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Introduction

randRotation is an R package intended for generation of randomly rotated data to resample
null distributions of linear model based dependent test statistics. See also (Yekutieli and
Benjamini 1999) for resampling dependent test statistics. The main application is to resample
test statistics on linear model coefficients following arbitrary batch effect correction methods,
see also section Quick start. The random rotation methodology is thereby applicable for linear
models in combination with normally distributed data. Note that the resampling procedure
is actually based on random orthogonal matrices, which is a broader class than random
rotation matrices. Nevertheless, we adhere to the naming convention of (Langsrud 2005)
designating this approach as random rotation methodology. The methodology used in this
vignette is described in (Hettegger, Vierlinger, and Weinhaeusel 2021). Possible applications
for resampling by rotation, that are outlined in this document, are: (i) linear models in
combination with practically arbitrary (linear or non-linear) batch effect correction methods,
section 6; (ii) generation of resampled datasets for evaluation of data analysis pipelines,
section 6.2; (iii) calculation of resampling based test statistics for calculating resampling
based p-values and false discovery rates (FDRs), sections 6.2 and 6.3; and (iv) batch effect
correction with linear mixed models 9.

Generally, the rotation approach provides a methodology for generating resampled data in the
context of linear models and thus potentially has further conceivable areas of applications
in high-dimensional data analysis with dependent variables. Nevertheless, we focus this
document on the outlined range of issues in order to provide an intuitive and problem-centered
introduction.

Installation

Execute the following code to install package randRotation:

if(!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("randRotation")

Sample dataset

For subsequent analyses we create a hypothetical dataset with 3 batches, each containing
5 Control and 5 Cancer samples with 1000 features (genes). Note that the created dataset
is pure noise and no artificial covariate effects are introduced. We thus expect uniformly
distributed p-values for linear model coefficients.

library(randRotation)

set.seed(0)

# Dataframe of phenotype data (sample information)

pdata <- data.frame(batch = as.factor(rep(1:3, c(10,10,10))),
phenotype = rep(c("Control", "Cancer"), c(5,5)))

features <- 1000

# Matrix with random gene expression data
edata <- matrix(rnorm(features * nrow(pdata)), features)
rownames (edata) <- paste("feature", l:nrow(edata))



Random Rotation Package Introduction

xtabs(data = pdata)

#> phenotype

#> batch Cancer Control
#> 1 5 5
#> 2 5 5
#> 3 5 5

4 Quick start - linear models with batch effect correc-
tion

A main application of the package is to resample null distributions of parameter estimates for
linear models following batch effect correction. We first create our model matrix:

modl <- model.matrix(~l+phenotype, pdata)

head(modl)

#> (Intercept) phenotypeControl
#> 1 1 1
#> 2 1 1
#> 3 1 1
#> 4 1 1
#> 5 1 1
#> 6 1 (0]

We then initialise the random rotation object with initBatchRandrot and select the phenotype
coefficient as the null hypothesis coefficient:

rr <- initBatchRandrot(Y = edata, X = modl, coef.h = 2, batch = pdata$batch)
#> Initialising batch "1"
#> Initialising batch "2"
#> Initialising batch "3"

Now we define the data analysis pipeline that should be run on the original dataset and on the
rotated dataset. Here we include as first step (1) our batch effect correction routine ComBat
(sva package) and as second step (I1) we obtain the t-values for covariate phenotype from
the linear model fit.

statistic <- function(Y, batch, mod){
# (I) Batch effect correction with "Combat" from the "sva" package
Y <- sva::ComBat(dat =Y, batch = batch, mod = mod)

# (II) Linear model fit

fitl <- limma::IlmFit(Y, design = mod)
fitl <- limma::eBayes(fitl)
abs(fitls$t[,2])

Note that larger values of the statistic function are considered as more significant in the
subsequently used pFdr function. We thus take the absolute values of the coefficients in
order to calculate two-sided (two-tailed) p-values with pFdr. We emphasize that we highly


https://bioconductor.org/packages/3.23/sva
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recommend using scale independent statistics (pivotal quantities) as e.g. t-values instead of
parameter estimates (as with coef), see also ?randRotation: :pFdr. The explicit function calls
like sva::ComBat are required if parallel computing is used, see ?randRotation: :rotateStat.

