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Introduction

Gene expression is a multi-step process including transcription, mRNA-transport, -stability
and -translation. Dysregulated mRNA translation is commonly observed in human diseases
such as cancer and understanding which mRNAs are differentially translated and the mecha-
nisms that mediate such effects is therefore of high importance. Estimates of transcriptome-
wide translational efficiency can be obtained using polysome-profiling and ribosome-profiling.
Both approaches are based on isolation of translated mRNA (polysome-associated mRNA or
Ribosome Protected Fragments [RPF]) followed by quantification using DNA-microarrays or
RNA sequencing (RNAseq). A parallel total mRNA sample is also isolated and quantified in
order to identify bona fide changes in translational efficiency. More details are found in [1, 2].

During analysis of the resulting data, three regulatory modes can be observed: changes in
mRNA abundance (i.e. similar changes in total mRNA levels and levels of translated mRNA)
and changes in translational efficiency leading to changes in protein levels (a change in the
amount of translated mRNA that is not explained by a change in total mRNA) or buffering
which maintains constant levels of translated mRNA (and hence also protein levels) despite
altered levels of total mRNA. Efficient separation of these regulatory modes is necessary to
elucidate underlying regulatory mechanisms [3]. Studies of changes in translational efficiency
commonly apply per sample differences (log scale) between levels of translated mRNA and
total mRNA [1] that are compared between treatments. However, as discussed in [4] such
translational efficiency scores and outputs from methods that use such scores will show spu-
rious correlations leading to elevated false positive findings [4].

This bias from spurious correlations can be solved by using per-identifier regression-based
analysis between levels of translated mRNA and total mRNA. Such analysis produces residuals
that are uncorrelated with the total mRNA levels and changes in translational efficiency
leading to altered protein levels or buffering can be identified using Analysis of Partial Variance
(APV) [4]. Anota2seq allows for identification of all three regulatory modes from polysome-
or ribosome- profiling data quantified by DNA-microarrays or RNAseq. It uses APV and
thereby eliminates spurious correlation bias. Here we illustrate the use of the anota2seq
package.

1 Workflow

Analysis of translational activity using anota2seq includes the following steps:
1. Initialize an Anota2seqDataSet and pre-process RNA sequencing data using anota2seqDataSetFromMatrix

or anota2seqDataSetFromSE. See section 3.2
2. Assessment of model assumptions using anota2seqPerformQC and anota2seqResidOutlierTest.

See section 3.3
3. Analysis of changes in mRNA abundance and translational efficiency leading to altered

protein levels or buffering using anota2seqAnalyze. See section 3.4
4. Selection of identifiers and classification into different regulatory modes of gene expres-

sion using anota2seqSelSigGenes and anota2seqRegModes. See section 3.4.4 and 3.5
respectively.
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5. Visualize the results using anota2seqPlotPvalues, anota2seqPlotFC and anota2seqPlotGenes

See sections 3.5.1, 3.4.2 and 3.4.4, respectively.

2 Getting started

anota2seq provides a wrapper function called anota2seqRun which performs all analysis steps
with relevant default parameters. Here we show an overview of the whole workflow using
this function. We illustrate an analysis using count data from a RNA sequencing experi-
ment on total mRNA (called anota2seq_data_T here) and on translated mRNA (polysome-
associated mRNA or Ribosome Protected Fragments, data called anota2seq_data_P) on at
least 2 conditions ("ctrl" and "treatment" here) and a vector of sample annotation (called
anota2seq_pheno_vec). The following code performs normalization, assesses model assump-
tions and performs the analysis for the default contrast (treatment vs. control in this case):

library(anota2seq)

data(anota2seq_data)

ads <- anota2seqDataSetFromMatrix(

dataP = anota2seq_data_P[1:1000,],

dataT = anota2seq_data_T[1:1000,],

phenoVec = anota2seq_pheno_vec,

dataType = "RNAseq",

normalize = TRUE)

ads <- anota2seqRun(ads)

The regulatory modes can be quickly visualized:
anota2seqPlotFC(ads, selContrast = 1, plotToFile = FALSE)
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Figure 1: Visualization of the different regulatory modes

3



Generally applicable transcriptome-wide analysis of translational efficiency using anota2seq

