive component is displayed as abscissa and the (selected;
default = 1) orthogonal component as ordinate.

Let us assess the predictive performance of our model. We first train the model on a subset
of the samples (here we use the odd subset value which splits the data set into two halves
with similar proportions of samples for each class; alternatively, we could have used a specific
subset of indices for training):

sacurine.oplsda <- opls(dataMatrix, genderFc, predI = 1, orthoI = NA,
subset = "odd")

## OPLS-DA

## 92 samples x 109 variables and 1 response

## standard scaling of predictors and response(s)

#i# R2X(cum) R2Y(cum) Q2(cum) RMSEE RMSEP pre ort
## Total 0.26 0.825 0.608 0.213 0.341 1 2

We first check the predictions on the training subset:

11
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4.5

4.5.1

trainVi <- getSubsetVi(sacurine.oplsda)
table(genderFc[trainVi], fitted(sacurine.oplsda))

##

## M F
# M50 0
#t F 0 42

We then compute the performances on the test subset:

table(genderFc[-trainVi],
predict(sacurine.oplsda, dataMatrix[-trainVi, 1))

##

## M F
## M43 7
#t F 7 34

As expected, the predictions on the test subset are (slightly) lower. The classifier however still
achieves 91% of correct predictions.

Comments

Overfitting

Overfitting (i.e., building a model with good performances on the training set but poor
performances on a new test set) is a major caveat of machine learning techniques applied to
data sets with more variables than samples. A simple simulation of a random X data set and
a y response shows that perfect PLS-DA classification can be achieved as soon as the number
of variables exceeds the number of samples, as detailed in the example below, adapted from
Wehrens (2011):

12
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4.5.2
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Figure 5: Risk of PLS overfitting. In the simulation above, a random matrix X of 20
observations x 200 features was generated by sampling from the uniform distribution U(0,1).
A random y response was obtained by sampling (without replacement) from a vector of 10
zeros and 10 ones. Top left, top right, and bottom left: the X-score plots of the PLS
modeling of y by the (sub)matrix of X restricted to the first 2, 20, or 200 features, are
displayed (i.e., the observation/feature ratios are 0.1, 1, and 10, respectively). Despite the
good separation obtained on the bottom left score plot, we see that the Q2Y estimation
of predictive performance is low (negative); Bottom right: a significant proportion of the
models (in fact here all models) trained after random permutations of the labels have a
higher Q2Y value than the model trained with the true labels, confirming that PLS cannot
specifically model the y response with the X predictors, as expected.

This simple simulation illustrates that PLS overfit can occur, in particular when the number of
features exceeds the number of observations. It is therefore essential to check that the
@Q2Y value of the model is significant by random permutation of the labels.

VIP from OPLS models

The classical VIP metric is not useful for OPLS modeling of a single response since (Galindo-
Prieto, Eriksson, and Trygg 2014, Thevenot et al. (2015)): 1. VIP values remain identical
whatever the number of orthogonal components selected, 2. VIP values are univariate (i.e.,

13
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they do not provide information about interactions between variables). In fact, when features
are standardized, we can demonstrate a mathematical relationship between VIP and p-values
from a Pearson correlation test (Thevenot et al. 2015), as illustrated by the figure below:

## OPLS

## 183 samples x 109 variables and 1 response

## standard scaling of predictors and response(s)

## R2X(cum) R2Y(cum) Q2(cum) RMSEE pre ort pR2Y pQ2
## Total 0.212 0.476 0.31 7.53 1 1 0.05 0.05

VIP

p-value

Figure 6: Relationship between VIP from one-predictive PLS or OPLS models with
standardized variables, and p-values from Pearson correlation test. The (p;, VIP;)
pairs corresponding respectively to the VIP values from OPLS modelling of the age response
with the sacurine dataset, and the p-values from the Pearson correlation test are shown as
red dots. The y = ® (1 — 2/2)/2ms curve is shown in red (where ®~! is the inverse of
the probability density function of the standard normal distribution, and z,.,,s is the quadratic
mean of the z; quantiles from the standard normal distribution; 2,,,s = 2.6 for the sacurine
dataset and the age response). The vertical (resp. horizontal) blue line corresponds to
univariate (resp. multivariate) thresholds of p = 0.05 and VIP = 1, respectively (Thevenot
et al. 2015).