The rotateStat function calculates statistic on the original (non-rotated) dataset and on
10 random rotations. batch and mod are provided as additional parameters to statistic.

rsl <- rotateStat(initialised.obj = rr, R = 10, statistic = statistic,
batch = pdata$batch, mod = modl)

rsl
#> Rotate stat object

# R = 10
#> dim(s0): 1000 1

#> Statistic:
#> function (Y, batch, mod)

#> {

#> Y <- sva::ComBat(dat = Y, batch = batch, mod = mod)
#> fitl <- limma::lmFit(Y, design = mod)

#> fitl <- limma::eBayes(fitl)

#> abs(fitls$t[, 2])

#> }

#> <bytecode: 0x61953608a710>

#>

#> Call:

#> rotateStat(initialised.obj = rr, R = 10, statistic = statistic,
#> batch = pdatag$batch, mod = modl)

Resampling based p-values are obtained with pFdr. As we use “pooling” of the rotated
statistics in pFdr, 10 random rotations are sufficient.

p.vals <- pFdr(rsl)
hist(p.vals, col = "lightgreen");abline(h = 100, col = "blue", 1ty = 2)
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Histogram of p.vals
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We see that, as expected, our p-va

Hint: The outlined procedure also works with statistic functions which return multiple
columns (rotateStat and pFdr handle functions returning multiple columns adequately). So
one could e.g. perform multiple batch effect correction methods and calculate the statistics
of interest for each correction method. By doing this, one could subsequently evaluate the

theoretical quantiles

lues are approximately uniformly distributed.

influence of different batch effect correction methods on the statistic of interest.
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Additional info: Below, the analysis pipeline is performed without rotation for comparison
with the previous analyses. Following batch effect correction with ComBat (sva package), we
obtain p-values from linear fit coefficients (using the /imma package) as follows:

library(limma)

library(sva)

#> Loading required package: mgcv

#> Loading required package: nlme

#> This is mgcv 1.9-3. For overview type 'help("mgcv-package")'.
#> Loading required package: genefilter

#> Loading required package: BiocParallel

edata.combat <- ComBat(dat = edata, batch = pdata$batch, mod = modl)
#> Found3batches

#> Adjusting forlcovariate(s) or covariate level(s)

#> Standardizing Data across genes

#> Fitting L/S model and finding priors

#> Finding parametric adjustments

#> Adjusting the Data

fitl <- LmFit(edata.combat, modl)

fitl <- eBayes(fitl)

# P-values from t-statistics
p.vals.nonrot <- topTable(fitl, coef = 2, number = Inf, sort.by="none")$P.Value

hist(p.vals.nonrot, col = "lightgreen");abline(h 100, col = "blue", lty = 2)

Histogram of p.vals.nonrot
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Q-Q plot for Unif(0, 1)
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theoretical quantiles

plot(p.vals, p.vals.nonrot, log = "xy", pch = 20)
abline(0,1, col = 4, lwd = 2)
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We see that the p-values are non-uniformly distributed. See also section 6.1.