The following code chunk illustrates how to access the top list of significant changes in
translational efficiency leading to altered protein levels (effect, adjusted p-value, regulatory
mode):
head(

anota2seqGetOutput(

ads, analysis = "translation", output = "selected", getRVM = TRUE,

selContrast = 1)[, c("apvEff", "apvRvmPAdj", "singleRegMode")])

## apvEff apvRvmPAdj singleRegMode

## simGenes_464 1.476348 0.002236209 translation

## simGenes_819 -1.481481 0.002236209 translation

## simGenes_723 1.447539 0.004926436 translation

## simGenes_713 1.615780 0.004926436 translation

## simGenes_201 -1.525266 0.004926436 translation

## simGenes_480 1.182835 0.004926436 translation

This provided an overview of the features of the package. Each step of the analysis are
detailed in the next section.
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1A two-channel refer-
ence design should be
applicable although we
have not tested this
data type.

3 Transcriptome-wide analysis of translational efficiency
using anota2seq

3.1 Input Data

anota2seq can analyze data from both ribosome-profiling and polysome-profiling quantified
by RNAseq or DNA-microarrays. anota2seq cannot use data from competitive two channel
experiments when the polysome- associated mRNA is directly compared to total mRNA as
these do not allow independent estimates of polysome- associated mRNA and total mRNA
levels1. anota2seq requires 3 replicate experiments per group if there is 2 treatments. If there
is more than two treatments, two replicates is sufficient but will result in reduced statistical
power as compared to three replicates. We recommend three replicates in most cases.

In this vignette, we will use simulated data provided with the package to illustrate how to
perform each step of the analysis. These data originate from the study by Oertlin et al. [3]
which compared methods for analysis of translatomes quantified by RNAseq. Eight samples
were simulated from 2 sample classes ("control" and "treatment"); both total mRNA (an-
ota2seq_data_T, raw RNAseq counts) and paired translated mRNA (anota2seq_data_P, raw
RNAseq counts) are provided together with a sample class vector (anota2seq_pheno_vec).
data(anota2seq_data)

# Polysome-associated mRNA and total mRNA columns must follow the same order

head(anota2seq_data_P, n = 2)

## control_1_poly control_2_poly control_3_poly control_4_poly

## simGenes_1 11819 11262 10267 10757

## simGenes_2 3668 4573 2207 8745

## treatment_1_poly treatment_2_poly treatment_3_poly

## simGenes_1 9448 9574 11964

## simGenes_2 3058 2970 8500

## treatment_4_poly

## simGenes_1 11202

## simGenes_2 4695

head(anota2seq_data_T, n = 2)

## control_1_cyto control_2_cyto control_3_cyto control_4_cyto

## simGenes_1 6612 6832 6041 5920

## simGenes_2 1054 1012 486 597

## treatment_1_cyto treatment_2_cyto treatment_3_cyto

## simGenes_1 3823 6880 3374

## simGenes_2 915 661 372

## treatment_4_cyto

## simGenes_1 5934

## simGenes_2 1018

# phenoVec must describe the sample class for corresponding columns

# in dataT and dataP

anota2seq_pheno_vec

## [1] "ctrl" "ctrl" "ctrl" "ctrl" "treatment" "treatment"
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2see
help(anota2seqDataSetFromSE)

for details on required
colData formatting

## [7] "treatment" "treatment"

3.2 Normalization and transformation of the raw data

The anota2seq performance will vary depending on normalization and transformation of the
data. We therefore recommend that the user tries several different transformations and nor-
malization approaches while monitoring the quality control plots (the influential data points,
the interactions and the normality of the residuals) and the RVM F-distribution fit plot if
RVM is used (see sections 3.3 and 3.4.1).

anota2seq gives the options to supply normalized DNA-microarrays data, normalized and
transformed RNAseq data or raw RNAseq data for both translated mRNA (i.e. polysome-
associated mRNA or RPF) and total mRNA. As anota2seq requires data on a continuous log
scale, raw RNAseq data (count data) will be pre-processed to ensure efficient analysis.

In general, RMA is an efficient normalization for DNA-microarray data (for Affymetrix GeneChips)
while TMM-log2 normalization [5, 6] is efficient for RNAseq data (this is the default method
in anota2seq when raw RNAseq data is provided as input). The rlog algorithm from DESeq2
[7] can also be used within anota2seq.

