
Bioconductor’s snm package

Brig Mecham and John D. Storey
email: jstorey@princeton.edu

October 30, 2025

Contents

1 Overview 1

2 Introduction 2

3 Basic Usage 3
3.1 Input . 3
3.2 Output . 4
3.3 Single Channel Normalization . 5
3.4 Double Channel Normalization . 7
3.5 Reference Design . 7
3.6 Preprocessed Normalization . 8

4 Diagnosing the snm output 8

5 Simulation Details 10
5.1 Single Channel Data . 11
5.2 Double Channel Data . 11
5.3 Reference Design . 11
5.4 Preprocessed Data . 12

1 Overview

This document provides a tutorial for using the snm package. The package consists of a sin-
gle main function, snm, for normalizing data based on a set of study-specific variables. Many
questions about snm will hopefully be answered by the documentation or references. As with
any R package, detailed information on functions, their arguments and values, can be obtained
in the help files. To view the help file for the function snm within R, type ?snm. If you iden-
tify bugs related to basic usage please contact the authors directly. Otherwise, any questions
or problems regarding snm will most efficiently be addressed on the Bioconductor mailing list,
http://stat.ethz.ch/mailman/listinfo/bioconductor.

The remainder of this document is organized as follows. Section 2 provides a brief introduction to
the concepts and ideas that underlie this software package. In section 3 we provide three examples
intended to demonstrate how to use the snm package to normalize microarray data. Section 4
contains a description of how to diagnose any problems with the normalized data returned from an

1

http://stat.ethz.ch/mailman/listinfo/bioconductor

snm function call using a simple diagnostic plot. In section 3.1 we cover some of the snm options
that can be set for more control. Finally, in section 5 we provide details on the simulated data sets
explored in section three.

2 Introduction

The snm package contains functions for implementing supervised normalization of microrarray
data. Within any given study, we identify and model the sources of systematic variation with
study-specific variables, which are driven by the study design. These study-specific variables
fall into one of two categories: biological variables or adjustment variables. We define biological
variables to be those whose relationships with nucleic acid variation are the target of the analysis.
The other variables, which arise from complexities of the biological or experimental paradigm from
which the data are generated, are what we call adjustment variables. SNM is designed to model and
remove the effects of adjustment variables on the data without influencing the biological variables
of interest. This algorithm was described in detail in [2].

The complete data from a microarray experiment consists of three terms: the observed probe
intensities, biological variables, and adjustment variables. The intensities are usually presented as
an m× n matrix, Y, where m and n describe the number of probes and arrays in the entire study,
respectively. Define yij as the observed intensity for probe i = 1, ...,m on array j = 1, .., n, and
yi = (yi1, yi2, ..., yin) as the observed intensities for probe i across the n arrays. The kth biological
variable for array j, xkj , describes factors of interest such as disease status, experimental treatment,
or time point. All d covariates for an individual sample j are denoted by the vector xj , and we
group all n such vectors into a d× n matrix X = (x1, ...,xn).

Similarly, the ℓth adjustment variable for array j, zℓj , parameterizes variables to be fit in a
probe-specific manner. Let rc denote the number of probe-specific adjustment variables. When
the baseline value of yij is not of interest, this probe-specific intercept term is included among the
adjustment variables. Define the vector zj and matrix Z in a fashion analogous to the one described
for xj and X, respectfully. Finally, we assume that there are rf intensity dependent effects, which
we denote by ftj for effect t = 1, . . . , rf and array j.

Note that we construct X and Z such that bi = 0 represents the case where the biological variables
of interest show no association with probe i. (This is straightforward to construct even for time
course studies [3].) Concrete examples of X and Z can be found in the examples below.

We model yij as linear combinations of xj , zj , and intensity-dependent effects. The model for each
probe intensity measurement is written as:

yij =
d∑

k=1

bikxkj +

rc∑
ℓ=1

aiℓzℓj +

rf∑
t=1

ftj (mij) + eij , (1)

where mij =
∑d

k=1 bikxkj +
∑rc

ℓ=1 aiℓzℓj . The coefficients bik and aiℓ describe the influence of
the k-th biological and ℓ-th adjustment variable on probe i’s intensity. We assume that the t-th
intensity dependent function ftj is a random smooth function such that E[ftj(m)|m] = 0 for all m.
These are parameterized as Normal distributed coefficients applied to a B-spline basis.