5 Basic principle of random rotation methods

In the random rotation methodology, the observed data vectors (for each feature) are rotated in
way that the determined coefficients (Bp in Langsrud (2005)) stay constant when resampling
under the null hypothesis Hy : By = 0, see (Langsrud 2005).
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The following example shows that the intercept coefficient of the null model does not change
when rotation is performed under the null hypothesis:

# Specification of the full model
modl <- model.matrix(~1+phenotype, pdata)

# We select "phenotype" as the coefficient associated with HO
# ALl other coefficients are considered as "determined" coefficients
rr <- initRandrot(Y = edata, X = modl, coef.h = 2)

coefs <- function(Y, mod){
t(coef(lm.fit(x = mod, y = t(Y))))
# Specification of the HO model

mod0 <- model.matrix(~1, pdata)

coef@l <- coefs(edata, mod0)
coef02 <- coefs(randrot(rr), mod0)

head(cbind(coef0l, coef02))
#> (Intercept) (Intercept)

#> feature 1 0.040777 0.040777
#> feature 2 -0.001669 -0.001669
#> feature 3 0.036254 0.036254
#> feature 4 -0.272032 -0.272032
#> feature 5 0.105839 0.105839
#> feature 6 -0.012137 -0.012137

all.equal(coef@l, coef02)
#> [1] TRUE

However, the coefficients of the full model do change (for this parametrisation) when rotation
is performed under the null hypothesis:

coefll <- coefs(edata, modl)

coefl2 <- coefs(randrot(rr), modl)

head(cbind(coefll, coefl2))

#> (Intercept) phenotypeControl (Intercept) phenotypeControl
#> feature 1 0.236258 -0.39096 -0.30040 0.68235
#> feature 2 0.023970 -0.05128 0.15804 -0.31942
#> feature 3 0.180283 -0.28806 -0.05786 0.18823
#> feature 4 -0.007109 -0.52984 -0.25566 -0.03275
#> feature 5 0.452219 -0.69276 0.09968 0.01232
#> feature 6 0.031197 -0.08667 -0.12935 0.23442

This is in principle how resampling based tests are constructed. Note that the change in both
coefficients is due to parametrisation of the model. Compare e.g. the following parametrisation,
where the determined coefficient (Intercept) does not change:
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mod2 <- modl
mod2[,2] <- mod2[,2] - 0.5

coefll <- coefs(edata, mod2)
coefl2 <- coefs(randrot(rr), mod2)

head(cbind(coefll, coefl2))

#> (Intercept) phenotypeControl (Intercept) phenotypeControl
#> feature 1 0.040777 -0.39096 0.040777 0.2885
#> feature 2 -0.001669 -0.05128 -0.001669 -0.4767
#> feature 3 0.036254 -0.28806 0.036254 -0.5369
#> feature 4 -0.272032 -0.52984 -0.272032 -0.2712
#> feature 5 0.105839 -0.69276 0.105839 -0.2143
#> feature 6 -0.012137 -0.08667 -0.012137 0.2032

Batch effect correction with subsequent linear
model analysis

6.1

In the following we outline the use of the randRotation package for linear model analysis
following batch effect correction as a prototype application in current biomedical research. We
highlight the problems faced when batch effect correction is separated from data analysis with
linear models. Although data analysis procedures with combined batch effect correction and
model inference should be preferred, the separation of batch effect correction from subsequent
analysis is unavoidable for certain applications. In the following we use ComBat (sva package)
as a model of a “black box" batch effect correction procedure. Subsequent linear model
analysis is done with the /imma package. We use limma and ComBat as model functions for
demonstration, as these are frequently used in biomedical research. We want to emphasize
that neither the described issues are specific to these functions, nor do we want to somehow
defame these highly useful packages.

Skewed null distribution of p values

Separating a (possibly non-linear) batch effect correction method from linear model analysis
could practically lead to non-uniform (skewed) null distributions of p-values for testing linear
model coefficients. The intuitive reason for this skew is that the batch effect correction
method combines information of all samples to remove the batch effects. After removing the
batch effects, the samples are thus no longer independent. For further information please
refer to section df estimation and to the references.