Normalization and transformation of RNAseq data are performed at the step of initialization of
an Anota2seqDataSet object in the anota2seqDataSetFromMatrix and anota2seqDataSetFromSE

functions. Filtering of identifiers with 0 counts in at least one sample is also available when
raw RNAseq data is provided (parameter filterZeroGenes). Additionally, users can filter the
dataset to remove identifiers with no variance in each mRNA source prior to analysis. This
filtering prevents an APV analysis without variance which will result in an error and a halt in
the analysis (parameter varCutOff).
ads <- anota2seqDataSetFromMatrix(

dataP = anota2seq_data_P[1:1000,],

dataT = anota2seq_data_T[1:1000,],

phenoVec = anota2seq_pheno_vec,

dataType = "RNAseq",

filterZeroGenes = TRUE,

normalize = TRUE,

transformation = "TMM-log2",

varCutOff = NULL)

Similarly, an Anota2seqDataSet object can be initialized from a SummarizedExperiment ob-
ject using anota2seqDataSetFromSE as follows2:
adsFromSE <- anota2seqDataSetFromSE(

se = mySummarizedExperiment,

assayNum = 1, # Position of the count data in assays(mySummarizedExperiment)

dataType = "RNAseq",

normalize = TRUE,

transformation = "TMM-log2")

6
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3.3 Assessment of model assumptions

To apply APV, multiple assumptions need to be fulfilled for tens of thousands of identifiers,
which is a substantial challenge to evaluate. Due to the high dimensionality of the data,
anota2seq takes multiple testing into account when assessing assumption violations. If we
observe the same number of problematic features as expected, we assume that we can apply
anota2seq.

Using the following code, anota2seq performs quality control checks and outputs diagnostic
plots (Fig. 2 to 4) which are further described below.
ads <- anota2seqPerformQC(Anota2seqDataSet = ads,

generateSingleGenePlots = TRUE)

Highly influential data points may cause errors in the regression analyzes. On the one hand,
we expect that a number of highly influential data points will appear merely by chance be-
cause of the large number of analyzes performed. Thus anota2seq attempts to establish if we,
when considering all analyzed identifiers, observe more influential data points compared to
what would be expected by chance. If the answer is no, then there are no concerns with the
overall analysis. On the other hand, influential data points may nonetheless affect the specific
APV analyzes in which they are found. For this reason, anota2seq provides an output (Fig. 2)
that can be used to flag these identifiers so that they can be examined in more detail if desired.

For detection of influential data points, anota2seq uses standardized dfbeta for the slope
of the regression and several thresholds to determine whether or not a data point is highly
influential. As there is no known distribution of the dfbetas when the underlying data are
normally distributed, anota2seq simulates data sets to obtain estimates of the expected num-
ber of outliers. The simulation is performed by sampling N (corresponding to the number of
samples in the analysis) data points from the normal distribution and calling these data points
the translated mRNA level. In detail, such translated mRNA levels are obtained by sampling
data points from a normal distribution with a mean of the corresponding total mRNA level
data point. Ten different such data sets are obtained with different variances when sampling
translated mRNA level data. These data sets are then merged and frequencies of outlier
dfbetas are calculated and compared to the frequencies of outlier dfbetas from the analyzed
data (Fig. 3).

APV assumes that the slopes of the regressions from each treatment are the same so that
using the common slope is valid. This assumption postulates that the relationship between
the translated mRNA level and the total mRNA level shows the same slope for each treat-
ment, i.e., treatment and total mRNA levels do not interact in predicting translated mRNA
levels. Again, because we analyze thousands of regressions, we expect that a number of in-
teractions will arise simply due to chance. If the number of interactions does not exceed what
is expected by chance, their p-values should follow a uniform distribution. Thus anota2seq
provides an output allowing to compare the distribution of the interaction significances as
well as their distribution after adjusting for multiple testing (Fig. 4).