2

We can write model (1) for probe i data across all n arrays, yi, as:

yi = biX + aiZ +

rf∑
t=1

f t(biX + aiZ) + ei, (2)

where bi and ai are 1× d and 1× rc vectors of the bik and aiℓ terms in (1), and f t(biX + aiZ) =
(ft1(mi1), . . . , ftn(min)). The model for the entire data set Y can be written as:

Y = BX + AZ +

rf∑
t=1

f t(BX + AZ) + E. (3)

where B and A are m × d and m × rc matrices of coefficients, the i-th row corresponding to bi

and ai, respectfully. Also f t(BX+AZ) is an m×n matrix with the i-th row equal to f t(biX+aiZ).

The algorithm to fit this model is described and evaluated in reference [2].

3 Basic Usage

In this section we provide a simple introduction to the snm function. To do so we make use of
simulated examples designed to mimic commonly occuring normalization problems. First, we
normalize data from a single channel experiment (e.g., Affymetrix data). Next, we normalize data
from a two-color microarray experiment (e.g., Agilent or custom built cDNA microarrays) for both
dye swap and reference designs. Finally, we explore normalizing data where the intensity-dependent
effects have already been removed. Users interested in removing adjustment variables from data
preprocessed with RMA should consult this example.

For these examples we use the default settings for the snm function. Doing so produces a model fit
diagnostic plot with four panels that is updated at each iteration. See section 4 for a description
of this diagnostic plot and section 3.1 for details on the different options the snm function can accept.

Before using the snm functions the library must be loaded:

> library(snm)

3.1 Input

The following objects are the fundamental inputs to the snm function:

raw.dat: A probes (rows) by arrays (columns) matrix of unnormalized, probe level data. Required.

bio.var: A model matrix of the biological variable of interest. Required.

adj.var: A model matrix of the adjustment variables.

int.var: A data frame of the intensity-dependent adjustment variables, one effect per column.

The number of rows of bio.var, adj.var, and int.var should equal the total number of arrays, i.e.,
the number of columns of raw.dat If bio.var contains an intercept, it is removed. If adj.var=NULL,
then an intercept is added automatically. It is possible not include int.var as input, in which case
it is treated as int.var=NULL and no intensity dependent effects are fit (see examples below).

The following options are also available:

3

weights: In certain instances the analyst might be aware of a set of probes that should be ignored
when estimating intensity-dependent effects. For example, probes influenced by latent struc-
ture, surface artifacts, or some other source of variation that is not included in the model. The
weights option is designed for this situation. By simply setting the weight for these probes to 0
the analyst can force the algorithm to ignore these values when estimating intensity-dependent
effects.

spline.dim: The degrees of freedom of the spline utilized for intensity-dependent effects.

nbins: The number of bins formed when fitting intensity-dependent effects. This is essentially for
computational speed.

num.iter: The number of snm model fitting iterations to perform. This is utilized rather than a
numerical convergence criterion.

lmer.max.iter: Maximum number of lmer iterations that are permitted when fitting the random
effects model to the intensity-dependent effects (see the lme4 package for details).

rm.adj: This option is used to control whether or not the probe-specific adjustment variables should
be removed from the normalized data returned by the snm function call. If the analyst will
perform subsequent formal statistical inference (e.g., hypotheses testing), then this option
should be set to FALSE. If the analyst will perform clustering or network analysis, then this
option should be set to TRUE.

verbose: If set to TRUE, then the iteration number is printed to the R console, and the above
plots are displayed for each iteration.

diagnose: If set to TRUE, then diagnostic plots are displayed for each iteration.