The VIP properties above result from:

1. OPLS models of a single response have a single predictive component,

14
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4.5.3

2. in the case of one-predictive component (O)PLS models, the general formula for VIPs
can be simplified to VIP; = \/m x |w,| for each feature j, were m is the total number
of features and w is the vector of loading weights,

3. in OPLS, w remains identical whatever the number of extracted orthogonal components,

4. for a single-response model, w is proportional to X'y (where ' denotes the matrix
transposition),

5. if X and y are standardized, X'y is the vector of the correlations between the features
and the response.

Galindo-Prieto, Eriksson, and Trygg (2014) have recently suggested new VIP metrics for
OPLS, VIP_pred and VIP_ortho, to separately measure the influence of the features in
the modeling of the dispersion correlated to, and orthogonal to the response, respectively
(Galindo-Prieto, Eriksson, and Trygg 2014).

For OPLS(-DA) models, you can therefore get from the model generated with opls:

1. the predictive VIP vector (which corresponds to the VIP, p,eq metric measuring the
variable importance in prediction) with getVipVn(model),

2. the orthogonal VIP vector which is the VIPy ,.15, metric measuring the variable
importance in orthogonal modeling with getVipVn(model, orthoL = TRUE). As for the

classical VIP, we still have the mean of VIP;Ted (and of VIPOQTthO) which, each, equals
1.

(Orthogonal) Partial Least Squares Discriminant Analysis: (O)PLS-DA

4.5.3.1 Two classes

When the y response is a factor of 2 levels (character vectors are also allowed), it is internally
transformed into a vector of values € {0,1} encoding the classes. The vector is centered and
unit-variance scaled, and the (O)PLS analysis is performed.

Brereton and Lloyd (2014) have demonstrated that when the sizes of the 2 classes are
unbalanced, a bias is introduced in the computation of the decision rule, which penalizes
the class with the highest size (Brereton and Lloyd 2014). In this case, an external procedure
using resampling (to balance the classes) and taking into account the class sizes should be
used for optimal results.

4.5.3.2 Multiclass

In the case of more than 2 levels, the y response is internally transformed into a matrix (each
class is encoded by one column of values € {0,1}). The matrix is centered and unit-variance
scaled, and the PLS analysis is performed.

In this so-called PLS2 implementation, the proportions of 0 and 1 in the columns is usually
unbalanced (even in the case of balanced size of the classes) and the bias described previously
occurs (Brereton and Lloyd 2014). The multiclass PLS-DA results from ropls are therefore
indicative only, and we recommend to set an external procedure where each column of the
matrix is modeled separately (as described above) and the resulting probabilities are aggregated
(see for instance Bylesjo et al. (2006)).

15
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4.6

Working on ExpressionSet omics objects from bioconductor

The ExpressionSet class from the Biobase bioconductor package has been developed to
conveniently handle preprocessed omics objects, including the variables x samples matrix

of intensities, and data frames containing the sample and variable metadata (Huber et al.

2015). The matrix and the two data frames can be accessed by the exprs, pData and fData
respectively (note that the data matrix is stored in the object with samples in columns).

The opls method can be applied to an ExpressionSet object, by using the object as the
x argument, and, for (O)PLS(-DA), by indicating as the y argument the name of the
sampleMetadata to be used as the response.

In the example below, we will first build a minimal ExpressionSet object from the sacurine
data set, and we subsequently perform an OPLS-DA.

library(Biobase)

sacSet <- ExpressionSet(assayData = t(dataMatrix),

phenoData = new("AnnotatedDataFrame", data = sampleMetadata))
opls(sacSet, "gender", orthoI = NA)

## OPLS-DA

## 183 samples x 109 variables and 1 response

## standard scaling of predictors and response(s)

## R2X(cum) R2Y(cum) Q2(cum) RMSEE pre ort pR2Y pQ2
## Total 0.275 0.73 0.602 0.262 1 2 0.05 0.05

16
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Importing/exporting data from/to the Workflow4metabolomics
infrastructure

Galaxy is a web-based environment providing powerful graphical user interface and workflow

management functionalities for omics data analysis (Goecks et al. (2010); Boekel et al.

(2015)). Wrapping an R code into a Galaxy module is quite straight-forward: examples can
be found on the toolshed central repository and in the RGalaxy bioconductor package.

