## ----style, eval=TRUE, echo=FALSE, results='asis'-------------------------- BiocStyle::latex2() ## ----setup_knitr, include=FALSE, cache=FALSE------------------------------- library(knitr) opts_chunk$set(cache = FALSE, warning = FALSE, out.width = "7cm", fig.width = 7, out.height = "7cm", fig.height = 7) ## ----news, eval = FALSE---------------------------------------------------- # news(package = "DRIMSeq") ## ----DSpasilla1------------------------------------------------------------ library(PasillaTranscriptExpr) data_dir <- system.file("extdata", package = "PasillaTranscriptExpr") ## Load metadata pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"), header = TRUE, as.is = TRUE) ## Load counts pasilla_counts <- read.table(file.path(data_dir, "counts.txt"), header = TRUE, as.is = TRUE) ## ----DSlibrary, message=FALSE---------------------------------------------- library(DRIMSeq) ## ----DSdmDSdata_create----------------------------------------------------- pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName, group = pasilla_metadata$condition) levels(pasilla_samples$group) d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples) d head(counts(d), 3) head(samples(d), 3) ## ----DSdmDSdata_plot------------------------------------------------------- plotData(d) ## ----DSdmDSdata_subset----------------------------------------------------- gene_id_subset <- readLines(file.path(data_dir, "gene_id_subset.txt")) d <- d[names(d) %in% gene_id_subset, ] d ## ----DSdmFilter------------------------------------------------------------ # Check what is the minimal number of replicates per condition table(samples(d)$group) d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3, min_gene_expr = 10, min_feature_expr = 10) ## ----DSdmPrecision_design-------------------------------------------------- ## Create the design matrix design_full <- model.matrix(~ group, data = samples(d)) design_full ## ----DSdmPrecision--------------------------------------------------------- ## To make the analysis reproducible set.seed(123) ## Calculate precision d <- dmPrecision(d, design = design_full) d head(mean_expression(d), 3) common_precision(d) head(genewise_precision(d)) ## ----DSdmPrecision_plot1--------------------------------------------------- plotPrecision(d) ## ----DSdmPrecision_plot2--------------------------------------------------- library(ggplot2) ggp <- plotPrecision(d) ggp + geom_point(size = 4) ## ----DSdmFit--------------------------------------------------------------- d <- dmFit(d, design = design_full, verbose = 1) d ## Get fitted proportions head(proportions(d)) ## Get the DM regression coefficients (gene-level) head(coefficients(d)) ## Get the BB regression coefficients (feature-level) head(coefficients(d), level = "feature") ## ----DSdmTest1------------------------------------------------------------- d <- dmTest(d, coef = "groupKD", verbose = 1) design(d) head(results(d), 3) ## ----DSdmTest2------------------------------------------------------------- design_null <- model.matrix(~ 1, data = samples(d)) design_null d <- dmTest(d, design = design_null) head(results(d), 3) ## ----DSdmTest3------------------------------------------------------------- contrast <- c(0, 1) d <- dmTest(d, contrast = contrast) design(d) head(results(d), 3) ## ----DSdmTest_results------------------------------------------------------ head(results(d, level = "feature"), 3) ## ----DSdmTest_plot--------------------------------------------------------- plotPValues(d) plotPValues(d, level = "feature") ## ----DSdmLRT_plotProportions, out.width = "14cm", fig.width = 14----------- res <- results(d) res <- res[order(res$pvalue, decreasing = FALSE), ] top_gene_id <- res$gene_id[1] plotProportions(d, gene_id = top_gene_id, group_variable = "group") plotProportions(d, gene_id = top_gene_id, group_variable = "group", plot_type = "lineplot") plotProportions(d, gene_id = top_gene_id, group_variable = "group", plot_type = "ribbonplot") ## ----stageR, eval = FALSE-------------------------------------------------- # library(stageR) # # ## Assign gene-level pvalues to the screening stage # pScreen <- results(d)$pvalue # names(pScreen) <- results(d)$gene_id # # ## Assign transcript-level pvalues to the confirmation stage # pConfirmation <- matrix(results(d, level = "feature")$pvalue, ncol = 1) # rownames(pConfirmation) <- results(d, level = "feature")$feature_id # # ## Create the gene-transcript mapping # tx2gene <- results(d, level = "feature")[, c("feature_id", "gene_id")] # # ## Create the stageRTx object and perform the stage-wise analysis # stageRObj <- stageRTx(pScreen = pScreen, pConfirmation = pConfirmation, # pScreenAdjusted = FALSE, tx2gene = tx2gene) # # stageRObj <- stageWiseAdjustment(object = stageRObj, method = "dtu", # alpha = 0.05) # # getSignificantGenes(stageRObj) # # getSignificantTx(stageRObj) # # padj <- getAdjustedPValues(stageRObj, order = TRUE, # onlySignificantGenes = FALSE) # # head(padj) # ## ----DRIMSeq_batch--------------------------------------------------------- pasilla_samples2 <- data.frame(sample_id = pasilla_metadata$SampleName, group = pasilla_metadata$condition, library_layout = pasilla_metadata$LibraryLayout) d2 <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples2) ## Subsetting to a vignette runnable size d2 <- d2[names(d2) %in% gene_id_subset, ] ## Filtering d2 <- dmFilter(d2, min_samps_gene_expr = 7, min_samps_feature_expr = 3, min_gene_expr = 10, min_feature_expr = 10) ## Create the design matrix design_full2 <- model.matrix(~ group + library_layout, data = samples(d2)) design_full2 ## To make the analysis reproducible set.seed(123) ## Calculate precision d2 <- dmPrecision(d2, design = design_full2) common_precision(d2) head(genewise_precision(d2)) plotPrecision(d2) ## Fit proportions d2 <- dmFit(d2, design = design_full2, verbose = 1) ## Test for DTU d2 <- dmTest(d2, coef = "groupKD", verbose = 1) design(d2) head(results(d2), 3) ## Plot p-value distribution plotPValues(d2) ## ----DRIMSeq_batch_plotProportions, out.width = "14cm", fig.width = 14----- ## Plot the top significant gene res2 <- results(d2) res2 <- res2[order(res2$pvalue, decreasing = FALSE), ] top_gene_id2 <- res2$gene_id[1] ggp <- plotProportions(d2, gene_id = top_gene_id2, group_variable = "group") ggp + facet_wrap(~ library_layout) ## ----SQTLgeuvadis, message=FALSE------------------------------------------- library(GeuvadisTranscriptExpr) geuv_counts <- GeuvadisTranscriptExpr::counts geuv_genotypes <- GeuvadisTranscriptExpr::genotypes geuv_gene_ranges <- GeuvadisTranscriptExpr::gene_ranges geuv_snp_ranges <- GeuvadisTranscriptExpr::snp_ranges ## ----SQTLlibrary, message=FALSE-------------------------------------------- library(DRIMSeq) ## ----SQTLdmSQTLdata_create, message=FALSE---------------------------------- colnames(geuv_counts)[c(1,2)] <- c("feature_id", "gene_id") colnames(geuv_genotypes)[4] <- "snp_id" geuv_samples <- data.frame(sample_id = colnames(geuv_counts)[-c(1,2)]) d <- dmSQTLdata(counts = geuv_counts, gene_ranges = geuv_gene_ranges, genotypes = geuv_genotypes, snp_ranges = geuv_snp_ranges, samples = geuv_samples, window = 5e3) d ## ----SQTLdmSQTLdata_plot--------------------------------------------------- plotData(d, plot_type = "features") plotData(d, plot_type = "snps") plotData(d, plot_type = "blocks") ## ----SQTLdmFilter---------------------------------------------------------- d <- dmFilter(d, min_samps_gene_expr = 70, min_samps_feature_expr = 5, minor_allele_freq = 5, min_gene_expr = 10, min_feature_expr = 10) ## ----SQTLdmPrecision------------------------------------------------------- ## To make the analysis reproducible set.seed(123) ## Calculate precision d <- dmPrecision(d) plotPrecision(d) ## ----SQTLdmFit------------------------------------------------------------- d <- dmFit(d) ## ----SQTLdmTest------------------------------------------------------------ d <- dmTest(d) plotPValues(d) head(results(d)) ## ----SQTLplotProportions, out.width = "14cm", fig.width = 14--------------- res <- results(d) res <- res[order(res$pvalue, decreasing = FALSE), ] top_gene_id <- res$gene_id[1] top_snp_id <- res$snp_id[1] plotProportions(d, gene_id = top_gene_id, snp_id = top_snp_id) plotProportions(d, gene_id = top_gene_id, snp_id = top_snp_id, plot_type = "boxplot2") ## ----sessionInfo----------------------------------------------------------- sessionInfo()