The following example demonstrates the influence of the batch effect correction on the
distribution of p-values. We first load the /imma package and create the model matrix with
the intercept term and the phenotype term.

library(limma)

modl = model.matrix(~phenotype, pdata)


https://bioconductor.org/packages/3.23/sva
https://bioconductor.org/packages/3.23/limma
https://bioconductor.org/packages/3.23/limma
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Remember that our sample dataset is pure noise. Thus, without batch effect correction,
fitting a linear model with limma and testing the phenotype coefficient results in uniformly
distributed p-values:

# Linear model fit
fit0 <- lmFit(edata, modl)
fitd <- eBayes(fit0)

# P values for phenotype coefficient

p0 <- topTable(fit®, coef = 2, number = Inf, adjust.method = "none",
sort.by = "none")$P.Value

hist(p®, freq = FALSE, col = "lightgreen", breaks = seq(0,1,0.1))

abline(1,0, col = "blue", lty = 2)

Histogram of p0
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Q-Q plot for Unif(0, 1)
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We now perform batch effect correction using ComBat (sva package):

library(sva)

edata.combat = ComBat(edata, batch = pdata$batch, mod = modl)
#> Found3batches

#> Adjusting forlcovariate(s) or covariate level(s)

#> Standardizing Data across genes

#> Fitting L/S model and finding priors

#> Finding parametric adjustments

#> Adjusting the Data

Performing the model fit and testing the phenotype effect on this modified dataset results in
a skewed p-value distribution:

# Linear model fit
fitl <- ImFit(edata.combat, modl)
fitl <- eBayes(fitl)

# P value for phenotype coefficient

p.combat <- topTable(fitl, coef = 2, number = Inf, adjust.method = "none",
sort.by = "none")$P.Value

hist(p.combat, freq = FALSE, col = "lightgreen", breaks = seq(0,1,0.1))

abline(1,0, col = "blue", lty = 2)

11
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Histogram of p.combat
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The histogram and Q-Q plot clearly show that the null-distribution of p-values is skewed when
linear model analysis is performed following batch effect correction in a data analysis pipeline
of this type. This problem is known and described e.g. in (Nygaard, Rgdland, and Hovig

2015). Note that the null-distribution is skewed although the experimental design is balanced.

12
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6.2

Unskewed p-values by random rotation

In the following, we take the data analysis pipeline of the previous section and incorporate it
into the random rotation environment. The initBatchRandrot function initialises the random
rotation object with the design matrix of the linear model. We thereby specify the coefficients
associated with the null hypothesis Hy (see also 5) with coef.h. Additionally, the batch
covariate is provided.

Note that the implementation with initBatchRandrot in principle implicitly assumes a block
design of the correlation matrix and restricted roation matrix, see also @ref{nonblock}.

initl <- initBatchRandrot(edata, modl, coef.h = 2, batch = pdata$batch)
#> Initialising batch "1"
#> Initialising batch "2"
#> Initialising batch "3"

We now pack the data analysis pipeline of above into our statistic function, which is called
for the original (non-rotate) data and for all data rotations:

statistic <- function(Y, batch, mod, coef){
Y.tmp <- sva::ComBat(dat =Y, batch = batch, mod = mod)

fitl <- limma::ImFit(Y.tmp, mod)

fitl <- limma::eBayes(fitl)

# The "abs" is needed for "pFdr" to calculate 2-tailed statistics
abs(fitl$t[,coef])

Data rotation and calling the statistic function is performed with rotateStat.
resl <- rotateStat(initialised.obj = initl, R = 10, statistic = statistic,

batch = pdata$batch, mod = modl, coef = 2)

As we use pooling of rotated statistics, R = 10 resamples should be sufficient (see also 7). We
now calculate rotation based p-values with pFdr:

p.rot <- pFdr(resl)
head(p.rot)

#> [,1]
#> feature 1 0.30397
#> feature 2 0.91951
#> feature 3 0.44076
#> feature 4 0.13709
#> feature 5 0.05759
#> feature 6 0.83342

hist(p.rot, freq = FALSE, col = "lightgreen", breaks = seq(0,1,0.1))
abline(1,0, col = "blue", 1ty 2)

13
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Histogram of p.rot
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We see that our rotated p-values are roughly uniformly distributed.