Workflow4metabolomics (W4M) is the online infrastructure for computational metabolomics
based on the Galaxy environment (Giacomoni et al. 2015). W4M enables to build, run,
save and share workflows efficiently. In addition, workflows and input/output data (called
histories) can be referenced, thus enabling fully reproducible research. More than 30 modules
are currently available for LC-MS, GC-MS and NMR data preprocessing, statistical analysis,
and annotation, including wrappers of xcms, CAMERA, metaMS, ropls, and biosigner, and is
open to new contributions.

In order to facilitate data import from/to W4M, the fromwW4M function (respectively the
toW4M method) enables import from (respectively export to) the W4M 3 tabular file format
(dataMatrix.tsv, sampleMetadata.tsv, variableMetadata.tsv) into (respectively from) an
ExpressionSet object, as shown in the following example which uses the 3 .tsv files stored in
the extdata repository of the package to create a sacSet ExpressionSet object:
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sacSet <- fromwW4M(file.path(path.package("ropls"), "extdata"))
sacSet

## ExpressionSet (storageMode: lockedEnvironment)

## assayData: 109 features, 183 samples

##  element names: exprs

## protocolData: none

## phenoData

##  sampleNames: HU_011 HU_014 ... HU_209 (183 total)

##  varlLabels: age bmi gender

##  varMetadata: labelDescription

## featureData

##  featureNames: X.2.methoxyethoxy.propanoic.acid.isomer
## X.gamma.Glu.Leu.Ile ... Xanthosine (109 total)

##  fvarLabels: msilLevel hmdb chemicalClass

##  fvarMetadata: labelDescription

## experimentData: use 'experimentData(object)'

## Annotation:

The generated sacSet ExpressionSet object can be used with the opls method as described
in the previous section.

Conversely, an ExpressionSet (with filled assayData, phenoData and featureData slots)
can be exported to the 3 table W4M format:

toW4M(sacSet, pasteO(getwd(), "/out_"))

Before moving to the next session whith another example dataset, we detach sacurine from
the search path:

detach(sacurine)

Pre-processing and annotation of mass spectrom-
etry data

To illustrate how dataMatrix, sampleMetadata and variableMetadata can be obtained from
raw mass spectra file, we use the LC-MS data from the faahKO package (Saghatelian et
al. 2004). We will pre-process the raw files with the xcms package (Smith et al. 2006) and
annotate isotopes and adducts with the CAMERA package (Kuhl et al. 2012), as described
in the corresponding vignettes (all these packages are from bioconductor).

Let us start by getting the paths to the 12 raw files (6 KO and 6 WT mice) in the .cdf open
format. The files are grouped in two sub-directories (KO and WT) since xcms can use sample
class information when grouping the peaks and correcting retention times.

library(faahKO0)

cdfpath <- system.file("cdf", package = "faahK0")

cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)
basename(cdffiles)

## [1] "kol5.CDF" "kol6.CDF" "kol8.CDF" "kol9.CDF" "ko2l.CDF" "ko22.CDF"
## [7] "wtl5.CDF" "wtl6.CDF" "wt18.CDF" "wt19.CDF" "wt21.CDF" "wt22.CDF"

18


http://bioconductor.org/packages/release/bioc/html/faahKO.html
http://bioconductor.org/packages/release/bioc/html/xcms.html
http://bioconductor.org/packages/release/bioc/html/CAMERA.html
http://bioconductor.org/packages/release/bioc/html/xcms.html

ropls: PCA, PLS(-DA) and OPLS(-DA) for multivariate analysis and feature selection of omics data

Next, xcms is used to pre-process the individual raw files, as described in the vignette.

library(xcms)
xset <- xcmsSet(cdffiles)

xset

## An "xcmsSet" object with 12 samples
##

## Time range: 2506.1-4147.7 seconds (41.8-69.1 minutes)
## Mass range: 200.1-599.3338 m/z

## Peaks: 4721 (about 393 per sample)
## Peak Groups: 0

## Sample classes: KO, WT

#it

## Feature detection:

## o Peak picking performed on MS1.

## Profile settings: method = bin

## step = 0.1

#it

## Memory usage: 0.744 MB

xset <- group(xset)

## Processing 3195 mz slices ... OK

xset2 <- retcor(xset, family = "symmetric", plottype = "mdevden")