Significance testing within the APV framework assumes that the residuals from the regressions
are normally distributed. The anota2seqResidOutlierTest function assesses whether the
residuals from the linear regressions (identifier by identifier) of translated mRNA level total
mRNA level are normally distributed.
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Figure 2: anota2seq can be set to output identifier per identifier regressions between translated
mRNA and total mRNA levels
Plotting symbols are taken from the phenoVec argument and the lines are the regression lines per samples
class

ads <- anota2seqResidOutlierTest(ads)

anota2seq generates normal Q-Q plots of the residuals. If the residuals are normally dis-
tributed, the data quantiles will form a straight diagonal line from bottom left to top right.
Because there are typically relatively few data points, anota2seq calculates ”envelopes” based
on a set of samplings from the normal distribution using the same number of data points
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Figure 3: A bar graph showing the obtained and expected (based on a simulation) number of influen-
tial data points as judged by different thresholds
For each threshold the difference between the obtained and the simulated frequency of outliers is shown.

as for the true data [8]. To enable a comparison, both the true and the sampled data are
scaled (variance=1) and centered (mean=0). The samples (both true and sampled) are then
sorted and the true sample is compared to the envelopes of the sampled series at each sort
position. The result is presented as a Q-Q plot of the true data where the envelopes of the
sampled series are indicated. If there are 99 samplings we expect that 1/100 values should be
outside the range obtained from the samplings. Thus it is possible to assess if approximately
the expected number of outlier residuals are obtained. anota2seq provides a single identifier
output (Fig. 5) as well as a summary output (Fig. 6).

While anota2seq enables testing of the issues discussed above, it is left to the user to decide
whether it is possible to use anota2seq to identify changes in translational efficiency affecting
protein levels or buffering. A few issues that may cause problems in the quality control are:

1. Outlier samples. One or a few outlier samples in the analysis (either from the translated
mRNA data or the total mRNA data) could give rise to many influential data points.
Thus, if there are more influential data points than would be expected, a careful quality
control of the data followed by identification and exclusion of outlier samples might be
needed to resolve such issues.

2. More significant interactions compared to what is expected by chance could be caused
by bias in the data set.

3. If the resulting residuals deviate strongly from normality an alternative normalization
method could be tested.
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Figure 4: Assessment of whether the significances for the interactions follow the uniform NULL dis-
tribution
Shown are both density plots and histograms of the nominal and adjusted p-values (in this case adjusted
using Benjamini-Hochberg FDR).
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Figure 5: Assessment of whether the residuals are approximately normally distributed
Shown is the output from the single identifier alternative within anota2seqResidOutlierTest. The Q-Q plot
for the identifier is compared to the outer limits of a set of Q-Q plots generated by sampling from the nor-
mal distribution.
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Figure 6: Assessment of whether the residuals are approximately normally distributed
Shown is the output from all identifiers using the anota2seqResidOutlierTest function. The Q-Q plot for
the identifiers is compared to the outer limits of a set of Q-Q plots generated by sampling from the nor-
mal distribution. The obtained and expected percentage of outliers is indicated at each rank position and
combined.
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3.4 Analysis of changes in translational efficiency leading to al-
tered protein levels or buffering

Once the data set has been validated as suitable for analysis, significant changes in transla-
tional efficiency affecting protein levels or buffering can be identified.

Translational buffering is a regulatory pattern which decouples mRNA levels from protein
levels (despite altered levels of total mRNAs between conditions, translated mRNA levels
remain constant; mRNAs under such a regulatory pattern are colored in dark and light
blue in the example presented in Fig. 1) and which potentially holds important information
regarding how gene expression is regulated. anota2seq allows to distinguish between changes
in translational efficiency leading to altered protein levels (orange and red colored mRNAs
in Fig. 1) and buffering. Both analyzes can be performed on our sample data using the
following code:
ads <- anota2seqAnalyze(Anota2seqDataSet = ads,

analysis = c("translation", "buffering"))

While anota2seqPerformQC performs an omnibus treatment effect test when there are more
than 2 treatments, anota2seqAnalyze allows the user to set custom contrasts using the con

trasts parameter. In the example above, the default contrast ("treatment" vs. "control") is
used.

3.4.1 Random variance model (RVM) to improve power in detection of changes
in translational efficiency leading to altered protein levels or buffering

