## ----style, echo = FALSE, results = 'asis'------------------------------- BiocStyle::markdown() ## ----eval=FALSE---------------------------------------------------------- # source('http://www.bioconductor.org/biocLite.R') # biocLite("XBSeq") ## ----message = FALSE, warning=FALSE-------------------------------------- library("XBSeq") ## ----eval=FALSE---------------------------------------------------------- # library(devtools) # install_github('liuy12/XBSeq') ## ----eval=FALSE---------------------------------------------------------- # fc_signal <- featureCounts(files = bamLists, annot.ext = gtf_file, isGTFAnnotationFile = TRUE) # fc_bg <- featureCounts(files = bamLists, annot.ext = gtf_file_bg, isGTFAnnotationFile = TRUE) ## ----eval=FALSE---------------------------------------------------------- # features_signal <- import(gtf_file) # features_signal <- split(features_signal, mcols(features_signal)$gene_id) # so_signal <- summarizeOverlaps(features_signal, bamLists) # # ## for background noise # features_bg <- import(gtf_file_bg) # features_bg <- split(features_bg, mcols(features_bg)$gene_id) # so_bg <- summarizeOverlaps(features_bg, bamLists) ## ----eval=FALSE---------------------------------------------------------- # apaStats <- apaUsage(bamTreatment, bamControl, apaAnno) ## ------------------------------------------------------------------------ data(ExampleData) ## ------------------------------------------------------------------------ head(Observed) head(Background) ## ----tidy=TRUE----------------------------------------------------------- conditions <- factor(c(rep('C',3), rep('T', 3))) XB <- XBSeqDataSet(Observed, Background, conditions) ## ----tidy=TRUE,fig.width=5,fig.height=4---------------------------------- XBplot(XB, Samplenum = 1, unit = "LogTPM", Genelength = genelength[,2]) ## ---- tidy=TRUE---------------------------------------------------------- XB <- estimateRealCount(XB) XB <- estimateSizeFactors(XB) XB <- estimateSCV( XB, method='pooled', sharingMode='maximum', fitType='local' ) ## ----fig.width=3,fig.height=3-------------------------------------------- plotSCVEsts(XB) ## ------------------------------------------------------------------------ Teststas <- XBSeqTest( XB, levels(conditions)[1L], levels(conditions)[2L], method ='NP') ## ----fig.width=3,fig.height=3-------------------------------------------- MAplot(Teststas, padj = FALSE, pcuff = 0.01, lfccuff = 1) ## ----eval=FALSE,tidy=TRUE------------------------------------------------ # # Alternatively, all the codes above can be done with a wrapper function XBSeq # Teststats <- XBSeq( Observed, Background, conditions, method='pooled', sharingMode='maximum', # fitType='local', pvals_only=FALSE, paraMethod = 'NP' ) ## ----eval=FALSE---------------------------------------------------------- # biocLite("DESeq") ## ----message=FALSE------------------------------------------------------- library('DESeq') library('ggplot2') de <- newCountDataSet(Observed, conditions) de <- estimateSizeFactors(de) de <- estimateDispersions(de, method = "pooled", fitType="local") res <- nbinomTest(de, levels(conditions)[1], levels(conditions)[2]) ## ----warning=FALSE,message=FALSE,tidy=TRUE, fig.width=3,fig.height=3----- DE_index_DESeq <- with(res, which(pval<0.01 & abs(log2FoldChange)>1)) DE_index_XBSeq <- with(Teststas, which(pval<0.01 & abs(log2FoldChange)>1)) DE_index_inters <- intersect(DE_index_DESeq, DE_index_XBSeq) DE_index_DESeq_uniq <- setdiff(DE_index_DESeq, DE_index_XBSeq) DE_plot <- MAplot(Teststas, padj = FALSE, pcuff = 0.01, lfccuff = 1, shape=16) DE_plot + geom_point( data=Teststas[DE_index_inters,], aes(x=baseMean, y=log2FoldChange), color= 'green', shape=16 ) + geom_point( data=Teststas[DE_index_DESeq_uniq,], aes( x=baseMean, y=log2FoldChange ), color= 'blue', shape=16 ) ## ------------------------------------------------------------------------ sessionInfo()