An introduction to PLGEM

Mattia Pelizzola and Norman Pavelka

October 30, 2025

1 Introduction

This document serves as a brief tutorial to the Power Law Global Error
Model (PLGEM) analysis method [1]. PLGEM has so far been shown to
faithfully model the variance-versus-mean dependence that exists in a wide va-
riety of genome-wide data sets, including microarray [1] and proteomics data
[2]. The use of PLGEM has furthermore been shown to improve the detection
of differentially expressed genes or proteins in these datasets [1, 2].

2 Running PLGEM in wrapper mode

A wrapper function (called run.plgem) is provided in the package, which per-
forms all the necessary steps to obtain a list of differentially expressed genes or
proteins (DEG), starting from a dataset of class FrxpressionSet.

This input dataset is expected to contain either normalized gene expression
values obtained from one-channel microarrays (such as Affymetrix GeneChip
[1]), or normalized spectral counts obtained from mass spectrometry-based pro-
teomics methods (such as MudPIT [2]).

The wrapper automatically attempts to find the best solution at each step,
and requires only modest or no input decisions by the user. For didactic pur-
poses, we will use here a subset of the microarray dataset used in the original
publication about PLGEM, containing two replicates of LPS-stimulated den-
dritic cells (‘LPS’) and four replicates of untreated dendritic cells (‘C’):

> library(plgem)
> data(LPSeset)
> set.seed(123)
> LPSdegList <- run.plgem(esdata=LPSeset)

The above obtained object LPSdegList will contain the list of genes or pro-
teins, selected as significantly changing between experimental condition ‘LPS’
and baseline condition ‘C’, at the default significance level 0.001.

3 Running PLGEM in step-by-step mode

To provide advanced users with a higher control on the inner workings of the
PLGEM pipeline, the individual functions called by run.plgem are also de-
scribed in this tutorial. We will use them now, step by step.

3.1 Fitting of the model to a data set

The first step is to fit the model to the microarray or proteomics dataset. By
fitting the model we will obtain a mathematical relationship that will allow us
to determine the expected standard deviation associated to a given average gene
expression value or average protein abundance level.

PLGEM can only be fitted on a set of replicates of a same experimental
condition, therefore we first need to choose which condition to use for the fitting
step. In our dataset two conditions are provided: ‘C’ and ‘LPS’. Usually the
most replicated one is chosen, in this example we will therefore choose the
first condition ‘C’ (i.e. f£itCondition="C"), because it contains four replicates.
Technically, we may have decided to fit the model also on the two ‘LPS’ samples,
as two replicates are required and sufficient to fit a PLGEM. But having 3 or
more replicates improves the fitting and is usually recommended [2].

Moreover, we can can change the default values of parameters p and q.
Briefly, p represents the number of intervals (or bins) used to partition the
expression value range of the dataset. We observed that p can be modified over
a wide range of values, without any major effects on the final results, except
when it was chosen to close to the total number of genes or proteins in the
dataset [1]. As a rule of thumb, p should be no more than one tenth of the
number of genes or proteins. The default of 10 should therefore be appropriate
for most microarray experiments, but could be set lower for proteomics data
where less than 100 proteins were identified.

q is the quantile of the location-dependent spread used to fit the model. The
default of q is set to 0.5, because this represents the median value, which is
what you are looking for when modeling the variability. We recommend to only
modify this parameter for very special purposes, e.g. for the determination of
empirical confidence intervals of standard deviation.

Moreover it is possible to evaluate the fitting of the model setting the option
fittingEval. If this argument is set to TRUE, a multi-panel plot is produced
where the residuals of the model are evaluated. A good fit is characterized
by a near-normal distribution and an horizontal symmetric plot of the ranked
residuals.

Finally, setting plot.file=TRUE saves above diagnostic plot to a png file
instead of the default device, therefore we won’t change its default.

> LPSfit <- plgem.fit(data=LPSeset, covariate=1, fitCondition='C', p=10, g=0.5,
+ plot.file=FALSE, fittingEval=TRUE, verbose=TRUE)

Fitting PLGEM. ..
samples extracted for fitting:

conditionName
C1 C
Cc2 C
C3 C
C4 C

replacing 7 zero standard deviations with smallest non-zero standard deviation...
determining modelling points...

fitting data and modelling points...

done with fitting PLGEM.

PLGEM fitted on condition 'C'

Power Law Global Error Model Histogram of residuals
slope = 0.768
(o Jintercept = -0.535 S
<
<+ 8
= oo
e} c
AN >
= 3 §—
© o
84
-
N adj. r2 = 0.987
Pearson = 0.93 o
T T T T T T T T T T T
-2 0 2 4 6 8 -4 -2 0 2 4
In(mean) Residuals
Residuals vs. rank Normal Q-Q Plot
< ’ooo
~—
o~ -
))
[[
=1 S5 o
0 0
) [0 T'_
& = e — &
T o
™ _|
<|r_ I 0°
T T T T T T T T T T T T
0 2000 6000 10000 -4 -2 0 2 4
Rank of mean Standard Normal

3.2 Computation of observed signal-to-noise ratios

The next step is the computation of the signal-to-noise ratio (STN) statistics
for the detection of differential expression. The STN is determined using the
model-derived spread estimates instead of the data-derived ones. Therefore it
is necessary to give to the plgem.obsStn function the model parameters slope
and intercept determined during the model fitting that are contained in the
value returned by plgem.fit function. By default, all experimental conditions
(according to the values of the covariate defined in the phenoData slot of the
EzxpressionSet) are compared to the first condition (baseline). If the condition
to be treated as the baseline is not the first one, we can change this by modifying
the argument baselineCondition. A matrix of observed STN is determined,
where the number of rows are the number of genes or proteins in the dataset and
the number of columns are the number of comparisons that can be performed in
the dataset (i.e. the total number of experimental conditions minus one). In this
case, the dataset contains only one condition to be compared to the baseline,
therefore the matrix will be a one-dimensional array of observed PLGEM-STN
values.