RVM is an empirical Bayes method which has been shown to increase statistical power for
small N analysis [9]. In RVM, the variance of each identifier is adjusted using the variance
obtained from an inverse gamma distribution derived from the variances of all identifiers. A
key assumption in RVM is that the resulting variances follow a theoretical F-distribution.
anota2seq tests this for the analysis of omnibus group effects (Fig. 7), omnibus inter-
actions (not shown, output of anota2seqPerformQC), and the identification of changes in
translational efficiency leading to altered protein levels and buffering (not shown, output of
anota2seqAnalyze). Each of these analyzes generates a comparison of the obtained empirical
distribution compared to the theoretical distribution (similarity is then assessed using a KS
test whose alternative hypothesis should be rejected for a good fit). We have noticed that the
normalization of the data can strongly influence the fit but that RVM seems to be applica-
ble in most cases after identifying an efficient normalization/transformation. It is necessary
to validate that application of RVM does not influence the distribution of the interaction
p-values (not shown, output of anota2seqPerformQC). anota2seqAnalyze performs analyzes
both with and without RVM ; we recommend using RVM as it improves the power to de-
tect changes in translational efficiency leading to altered protein levels or buffering within
anota2seq [4].

13



Generally applicable transcriptome-wide analysis of translational efficiency using anota2seq

Figure 7: An output from the anota2seqPerformQC function (used with parameter useRVM = TRUE) com-
paring obtained variances to the theoretical F-distribution
RVM assumes that the empirical and the theoretical distributions are similar.

3.4.2 Visualization of the results from anota2seqAnalyze

anota2seqAnalyze outputs details of the tests for each identifier (information about slopes
of the APV model, test statistics, effect, unadjusted and adjusted p-value):
head(anota2seqGetOutput(

ads, analysis = "translation",

output = "full",

selContrast = 1,

getRVM = TRUE))

## apvSlope apvSlopeP apvEff apvRvmMSerror apvRvmF

## simGenes_1 -0.07264945 0.33382264 -0.09313704 0.01820784 0.47641595

## simGenes_2 -0.34344681 0.27915442 0.00617025 0.25189874 0.00015114

## simGenes_3 -0.52515104 0.03676298 -0.29165877 0.03668045 2.31907866

## simGenes_4 0.25178079 1.00000000 -0.07486115 0.09942910 0.05636369

## simGenes_5 -0.75993233 0.30922928 -0.74205704 0.13453505 4.09297549

## simGenes_6 0.28424131 1.00000000 -0.07560520 0.34979134 0.01634159

## residRvmDf apvRvmP apvRvmPAdj

## simGenes_1 6.766864 0.51301921 0.9367994

## simGenes_2 6.766864 0.99054570 0.9971405

## simGenes_3 6.766864 0.17306945 0.7506550

## simGenes_4 6.766864 0.81936543 0.9806028

## simGenes_5 6.766864 0.08414756 0.6819360

## simGenes_6 6.766864 0.90199589 0.9933827

The density of p-values can be visualized using the anota2seqPlotPvalues function on the
output of anota2seqAnalyze (Fig. 8).
par(mfrow = c(1, 2))

anota2seqPlotPvalues(ads, selContrast = 1, plotToFile = FALSE)
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Figure 8: An output from the anota2seqPlotPvalues function
The left graph shows a P-value distribution of changes in translational efficiency leading to altered protein
levels (designated "translation") and buffering for all analyzed identifiers. The right graph shows the corre-
sponding adjusted P-value (FDR) distributions.
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3.4.3 Unrealistic models of changes in translation efficiency

The slopes that are fitted in the anota2seq APV models can take unrealistic values that will
influence the analysis of changes in translation efficiency leading to altered protein levels or
buffering. anota2seq therefore tests whether slopes for analysis of changes in translational
efficiency affecting protein levels that are >1 differ from 1 and slopes for analysis of changes
in translational efficiency leading to buffering that are <-1 differ from -1. Furthermore, slopes
< 0 for analysis of changes in translational efficiency affecting protein levels or > 0 for analysis
of changes in translational efficiency leading to buffering, indicate unlikely but not impossible
translational control so these events are also tested for. Results of these tests (p-values) are
found in the output of anota2seqPerformQC, anota2seqAnalyze and anota2seqRun functions.
These p-values can be used to filter or flag identifiers with unrealistic slopes or slopes revealing
unlikely translational control.