## Performing retention time correction using 133 peak groups.

xset2 <- group(xset2, bw = 10)
## Processing 3195 mz slices ... OK

xset3 <- fillPeaks(xset2)

Finally, the annotateDiffreport from CAMERA annotates isotopes and adducts and builds a
peak table containing the peak intensities and the variable metadata.

library (CAMERA)

diffreport <- annotateDiffreport(xset3, quick=TRUE)

## Start grouping after retention time.

## Created 128 pseudospectra.

## Generating peak matrix!

## Run isotope peak annotation

## % finished: 10 20 30 40 50 60 70 80 90 100

## Found isotopes: 81

diffreport[1:4, ]

## name fold tstat pvalue mzmed mzmin
## 300.2/3390 M300T3390 5.693594 -14.44368 5.026336e-08 300.1898 300.1706
## 301.2/3390 M301T3390 5.876588 -15.57570 6.705719e-08 301.1879 301.1659
## 298.2/3187 M298T3187 3.870918 -11.93891 3.310025e-07 298.1508 298.1054
## 491.2/3397 M491T3397 24.975703 -16.83986 4.463361e-06 491.2000 491.1877
## mzmax rtmed rtmin rtmax npeaks KO WT kol5
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## 300.2/3390 300.2000 3390.324 3386.765 3396.335 12 6 6 4534353.6
## 301.2/3390 301.1949 3389.627 3386.765 3392.101 7 6 1 962353.4
## 298.2/3187 298.1592 3186.803 3184.124 3191.312 4 4 0 180780.8
## 491.2/3397 491.2063 3397.160 3367.123 3424.681 6 6 0 432037.0

## kol6 kol8 kol9 ko21 ko22 wtl5
## 300.2/3390 4980914.5 5290739.1 4564262.9 4733236.1 3931592.6 349660.885
## 301.2/3390 1047934.1 1109303.0 946943.4 984787.2 806171.5 86450.412
## 298.2/3187 203927.0 191015.9 190626.8 156869.1 220288.6 16269.096
## 491.2/3397 332159.1 386966.8 334951.5 294816.2 373577.6  7643.138
## wtl6 wtl8 wtl9 wt21l wt22 1isotopes
## 300.2/3390 491793.18 645526.70 634108.85 1438254.446 1364627.84 [9][M]+
## 301.2/3390 120096.52 143007.95 137319.69 218483.143 291392.97 [9][M+1]+
## 298.2/3187 43677.78 54739.13 76318.01 54726.115 49679.94

## 491.2/3397 10519.94 26472.29 33598.32 8030.467 0.00
## adduct pcgroup
## 300.2/3390 20
## 301.2/3390 20
## 298.2/3187 103
## 491.2/3397 28

We then build the dataMatrix, sampleMetadata and variableMetadata matrix and dataframes
as follows:

sampleVc <- grep("~ko|”wt", colnames(diffreport), value = TRUE)

dataMatrix <- t(as.matrix(diffreport[, sampleVcl]))

dimnames (dataMatrix) <- list(sampleVc, diffreport[, "name"])

sampleMetadata <- data.frame(row.names = sampleVc,

genotypeFc = substr(sampleVc, 1, 2))

variableMetadata <- diffreport[, !(colnames(diffreport) %in% c("name", sampleVc))]
rownames (variableMetadata) <- diffreport[, "name"]

The data can now be analysed with the ropls package as described in the previous section
(i.e. by performing a PCA and an OPLS-DA):

library(ropls)
opls(dataMatrix)

## PCA

## 12 samples x 398 variables

## standard scaling of predictors
## R2X(cum) pre ort

## Total 0.588 2 0
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opls(dataMatrix, sampleMetadata[, "genotypeFc"], orthoIl = NA)

## Warning: OPLS: number of predictive components ('predI' argument) set to 1
## OPLS-DA

## 12 samples x 398 variables and 1 response

## standard scaling of predictors and response(s)

## R2X(cum) R2Y(cum) Q2(cum) RMSEE pre ort pR2Y pQ2

## Total 0.737 0.993 0.822 0.0557 1 3 0.05 0.05
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Note that the warning message is just a reminder that OPLS(-DA) models of a single response
have only 1 predictive component, and could have been avoided by specifying predI = 1 in
the opls call.