> LPSobsStn <- plgem.obsStn(data=LPSeset, covariate=1, baselineCondition=1,
+ plgemFit=LPSfit, verbose=TRUE)

calculating observed PLGEM-STN statistics:found 1 condition(s) to compare to the baseline.
working on baseline C ...

C1 C2 C3 C4

working on condition LPS ...

LPS1 LPS2
done with calculating PLGEM-STN statistics.

3.3 Computation of resampled signal-to-noise ratios

In order to get an estimate of the distribution of the test statistic under the
null hypothesis of no differential expression, a resampled statistic is determined
using the method described in the paper [1]. The number of iterations of the
resampling step should be correlated with the total number of replicates that
are present in the data set. If this argument is set to "automatic", the number
of iterations is automatically determined based on the total number of possible
combinations. In this case, an upper threshold of 500 iterations is set to avoid
excessive computation time. This should be fine for most purposes.

> set.seed(123)
> LPSresampledStn <- plgem.resampledStn(data=LPSeset, plgemFit=LPSfit,
+ iterations="automatic", verbose=TRUE)

calculating resampled PLGEM-STN statistics:found 1 condition(s) to compare to the baseline
baseline samples:
C1 C2 C3 C4
resampling on samples:
C1 C2 C3 C4
Using 500 iteratioms...
working on cases with 2 replicates...
Iterations: 100 200 300 400 500
done with calculating resampled PLGEM-STN statistics.

3.4 Computation of p-values

Next, p-values are calculated for each observed STN value via a call to function
plgem.pValue. Resampled STN values are also required by this function, be-
cause they will be used to build empirical cumulative distribution functions of
the STN values that can be observed under the null hypothesis:

> LPSpValues <- plgem.pValue (observedStn=LPSobsStn,
+ plgemResampledStn=LPSresampledStn, verbose=TRUE)

calculating PLGEM p-values... done.

> head(LPSpValues)

LPS_vs_C
100001_at 0.157816784
100002_at 0.148836323
100003_at 0.001264254
100004_at 0.216837604
100005_at 0.349002883
100006_at 0.510843690

3.5 Detection of differentially expressed genes or proteins
(DEG)

Finally, DEG are selected at the given significance level delta via a call to
function plgem.deg. The chosen value of delta can be seen as an estimate of
the False Positive Rate (FPR). Therefore, in case of a microarray dataset with
10,000 genes of which not a single one is truly differentially expressed, choosing
delta=0.001 will select roughly 10 genes by chance:

> LPSdegList <- plgem.deg(observedStn=LPSobsStn, plgemPval=LPSpValues,
+ delta=0.001, verbose=TRUE)

selecting significant DEG:found 1 condition(s) compared to the baseline.
Delta = 0.001
Condition = LPS_vs_C
delta: 0.001 condition: LPS_vs_C found 360 DEG
done with selecting significant DEG.

> head (LPSdegList$significant[["0.001"]][["LPS_vs_C"]])

[1] "100012_at" "100213_f_at" "100277_at" "100278_at" "100342_i_at"
[6] "100379_f_at"

Above function returns a list with a number of items that is equal to the
number of different significance levels delta used as input. In this case the
default single value of 0.001 was used, so the list will contain only one item at
this level. This item is again a list, whose number of items correspond to the
number of performed comparisons, i.e. the number of conditions in the starting
EzxpressionSet minus the baseline, in this case again only one. In each list-item
the values are the observed STN and the names are the IDs of the significantly
changing genes or proteins, as defined in the ExpressionSet.

Finally, the obtained list of DEG can be written to the current working
directory using the plgem.write.summary function.

> sessionInfo()

R Under development (unstable) (2025-10-20 r88955)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.23-bioc/R/1ib/libRblas.so
LAPACK: /usr/1ib/x86_64-1linux-gnu/lapack/liblapack.so0.3.12.0 LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats graphics grDevices utils

other attached packages:
[1] plgem_1.83.0

loaded via a namespace (and not attached):

[1] MASS_7.3-65 compiler_4.6.0
[4] tools_4.6.0 Biobase_2.71.0
References

datasets methods

generics_0.1.4
BiocGenerics_0.57.0

base

[1] Pavelka, N., Pelizzola, M., Vizzardelli, C., Capozzoli, M., Splendiani,
A., Granucci, F. and P. Ricciardi-Castagnoli (2004). A power law global
error model for the identification of differentially expressed genes in microar-

ray data. BMC Bioinformatics, 5:203.

[2] Pavelka, N., Fournier, M., L., Swanson, S., K., Pelizzola, M., Ricciardi-
Castagnoli, P., Florens, L. and M. P. Washburn (2008). Statistical similarities
between transcriptomics and quantitative shotgun proteomics data. Molecular

and Cellular Proteomics, 7(4):631-44.