3.4.4 Identifier selection and visualization of single gene regressions

The output from anota2seqAnalyze can be filtered using the anota2seqSelSigGenes. Iden-
tifiers can be selected based on several criteria:

• include only realistic slopes (see section 3.4.3), using parameters minSlopeTranslation,
maxSlopeTranslation3 and slopeP

• include a minimum effect threshold, using parameter minEff
• include only significant identifiers according to a defined p-value or adjusted p-value

threshold (parameter maxP and maxPAdj)
An example of code to perform this filtering is as follows:
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ads <- anota2seqSelSigGenes(Anota2seqDataSet = ads,

selContrast = 1,

minSlopeTranslation = -1,

maxSlopeTranslation = 2,

minSlopeBuffering = -2,

maxSlopeBuffering = 1,

maxPAdj = 0.05)

Once the Anota2seqDataSet object has been filtered, single gene regressions can be visualized
using the anota2seqPlotGenes function (Fig. 9 and 10). The graphical output includes both
the graphical interpretation of the APV analysis and the key statistics from both the standard
and the RVM based analysis.
anota2seqPlotGenes(ads, selContrast = 1, analysis = "translation", plotToFile = FALSE)

anota2seqPlotGenes(ads, selContrast = 1, analysis = "buffering", plotToFile = FALSE)

3.4.5 Note about analysis of translational buffering

The APV model fitted in anota2seq for analysis of changes in translational efficiency leading
to altered protein levels consists in a model with translated mRNA as independent variable
and total mRNA and the sample class variable as dependent variables. In other words, a
common slope for all sample categories is considered and the translational effect is defined
as a difference in intercepts [4]. This regression model can be visualized in Fig. 9.

Translational buffering is defined as changes in total mRNA level that are not paralleled by
changes in levels of translated mRNA. As such, performing analysis of buffering considers
total mRNA as independent variable and translated mRNA as dependent variable (together
with the sample class; as illustrated in Fig. 10).
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Figure 9: Visualization provided by the anota2seqPlotGenes function for analysis of changes in transla-
tional efficiency leading to altered protein levels
The left graph shows the identifier per identifier regressions between translated mRNA (in this case
polysome-associated mRNA) and total mRNA levels. Plotting symbols are taken from the phenoVec ar-
gument supplied to the anota2seqAnalyze function and the lines are the regression lines per treatment us-
ing the common slope identified in APV (shown in the main title). The right and middle graphs show key
statistics for the analyzed identifier with and without RVM, respectively. These graphs (shown here for only
3 identifiers) can be visualized for all identifiers selected in anota2seqSelSigGenes.
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Figure 10: Visualization provided by the anota2seqPlotGenes function for analysis of changes in trans-
lational efficiency leading to buffering
The left graph shows the identifier per identifier regressions between total mRNA and translated mRNA
(in this case polysome-associated mRNA) levels. Plotting symbols are taken from the phenoVec argument
supplied to the anota2seqAnalyze function and the lines are the regression lines per treatment using the
common slope identified in APV (shown in the main title). The right and middle graphs show key statistics
for the analyzed gene with and without RVM respectively. These graphs (shown here for only 3 identifiers)
can be visualized for all identifiers selected in anota2seqSelSigGenes.

18



Generally applicable transcriptome-wide analysis of translational efficiency using anota2seq

3.5 Categorizing genes into regulatory modes

Polysome or ribosome profiling allows the user to distinguish between three regulatory modes:
changes in mRNA abundance (i.e. similar changes in total mRNA levels and levels of trans-
lated mRNA) and translational efficiency leading to altered protein levels or buffering [3].
For that, the anota2seqAnalyze and anota2seqSelSigGenes functions have to be run with
parameter analysis set to "translation" and "buffering" as shown above but analysis of dif-
ferential expression of total mRNA and translated mRNA is also required. For that, the same
functions can be used with analysis parameter set to "total mRNA" and "translated mRNA"
as shown below:
ads <- anota2seqAnalyze(Anota2seqDataSet = ads,

analysis = c("total mRNA", "translated mRNA"))

ads <- anota2seqSelSigGenes(Anota2seqDataSet = ads,

analysis = c("total mRNA", "translated mRNA"),

selContrast = 1,

minSlopeTranslation = -1,

maxSlopeTranslation = 2,

minSlopeBuffering = -2,

maxSlopeBuffering = 1,

maxPAdj = 0.05)

Once all analyzes have been performed, all regulated identifiers can be categorized into one
of these regulatory modes using the anota2seqRegModes function. This categorization into
gene expression regulatory patterns might be of interest in order to elucidate underlying
mechanisms.
ads <- anota2seqRegModes(ads)