For illustration of the skewness of non-rotated p-values, we compare the non-rotated p-values
p.combat (batch corrected), the rotated p-values p.rot (batch corrected) and the p-values
from linear model analysis without batch correction p0.
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plot(density(log(p.rot/p@)), col = "salmon", "Log p ratios",
panel.first = abline(v=0, col = "grey"),
xlim = range(log(c(p.rot/p0®, p.combat/p0d))))
lines(density(log(p.combat/p@)), col = "blue")
legend("topleft", legend = c("log(p.combat/p0)", "log(p.rot/p0)"),
1ty = 1, col = c("blue", "salmon"))

Log p ratios
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We see the skew of the non-rotated p-values towards lower values. This is also seen in another
illustration below:

plot(p®, p.combat, log = "xy", pch = 20, col = "lightblue", ylab = "")
points(p®, p.rot, pch = 20, col = "salmon")
abline(0,1, lwd = 1.5, col = "black")
legend("topleft", legend = c("p.combat", "p.rot"), pch = 20,
col = c("lightblue", "salmon"))
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The non-rotated p-values are on average lower than the rotated p-values:

plot(density(log(p.combat/p.rot)), col = "blue",
main = "log(p.combat / p.rot )", panel.first = abline(v=0, col = "grey"))

log(p.combat / p.rot )
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6.3 Resampling based FDR

Additionally to resampling based p-values, the method pFdr could also be used for estimating
resampling based false discovery rates (Yekutieli and Benjamini 1999).

16
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6.4

fdr.q <- pFdr(resl, "fdr.q")
fdr.qu <- pFdr(resl, "fdr.qu")
fdr.BH <- pFdr(resl, "BH")

FDRs <- cbind(fdr.q, fdr.qu, fdr.BH)
ordl <- order(resl$s0, decreasing = TRUE)

FDRs.sorted <- FDRs[ordl, ]

matplot (FDRs.sorted, type = "1", lwd = 2)
legend("bottomright", legend = c("fdr.q", "fdr.qu", "BH"), lty = 1:5, lwd = 2,
col = 1:6)
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head (FDRs.sorted)
#> [,1] [,2] [,3]

#> feature 990 1 1 0.9347
#> feature 478 1 1 0.9347
#> feature 229 1 1 0.9347
#> feature 875 1 1 0.9347
#> feature 374 1 1 0.9347
#> feature 254 1 1 0.9347

Contrasts

The random rotation methodology can also be applied for contrasts. We introduce an artificial
group effect between group 2 and group 3 for the first 100 features (we use that later in 7).

edata[,] <- rnorm(length(edata))
group <- as.factor(rep(1:3, 10))

# add group effect for the first 100 features
group.effect <- rep(c(0,0,1), 10)
edata[1:100,] <- t(t(edata[l:100,]) + group.effect)

17
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mod.groups <- model.matrix(~ group)

contrastsl <- limma::makeContrasts("2vs3" = group2 - group3,
levels = mod.groups)
#> Renaming (Intercept) to Intercept

contrastsl

#> Contrasts
#> Levels 2vs3

#> Intercept 0

#> group2 1

#>  group3 -1

Using contrastModel we transform our model matrix to a new model matrix (with same
dimensions as mod.groups) which includes the contrast as last coefficient. Thereby, all
contrasts are set as coef.h (in the attributes of mod.cont).

mod.cont <- contrastModel(X = mod.groups, C = contrastsl)

The random rotation object is automatically initalised with the contrasts set as coef.h:

initl <- initBatchRandrot(edata, mod.cont, batch = pdata$batch)
#> Initialising batch "1"
#> Initialising batch "2"
#> Initialising batch "3"