3.2 Output

The output of the snm function is a list composed of the following elements:

norm.dat: The matrix of normalized data. The default setting is rm.adj=FALSE, which means that
only the intensity-dependent effects have been subtracted from the data. If the user wants
the adjustment variable effects removed as well, then set rm.adj=TRUE when calling the snm
function.

pvalues: A vector of p-values testing the association of the biological variables with each probe.
These p-values are obtained from an ANOVA comparing models where the full model contains
both the probe-specific biological and adjustment variables versus a reduced model that just
contains the probe-specific adjustment variables. The data used for this comparison has the
intensity-dependent variables removed. These returned p-values are calculated after the final
iteration of the algorithm.

pi0: The estimated proportion of true null probes π0, also calculated after the final iteration of the
algorithm.

iter.pi0s: A vector of length equal to num.iter containing the estimated π0 values at each iteration
of the snm algorithm. These values should converge and any non-convergence suggests a
problem with the data, the assumed model, or both.

4

nulls: A vector indexing the probes utilized in estimating the intensity-dependent effects on the
final iteration.

M: A matrix containing the estimated probe intensities for each array utilized in estimating the
intensity-dependent effects on the final iteration. For memory parsimony, only a subset of
values spanning the range is returned, currently nbins ×100 values.

array.fx: A matrix of the final estimated intensity-dependent array effects. For memory parsimony,
only a subset of values spanning the range is returned, currently nbins ×100 values.

bio.var: The processed version of the same input variable.

adj.var: The processed version of the same input variable.

int.var: The processed version of the same input variable.

df0: Degrees of freedom of the adjustment variables.

df1: Degrees of freedom of the full model matrix, which includes the biological variables and the
adjustment variables.

raw.dat: The input data.

rm.var: Same as the input (useful for later analyses).

call: The snm function call.

3.3 Single Channel Normalization

The first simulation is designed to mimic the most commonly assumed models for single channel
microarray data such as that provided by Affymetrix. For this scenario we make use of simulated
data that is influenced by a single dichotomous biological variable, two probe-specific adjustment
variables (one a dichotomous variable designed to simulate a batch effect, and the other a continuous
variable designed to simulate an age effect), and intensity-dependent array effects. See section 5.1
for a detailed description of this simulation.

The following commands simulate data for this example and displays the structure of the data
object.

> singleChannel <- sim.singleChannel(12345)
> str(singleChannel)

List of 5
$ raw.data : num [1:25000, 1:50] 5.72509 3.53218 1.12783 7.7615 -0.00179 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:50] "1" "2" "3" "4" ...

$ bio.var : num [1:50, 1:2] 1 1 1 1 1 1 1 1 1 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:50] "1" "2" "3" "4" ...
.. ..$: chr [1:2] "(Intercept)" "groupsB"
..- attr(*, "assign")= int [1:2] 0 1

5

..- attr(*, "contrasts")=List of 1

.. ..$ groups: chr "contr.treatment"
$ adj.var : num [1:50, 1:6] 1 1 1 1 1 1 1 1 1 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:50] "1" "2" "3" "4" ...
.. ..$: chr [1:6] "(Intercept)" "batchesB" "batchesC" "batchesD" ...
..- attr(*, "assign")= int [1:6] 0 1 1 1 1 2
..- attr(*, "contrasts")=List of 1
.. ..$ batches: chr "contr.treatment"

$ int.var :'data.frame': 50 obs. of 1 variable:
..$ array: Factor w/ 50 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...

$ true.nulls: int [1:17500] 1 3 4 5 6 7 8 10 12 14 ...