Notably, there is a hierarchy such that mRNAs identified as changing their translational ef-
ficiency leading to altered protein levels will belong to the translation group and no other
group; mRNAs that change their levels in the translated pool and total mRNA pool but are
not identified as changing their translational efficiency leading to altered protein levels will
be in the abundance group; and mRNAs that are identified as changing their translational
efficiency leading to buffering and are not in the former two groups are allocated to the set of
buffered mRNAs. Specifically, the anota2seqRegModes function adds a column named "sin-
gleRegModes" indicating the classification into regulatory modes in the data.frame containing
gene by gene statistical results. This output can be accessed by using anota2seqGetOutput

with output parameter set to "regModes".
head(anota2seqGetOutput(object = ads, output="regModes",

selContrast = 1, analysis="buffering",

getRVM = TRUE))[, c("apvSlope", "apvEff", "apvRvmP",

"apvRvmPAdj", "singleRegMode")]

## apvSlope apvEff apvRvmP apvRvmPAdj singleRegMode

## simGenes_547 -0.05644675 1.5938688 1.420355e-06 0.001420355 buffering

## simGenes_768 0.28453551 -1.4234012 6.122129e-06 0.001748704 buffering

## simGenes_455 -0.24850186 1.6592623 6.344953e-06 0.001748704 buffering

## simGenes_858 -0.04197019 -0.8762414 9.543941e-06 0.001748704 buffering

## simGenes_318 -0.31283262 -1.3006886 1.205665e-05 0.001748704 buffering

## simGenes_431 -0.18482654 -1.3602127 1.224093e-05 0.001748704 buffering
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3.5.1 Visualizing the different regulatory modes

anota2seq provides the anota2seqPlotFC function which plots the translated mRNA log Fold
Change vs. the total mRNA log Fold Change and colors genes according to their regulatory
mode (Fig. 11).
anota2seqPlotFC(ads, selContrast = 1, plotToFile = FALSE)
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Figure 11: An output from the anota2seqPlotFC function
Shown is a scatter-plot (for all included identifiers) of fold-changes (treatment vs. control) for trans-
lated mRNA (in this case polysome-associated mRNA) and total mRNA. Identifiers filtered using the an

ota2seqSelSigGenes function have been categorized as either showing changes in abundance or changes in
translational efficiency leading to altered protein levels (indicated as "translation" in the graph) or buffering
; these are indicated by colors.

3.6 One-step procedure with anota2seqRun

In addition to application of each of the functions within anota2seq which provides the
maximum flexibility, the anota2seq package provides the option to perform a one-step analysis
of translated mRNA, total mRNA and changes in translational efficiency leading to altered
protein levels or buffering. This analysis performs quality control followed by analysis of
changes in translational efficiency affecting protein levels or buffering. A filtering is also
performed (as in anota2seqSelSigGenes) as well as categorization into regulatory modes.
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ads <- anota2seqRun(

Anota2seqDataSet = ads,

thresholds = list(

maxPAdj = 0.05,

minEff = 1.5),

performQC = TRUE,

performROT = TRUE,

useRVM = TRUE)

The output of the anota2seqRun function can be supplied to the anota2seqPlotPvalues,
anota2seqPlotGenes and anota2seqPlotFC functions for similar visualization of the results
as in Fig. 8, 9, 10 and 11.

4 Extending anota2seq to analysis of other data sources

In principle, any data source where the intention is to identify changes in a subset that is
independent of a background can be analyzed (e.g. RIP-SEQ data).

5 New features in anota2seq compared to anota

The core models in anota2seq are similar to those in the Bioconductor package anota.
However, there are many differences including:

• anota was designed to analyze data from DNA-microarrays platforms. anota2seq allows
analysis of both DNA-microarrays and RNA sequencing (section 3.1)

• Implementation of analysis of translational buffering (section 3.4)
• anota2seq allows for batch adjustment (parameter batchVec of anota2seqDataSetFromMatrix

and anota2seqDataSetFromSE)
• anota2seq provides additional functions in order to easily and consistently visualize

the results of analyzes: anota2seqPlotPvalues (section 3.4.2) and anota2seqPlotFC

(section 3.5.1)
• anota2seq provides a wrapper function which performs all steps of the workflow (section

3.6)
• anota2seq provides a classification of mRNAs into different gene expression regulatory

modes: changes in mRNA abundance, or translational efficiency leading to altered
protein levels or buffering (section 3.5)
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