Similarly to above, we can now test our contrast in the batch effect adjusted data using
random rotations:

statistic <- function(Y, batch, mod, cont){
Y.tmp <- sva::ComBat(dat = Y, batch = batch, mod = mod)

fitl <- limma::ImFit(Y.tmp, mod)

fitl <- limma::contrasts.fit(fitl, cont)
fitl <- limma::eBayes(fitl)

# The "abs" is needed for "pFdr" to calculate 2-tailed statistics
abs (fitl$t[,1]1)

resl <- rotateStat(initialised.obj = initl, R = 20, statistic = statistic,
batch = pdata$batch, mod = mod.groups, cont = contrastsl)

We calculate the rotation based p-values with pFdr:

p.rot <- pFdr(resl)
head(p.rot)

#> [,1]
#> feature 1 0.01190
#> feature 2 0.17979
#> feature 3 0.00005
#> feature 4 0.01100

18
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#> feature 5 0.05205
#> feature 6 0.04545
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/

How many rotations ?

The sufficient number of rotations R for simulating the null-distribution of our statistic of
interest depends on multiple factors and is different for each application. A possible guiding
principle for finding a sufficient number of resamples could be the following.

Increase the number of resamples R until:

= the rotation procedure provides an adequately smooth null-distribution of the statistic
of interest.

= the results (e.g. the number of features with fdr < 0.05) and/or null-distribution do
not change substantially if the rotation procedure is repeated with the same R.

Consequently, R must be increased if one needs high precision in the tail regions of the null
distribution (so e.g. if fdr < 0.01 is used instead of fdr < 0.05). Nevertheless, note that the
ordering of the features does not change if R is increased.

Large R might be required if e.g. features are highly dependent. In this case, for a single
rotation, the resulting values of our statistic are highly similar and thus only small intervals of
the null-distribution are simulated.

The following figure shows the null distribution (R = 20) and the test values of the example
given in 6.4:

plot(density(resl$s0), main = "", ylim = c(0,1), col = 2)
lines(density(resl$stats[[1]]), col = 1)
legend("topright", col = 1:2, 1ty =1,

legend = c("null-distribution by rotation", "test statistic"))
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N =1000 Bandwidth =0.1855

We repeat the rotation procedure with R = 20:

res2 <- rotateStat(initialised.obj = initl, R = 20, statistic = statistic,
batch = pdata$batch, mod = mod.groups, cont = contrastsl)

p.rot2 <- pFdr(res2)
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plot(density(res2$s0), main = "", ylim = c(0,1), col = 2)
lines(density(res2$stats[[1]]), col = 1)
legend("topright", col = 1:2, lty =1,

legend = c("null-distribution by rotation", "test statistic"))
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Comparing the p-values shows:

plot(p.rot, p.rot2, pch = 19, log = "xy")
abline(0,1, col = "red")

1le+00
I

p.rot2
le-02

le-04

| | | | |
le-04 1e-03 le-02 le-01 1e+00

p.rot

Together, these plots suggest, that R = 20 is sufficient for this dataset.
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Note that with pFdr(resl), we assumed that the marginal distributions of the statistics are
exchangeable (see also ?randRotation::pFdr) and thus pooling of the rotated statistics can
be used. By pooling rotated statistics, the number of random rotations can be substantially
reduced.

Correlation matrices with non-block design

Function initBatchRandrot implicitly assumes a block design of the sample correlation matrix
and the restricted rotation matrix (see also ?randRotation: :initBatchRandrot). This means

that correlations between samples are allowed within batches, but are zero between batches.

Simply put, biological replicates or technical replicates (or any other cause of non-zero sample

correlation) are contained within single batches and are not distributed to different batches.