6 Other datasets

In addition to the sacurine dataset presented above, the package contains the following
datasets to illustrate the functionalities of PCA, PLS and OPLS (see the examples in the
documentation of the opls function):

= aminoacids Amino-Acids Dataset. Quantitative structure property relationship (QSPR)
(Wold, Sjostrom, and Eriksson 2001).

= cellulose NIR-Viscosity example data set to illustrate multivariate calibration using PLS,
spectral filtering and OPLS (Multivariate calibration using spectral data. Simca tutorial.
Umetrics, Sweden).

= cornell Octane of various blends of gasoline: Twelve mixture component proportions of
the blend are analysed (Tenenhaus 1998).

22



ropls: PCA,

PLS(-DA) and OPLS(-DA) for multivariate analysis and feature selection of omics data

= foods Food consumption patterns accross European countries (FOODS). The relative
consumption of 20 food items was compiled for 16 countries. The values range between
0 and 100 percent and a high value corresponds to a high consumption. The dataset
contains 3 missing data (Eriksson et al. 2001).

= linnerud Three physiological and three exercise variables are measured on twenty
middle-aged men in a fitness club (Tenenhaus 1998).

= lowarp A multi response optimization data set (LOWARP) (Eriksson et al. 2001).

= mark Marks obtained by french students in mathematics, physics, french and english.
Toy example to illustrate the potentialities of PCA (Baccini 2010).

7 Session info

Here is the output of sessionInfo() on the system on which this document was compiled:

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

R version 3.5.0 (2018-04-23)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.4 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.7-bioc/R/1lib/1ibRblas.so
LAPACK: /home/biocbuild/bbs-3.7-bioc/R/1lib/1libRlapack.so

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods
[8] base
other attached packages:

[1] CAMERA_1.36.0 faahK0_1.19.0 xcms_3.2.0
[4] MSnbase_2.6.0 ProtGenerics_1.12.0 mzR_2.14.0
[7] Rcpp_0.12.16 BiocParallel _1.14.0 Biobase 2.40.0
[10] BiocGenerics 0.26.0 ropls_1.12.0 BiocStyle 2.8.0

loaded via a namespace (and not attached):

[1] vsn_3.48.0 splines_3.5.0 foreach_1.4.4
[4] Formula_1.2-2 affy_1.58.0 stats4_3.5.0

[7] latticeExtra_0.6-28 RBGL_1.56.0 yaml_2.1.18

[10] impute_1.54.0 pillar_1.2.2 backports_1.1.2
[13] lattice_0.20-35 limma_3.36.0 digest 0.6.15
[16] RColorBrewer_1.1-2 checkmate_1.8.5 colorspace_1.3-2
[19] htmltools_0.3.6 preprocessCore_1.42.0 Matrix 1.2-14
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## [22] plyr_1.8.4 MALDIquant_1.17 XML_3.98-1.11
## [25] pkgconfig 2.0.1 bookdown_0.7 zlibbioc_1.26.0
## [28] scales_0.5.0 RANN_2.5.1 affyio_1.50.0
## [31] tibble_ 1.4.2 htmlTable 1.11.2 IRanges 2.14.0
## [34] ggplot2_2.2.1 nnet_7.3-12 lazyeval 0.2.1
## [37] MassSpecWavelet 1.46.0 survival 2.42-3 magrittr_1.5

## [40] evaluate_0.10.1 doParallel_1.0.11 MASS_7.3-50

## [43] foreign_0.8-70 graph_1.58.0 BiocInstaller_1.30.0
## [46] tools_3.5.0 data.table_1.10.4-3 stringr_1.3.0
## [49] S4Vectors_0.18.0 munsell_0.4.3 cluster_2.0.7-1
## [52] pcaMethods_1.72.0 compiler_3.5.0 mzID_1.18.0

## [55] rlang_0.2.0 grid_3.5.0 iterators_1.0.9
## [58] rstudioapi_ 0.7 htmlwidgets_ 1.2 igraph_1.2.1
## [61] basebdenc_0.1-3 rmarkdown_1.9 gtable 0.2.0
## [64] codetools_0.2-15 multtest 2.36.0 gridExtra_2.3
## [67] knitr_1.20 Hmisc_4.1-1 rprojroot_1.3-2
## [70] stringi 1.1.7 rpart_4.1-13 acepack_1.4.1

## [73] xfun_0.1
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