You can see that the singleChannel object is a list with 5 values. Here is a brief description of each
value:

raw.data: A 25,000 by 50 matrix of simulated data

bio.var: A 50 by 2 model matrix of the biological variable of interest.

adj.var: A 50 by 6 model matrix of the adjustment variables

int.var: A 50 by 1 data frame of the intensity-dependent adjustment variables

true.nulls: a vector of indices corresponding to the rows in raw.data of the probes unaffected by
the biological variable of interest

We can normalize this data using the following command:

> snm.obj1 <- snm(singleChannel$raw.data,
+ singleChannel$bio.var,
+ singleChannel$adj.var,
+ singleChannel$int.var)

Iteration: 1
Iteration: 2
Iteration: 3
Iteration: 4
Iteration: 5
Iteration: 6
Iteration: 7
Iteration: 8
Iteration: 9
Iteration: 10

These simulated data allow us to check the validity of the normalized data. Specifically, we can
check the validity of the normalized data by testing whether or not the estimated p-values from the
genes unaffected by the biological variables of interest are Uniform(0,1). The following command
tests this explicitly:

> ks.test(snm.obj1$pval[singleChannel$true.nulls],"punif")

6

Asymptotic one-sample Kolmogorov-Smirnov test

data: snm.obj1$pval[singleChannel$true.nulls]
D = 0.0039041, p-value = 0.9524
alternative hypothesis: two-sided

This result suggests the null p-values are Uniform(0,1) distributed, thus satisfying the first criteria
of a normalized data set as described in [2]..

3.4 Double Channel Normalization

The second simulation is designed to mimic the assumed model for many double channel microarray
data such as that provided by Agilent or a spotted cDNA microarray. For this scenario we make use
of simulated data that is influenced by a single dichotomous biological variable, a single continuous
probe-specific adjustment variable designed to simulate an age effect, and intensity-dependent array
and dye effects. For more details see section 5.2. The following command simulates the data, then
fits the model using the default snm function settings. See the Single Channel Normalization example
above for a more detailed description of this process.

doubleChannel <- sim.doubleChannel(12346)

The int.var variable contains both the intensity-dependent array effects and the intensity-
dependent dye effects:

print(doubleChannel$int.var)

We normalize the data with the following and check the null p-values:

snm.obj2 <- snm(doubleChannel$raw.data,
doubleChannel$bio.var,
doubleChannel$adj.var,
doubleChannel$int.var)

ks.test(snm.obj2$pval[doubleChannel$true.nulls],"punif")

3.5 Reference Design

The third simulation is designed to mimic studies that utilize a reference design. For this scenario
we simulated data that uses a uniform reference to compare expression differences between two
conditions. We do not include any probe-specific adjustment variables, but do include intensity-
dependent array and dye effects. For more details see section 5.3. The following command simulates
the data, then fits the model using the default snm function settings. See the Single Channel
Normalization example above for a more detailed description of this process.

refChannel <- sim.refDesign(12347)
snm.obj3 <- snm(refChannel$raw.data, refChannel$bio.var,

refChannel$adj.var, refChannel$int.var)
ks.test(snm.obj3$pval[refChannel$true.nulls],"punif")

The above model was fit on the cy3 and cy5 data. Here we show how to fit the model after first
subtracting the reference channel from the experimental channel.

7

refChannel$raw.data = refChannel$raw.data[,1:20]-refChannel$raw.data[,21:40]

#adjust the covariates
refChannel$bio.var = refChannel$bio.var[1:20,-3]
refChannel$int.var = data.frame(refChannel$int.var[1:20,1])

snm.obj4 <- snm(refChannel$raw.data,refChannel$bio.var,
refChannel$adj.var, refChannel$int.var)

ks.test(snm.obj4$pval[refChannel$true.nulls],"punif")

3.6 Preprocessed Normalization

We recommend recommend applying snm to the raw data whenever possible. However, sometimes
the only available data has already been preprocessed by another method. For example, data
from two-color experiments where the only available data are normalized ratios, or data from single
channel experiments that has already been processed with RMA. One can still utilize snm to account
for known sources of variation through the study-specific model. The fourth simulation is designed
to mimic the approach in this scenario. The following command simulates the data, then fits the
model using the default snm function settings. See the Single Channel Normalization example above
for a more detailed description of this process.

preProcessed <- sim.preProcessed(12347)

snm.obj5 <- snm(preProcessed$raw.data,
preProcessed$bio.var,
preProcessed$adj.var, rm.adj=TRUE)

ks.test(snm.obj5$pval[preProcessed$true.nulls],"punif")

4 Diagnosing the snm output

The snm methodology requires that the analyst has specified a well behaved study-specific model.
When this is not the case the normalized data set can lead to biased inference as shown in
[2]. To help identify when the assumed model is incorrect we provide a plot that displays the
progression of the model fit over the prescribed iterations, which is activated with the snm argument
diagnose=TRUE. An example plot from an iteration of the single channel normalization from section
3.3 is presented in figure 1.