In this case, each batch has his own sample correlation matrix and correlation coefficients
between batches are assumed to be zero. This assumption seems restrictive at first view,
but is computationally efficient, as the random rotation can be performed for each batch
independently. This is how initBatchRandrot is implemented. However, a general correlation
matrix with non-block design (non-zero sample correlations between batches) can be initialised
with initRandrot. Thus, initBatchRandrot simply provides a comfortable wrapper for sample
correlation matrices with block design or for rotation of data with batch structure. For a
correlation matrix of I,,x,, initRandrot and initBatchRandrot are practically equivalent.

Batch effect correction with linear mixed models

Sample dataset

We now assume to have a dataset of repeated measures. We assume to have taken biopsies
of 15 individuals. From each individual we have taken 1 biopsy of healthy control tissue and 1
biopsy of cancer tissue. This is a possible application for mixed models with the covariate
“individual” as random effect. The hypothetic dataset was generated in 3 batches.

pdata$individual <- sort(c(1:15, 1:15))
colnames (pdata) [2] <- "tissue"

pdata$tissue <- c("Control", "Cancer")
pdata

#> batch tissue individual
#> 1 1 Control 1
#> 2 1 Cancer 1
#> 3 1 Control 2
#> 4 1 Cancer 2
#> 5 1 Control 3
#> 6 1 Cancer 3
#> 7 1 Control 4
#> 8 1 Cancer 4
#> 9 1 Control 5
#> 10 1 Cancer 5
#> 11 2 Control 6
#> 12 2 Cancer 6
#> 13 2 Control 7
#> 14 2 Cancer 7
#> 15 2 Control 8
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9.2

#> 16 2 Cancer 8
#> 17 2 Control 9
#> 18 2 Cancer 9
#> 19 2 Control 10
#> 20 2 Cancer 10
#> 21 3 Control 11
#> 22 3 Cancer 11
#> 23 3 Control 12
#> 24 3 Cancer 12
#> 25 3 Control 13
#> 26 3 Cancer 13
#> 27 3 Control 14
#> 28 3 Cancer 14
#> 29 3 Control 15
#> 30 3 Cancer 15

As sample dataset, we take random normally distributed data with a random normally
distributed individual effect (both with variance 1).

edata[,] <- rnorm(length(edata))
for(i in seq(1l,ncol(edata),?2)){
tmpl <- rnorm(nrow(edata))
edata[,1i] <- edata[,i] + tmpl
edata[,i+1] <- edatal,i+1] + tmpl
}

Estimation of cormat

For random rotation of the dataset, we need an estimate of the correlation matrix cormat
between sample replicates (of course different approaches than the following are possible for
estimating cormat). As the data is not batch effect corrected, we estimate the correlation
matrix for each batch separately and then average over all features and batches.

library(nlme)
dfl <- data.frame(pdata, dl = edatall,])
spll <- split(l:nrow(pdata), pdata$batch)

covsl <- function(., dfl, i){

dfl$dl <-
mel <- lme(dl ~ tissue, data = dfl[i,], random = ~1|individual)
getVarCov(mel, type = "marginal")[[1]]

b

covsl <- sapply(spll,
function(samps)rowMeans(apply(edata, 1, covsl, dfl, samps)))
covl <- matrix(rowMeans(covsl), 2, 2)
cormat <- cov2cor(covl)
cormat
#> [,11  [,2]
#> [1,] 1.0000 0.5266
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9.3

#> [2,] 0.5266 1.0000

As expected, the sample correlation is roughly 0.5, as the residual variance and the individual
variance are both 1 in our sample dataset.

