## ----data, cache=TRUE---------------------------------------------------- library(DMRScan) data(DMRScan.methylationData) ## Load methylation data from chromosome 22, with 52018 CpGs measured data(DMRScan.phenotypes) ## Load phenotype (end-point for methylation data) ## ----obs, cache = TRUE, depenson='data'---------------------------------- observations <- apply(DMRScan.methylationData,1,function(x,y){ summary(glm(y ~ x, family = binomial(link = "logit")))$coefficients[2,3]}, y = DMRScan.phenotypes) head(observations) ## ----pos, cache = TRUE, depenson = 'obs'--------------------------------- pos <- matrix(as.integer(unlist(strsplit(names(observations),split="chr|[.]"))), ncol = 3, byrow = TRUE)[,-1] head(pos) ## ---- cache = TRUE, depenson = pos--------------------------------------- ## Minimum number of CpGs in a tested cluster min.cpg <- 3 ## Maxium distance (in base-pairs) within a cluster ## before it is broken up into two seperate cluster max.gap <- 750 ## ----reg, cache = TRUE, depenson = 'pos'--------------------------------- regions <- makeCpGregions(observations = observations, chr = pos[,1], pos = pos[,2], maxGap = 750, minCpG = 3) ## ----thres, cache = TRUE, depenson = 'reg'------------------------------- window.sizes <- 3:7 ## Number of CpGs in the sliding windows ## (can be either a single number or a sequence) n.CpG <- nCpG(regions) ## Number of CpGs to be tested ## Estimate the window threshold, based on the number of CpGs and window sizes ## using important sampling window.thresholds.importancSampling <- estimateWindowThreshold(nProbe = n.CpG, windowSize = window.sizes, method = "sampling", mcmc = 10000) ## Estimating the window threshold using the closed form expression window.thresholds.siegmund <- estimateWindowThreshold(nProbe = n.CpG, windowSize = window.sizes, method = "siegmund") ## ----res, cache = TRUE, depenson = 'thres'------------------------------- window.thresholds.importancSampling <- estimateWindowThreshold(nProbe = n.CpG, windowSize = window.sizes, method = "sampling", mcmc = 10000) dmrscan.results <- DMRScan(observations = regions, windowSize = window.sizes, windowThreshold = window.thresholds.importancSampling) ## Print the result print(dmrscan.results) ## ----res2, cache = TRUE, depenson = 'thres'------------------------------ dmrscan.results <- DMRScan(observations = regions, windowSize = window.sizes, windowThreshold = window.thresholds.siegmund) ## Print the result print(dmrscan.results) ## ------------------------------------------------------------------------ # Not run due to time constraints. # window.threshold.mcmc <- estimateWindowThreshold(nProbe = n.CpG, windowSize = window.sizes, # method = "mcmc", mcmc = 1000, nCPU = 1, submethod = "arima", # model = list(ar = c(0.1,0.03), ma = c(0.04), order = c(2,0,1))) # # dmrscan.results <- DMRScan(observations = regions, windowSize = window.sizes, # windowThreshold = window.thresholds.mcmc) ## Print the result #print(dmrscan.results)