The snm diagnostic plot contains four panels. Here is a brief description of each panel:

(A) Probes Per Bin: To estimate intensity-dependent effects we employ a binning strategy where
null probes are grouped based on their estimated RNA concentration. This figure provides
counts of the number of probes in each bin. These counts are important for identifying when
certains ranges of intensities are poorly represented given the assumed model. The optimal
shape of this function is defined by the distribution of average probe intensities. Any large
variation suggests there are too few probes unaffected by the biological variable of interest.

(B) Latent Structure: The percent variance explained by each principal component from a prin-
cipal components analysis of the estimated residual matrix. These values are sorted in de-
scending order and if the first value is noticeably larger than the remaining then the assumed

8

Figure 1: Example Iteration Level Diagnostic Plot (diagnostic=TRUE).

9

model is missing relevant study-specific variables. In this case we recommend the analyst
utilize the SVA approach [1].

(C) Estimated Array Effects: The cumulative estimated intensity-dependent effect for each
column of the raw data matrix.

(D) P-value Histogram: The histogram of p-values obtained from an ANOVA comparing models
where the full model contains both the probe-specific biological and adjustment variables
versus a reduced model that just contains the probe-specific adjustment variables. The data
used for this comparison has the intensity-dependent variables removed. The subset of probes
used to estimate the intensity-dependent effects are those to the right of the vertical red line.

A similar plot of the final model fit can be displayed with the following command:

plot(snm.obj1)

The intensity-dependent model estimates can be colored according to the study-specific model. Here
are two examples:

plot(snm.obj1, col.by=snm.obj1$bio.var) #color by biological group
plot(snm.obj1, col.by=snm.obj1$adj.var[,-6]) #color by batch

The model fits can be extracted from the snm output from the fitted function. The model fit under
the adjustment variables only (∼ −1+ adj.var) is returned as the fit0 matrix in the returned list.
Likewise, the model fit under the adjustment variables + biological variables (∼ −1+ adj.var +
bio.var) is returned as the fit1 matrix in the returned list. This can be explicitly checked:

check.fit = fitted(snm.obj1)
rbind(check.fit$fit0[1,1:8], lm(snm.obj1$norm.dat[1,] ~ -1 + snm.obj1$adj.var)$fit[1:8])
rbind(check.fit$fit1[1,1:8], lm(snm.obj1$norm.dat[1,] ~ -1 + snm.obj1$adj.var

+ snm.obj1$bio.var)$fit[1:8])

The following example shows how these fits can be used to further investigate residual structure.

snm.obj <- snm(singleChannel$raw.data,
singleChannel$bio.var,
singleChannel$adj.var[,-6],
singleChannel$int.var, num.iter=4)

snm.fit = fitted(snm.obj)
res1 = snm.obj$norm.dat - snm.fit$fit1
snm.svd = fast.svd(res1)
cor(snm.svd$v[,1], singleChannel$adj.var[,6])
plot(snm.svd$v[,1], singleChannel$adj.var[,6])

5 Simulation Details

The following functions can be used to simulate data and that show explicit examples of single and
double channel arrays.

10

sim.singleChannel
sim.doubleChannel
sim.preProcessed
sim.refDesign

The examples can be seen by accessing the help files, for example:

?sim.singleChannel

5.1 Single Channel Data

Data were simulated for a total of 25,000 probes and 50 arrays. The biological variable of in-
terest is a dichotomous variable defining two groups with 25 arrays sampled from each group.
The 50 arrays are split into 5 batches of 10, with each batch containing 5 samples from each
biological group. The height variable for each sample is sampled from a Normal(1,0.1). The
baseline probe intensities were sampled from a χ(1,2) distribution. Any baseline intensities greater
than 15 were set to a random value from the interval [15,16] in order to remove any artifacts
that arise from any extremely large values that can arise from sampling so many values. The
random variation terms were sampled from a Normal(0,0.25) and the array functions were defined
by randomly sampling coefficients for a two-dimensional β-spline basis functions from a Normal(0,1).