Random rotation

We can now initialise our random rotation object with initBatchRandrotand perform random
rotation of our statistic of interest with rotateStat. We choose the absolute value of the
t-statistic of coefficient tissue as statistic. We use the function removeBatchEffect from
package /imma for batch effect correction. Note that removeBatchEffect here is just a
placeholder for any “black box batch effect correction procedure™.

cormat <- diag(5) %x% cormat
cormat <- list(cormat, cormat, cormat)

modl <- model.matrix(~1l+tissue, pdata)

rrl <- initBatchRandrot(Y = edata, X = modl, coef.h = 2, batch = pdata$batch,
cormat = cormat)

#> Initialising batch "1"

#> Initialising batch "2"

#> Initialising batch "3"

statistic <- function(Y, batch, mod, dfl){
# Batch effect correction

Y <- limma::removeBatchEffect(Y, batch = batch, design = mod)

apply(Y, 1, function(j){

df1$dl <- j
me® <- nlme::lme(dl ~ 1, data = dfl, random = ~1|individual, method = "ML")
mel <- nlme::lme(dl ~ tissue, data = dfl, random = ~1|individual, method = "ML")

abs(coef(mel)[1,2] / (sqrt(vcov(mel)[2,2])))
1)

rsl <- rotateStat(initialised.obj = rrl, R 4, statistic = statistic,
batch = pdata$batch, mod = modl, dfl = dfl, parallel = TRUE)

pl <- pFdr(rsl)

hist(pl, freq = FALSE); abline(h = 1, lty = 2, lwd = 2, col = "blue")
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As expected, the p-value is roughly uniformly distributed.

25



Random Rotation Package Introduction

10 Session info

sessionInfo()

#> R Under development (unstable) (2025-10-20 r88955)
#> Platform: x86_64-pc-linux-gnu

#> Running under: Ubuntu 24.04.3 LTS

#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas. so
#> LAPACK: /usr/lib/x86_64-1linux-gnu/lapack/liblapack.s0.3.12.0 LAPACK version 3.12.0

#>

#> locale:

#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

#> [3] LC_TIME=en_GB LC_COLLATE=C

#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

#> [9] LC_ADDRESS=C LC_TELEPHONE=C

#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

#>

#> time zone: America/New_York
#> tzcode source: system (glibc)

#>

#> attached base packages:

#> [1] stats graphics grDevices utils datasets methods  base
#>

#> other attached packages:

#> [1] sva_3.59.0 BiocParallel _1.45.0 genefilter_1.93.0

#> [4] mgcv_1.9-3 nlme_3.1-168 limma_3.67.0

#> [7] randRotation_1.23.0 BiocStyle 2.39.0

#>

#> loaded via a namespace (and not attached):

#> [1] generics_0.1.4 lattice_0.22-7 RSQLite_2.4.3

#> [4] digest _0.6.37 grid_4.6.0 evaluate_1.0.5

#> [7] bookdown_0.45 fastmap_1.2.0 blob_1.2.4

#> [10] Matrix_1.7-4 AnnotationDbi 1.73.0 DBI 1.2.3

#> [13] tinytex_0.57 survival_3.8-3 BiocManager_1.30.26
#> [16] httr_1.4.7 XML_3.99-0.19 Biostrings_2.79.0
#> [19] codetools_0.2-20 Rdpack_2.6.4 cli 3.6.5

#> [22] rlang_1.1.6 crayon_1.5.3 rbibutils 2.3

#> [25] XVector_0.51.0 Biobase 2.71.0 bit64 4.6.0-1

#> [28] splines_4.6.0 cachem_1.1.0 yaml_2.3.10

#> [31] tools_4.6.0 parallel _4.6.0 memoise_2.0.1

#> [34] annotate_1.89.0 locfit_1.5-9.12 BiocGenerics_0.57.0
#> [37] vctrs_0.6.5 R6_2.6.1 png_0.1-8

#> [40] matrixStats_1.5.0 stats4 4.6.0 KEGGREST_1.51.0

#> [43] Seqinfo_1.1.0 edgeR_4.9.0 S4Vectors_0.49.0
#> [46] IRanges_2.45.0 bit_4.6.0 statmod_1.5.1

#> [49] xfun_0.54 MatrixGenerics_1.23.0 knitr_1.50

#> [52] xtable_1.8-4 htmltools_0.5.8.1 rmarkdown_2.30

#> [55] compiler_4.6.0
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