Randomly selected subsets of 30%, 10%, and 20% of the probes were defined as influenced by
the biological groups, batch, and height variables, respectfully. The magnitude of the biological
effects were sampled from a Normal(1,0.3) distribution, the probe-specific batch effects from a
Normal(0,0.3) and the probe-specific height effects from a Normal(1,0.1). An instance of this
simulated data is available as the singleChannel data object.

5.2 Double Channel Data

Data were simulated for a total of 25,000 probes and 20 arrays. The design of this study uses a
standard dye-swap methodology where each array contains one sample from each of two biological
groups. The height variable for each sample is sampled from a Normal(1,0.1). The baseline
probe intensities were sampled from a χ(1,2) distribution. Any baseline intensities greater than
15 were set to a random value from the interval [15,16] in order to remove any artifacts that
arise from any extremely large values that can arise from sampling so many values. The random
variation terms were sampled from a Normal(0,0.25) and the array and dye functions were defined
by randomly sampling coefficients for a two-dimensional β-spline basis functions from a Normal(0,1).

Randomly selected subsets of 30% and 20% of the probes were defined as influenced by the biological
groups and height variable, respectfully. The magnitude of the biological effects were sampled from a
Normal(1,0.3) distribution, and the probe-specific height effects from a Normal(1,0.1). An instance
of this simulated data is available as the doubleChannel data object.

5.3 Reference Design

Simulated data set influenced by a probe-specific biological variable, and intensity-dependent array
and dye effects. Data were simulated assuming a uniform reference design for a total of 25,000
probes and 20 arrays, each consisting of two channels. The reference channel consists of a single
reference RNA population. The experimental channel measures a dichotomous biological variable

11

specifying two groups (Group 1 and Group 2), with 10 samples per group. The baseline probe
intensities were sampled from a chi(1,2) distribution. Any baseline intensities greater than 15 were
set to a random value from the interval [15,16]. The random variation terms were sampled from a
Normal(0,0.25) and the array and dye functions were defined by randomly sampling coefficients for
a two-dimensional B-spline basis functions from a Normal(0,1).

A randomly selected subset of 30% of the probes was defined as influenced by the biological group
variable. The magnitude of the biological effects were sampled from a Normal(1,0.3) distribution.
An instance of this simulated data can be generated using the code in the examples section below.

5.4 Preprocessed Data

The third simulation is designed to mimic the assumed model for many microarray data sets that
come preprocessed in a way that the intensity-dependent effects have already been removed. This
commonly occurs for old data sets where the raw data has been deleted or for new studies where
only processed data has been released into the public domain. For this scenario we make use of the
simulated data from simulation 1, however we do not include the intensity-dependent array effects.
An instance of this simulated data is available as the noIntDepFX data object.

References

[1] J. T. Leek and J.D. Storey. Capturing heterogeneity in gene expression studies by surrogate
variable analysis. PLos Genetics, 3:e161, 2007.

[2] Mecham B.H Nelson P.S. and Storey J.D. Supervised normalization of microarrays. Bioinfor-
matics, 19:387–407, 2010.

[3] J. D. Storey, W. Xiao, J. T. Leek, R. G. Tompkins, and R. W. Davis. Significance analysis of time
course microarray experiments. Proceedings of the National Academy of Sciences, 102:12837–
12842, 2005.

12

	Overview
	Introduction
	Basic Usage
	Input
	Output
	Single Channel Normalization
	Double Channel Normalization
	Reference Design
	Preprocessed Normalization

	Diagnosing the snm output
	Simulation Details
	Single Channel Data
	Double Channel Data
	Reference Design
	Preprocessed Data

