
flowCHIC - Analyze flow cytometric data of complex microbial
communities based on histogram images

Schumann, J., Koch, C., Fetzer, I., Müller, S.
Helmholtz Centre for Environmental Research - UFZ

Department of Environmental Microbiology

October 30, 2025

Abstract

CHIC means cytometric histogram image comparison and is a tool for evaluation of cytometric
datasets nearly automatically and very fast. CHIC neither requires gate setting procedures nor relies
on quantification and binning of event distributions within histograms. The evaluation of histograms
using CHIC is based on the main idea that histograms are converted into images thus working person
independent and with low computational demand. Although cell specific information is given up in
this way it allows, on the other hand, huge datasets to be evaluated within very short time frames.
It is, therefore, a tool to visualize cell population or community dynamics and to suggest causes of
dynamic variations. The sensitivity of this technique was found to discriminate down to 0.5% internal
variation. On the first hand it was developed for evaluation of cytometric microbial community data
but it can also be used for any other cytometric dataset.

1 Introduction
The background of the CHIC tool is published in [Koch et al., 2013]. flowCHIC contains four parts. The
first part provides information on cell distributions and their respective abundances in histograms, the
second part transforms vector based histograms into PNG images, the third part calculates the values
needed for comparing these images and the forth part evaluates the differences based on the calculated
values. The first part of flowCHIC directly uses cytometric raw data (usually FCS files) that can be
obtained from any cytometric analysis. As the later evaluation occurs on grey value comparison in a
starting step arbitrary color keys of cytometric histograms are converted into equally spaced grey grad-
uations. The second part creates images with instrumental noise, bead signals, or axis denominations
eliminated by defining a rectangular gate. The third part calculates the overlapping area as well as the
sum of all pixel intensities based on XOR operation for each combination of every image. The forth part
performs nonmetric multidimensional scaling (NMDS) giving information on how similar/dissimilar cer-
tain samples are or how the structure of populations or communities is changing over time. Examples are
discussed in [Koch et al., 2014a,Koch et al., 2014b] and also given below. To find out the driving forces
of population variation the rationale of abiotic parameters such as pH values, temperature, or concen-
trations of chemicals can be evaluated. By using gate information obtained from flowCyBar [Schumann
et al., 2014] influences coming from certain subpopulations or subcommunities can also be detected. It
needs to be stated that flowCHIC requires datasets that are highly calibrated by using e.g. fuorescent
beads. Every shift in the adjustment of a cytometer will be discovered using flowCHIC and will have an
influence on the outcome. It is also important that for every sample the same number of cells is measured.
flowCHIC can be used for any cytometric dataset. The strength of the tool lies in its easy application,
especially if big datasets needs to be evaluated and its nearly automatic, person-independent application.
The tool provides trends in community or population dynamics or informs on stability of cell systems.

1

2 Overview
Creation of images from flow cytometric raw data The packages flowCore and ggplot2 are used

for creating histogram images of flow cytometric raw data.

Subsets of the histogram images A subset of each histogram is created to define the area containing
only relevant information and exclude the noise.

Image analysis with flowViz and EBImage The packages flowViz and EBImage are used for analysing
the subset histogram images.

Similarity calculation The similarities of the images are calculated using nonmetric multidimensional
scaling (NMDS).

3 Details

3.1 Creation of images from flow cytometric raw data
flowCore and ggplot2 are used for creating images of flow cytometric raw data. After the folder containing
the FCS files is set as working directory a list with all filenames is saved. The channels of interest are
selected and the histogram images are created and saved as PNG image files in a new subfolder called
"chic_images". Note that only two channels are used for this approach. For the next step you need to
look at the created images.

3.2 Subsets of the histogram images
Typically, cytometric measurements of microbial communities contain instrumental noise for instrumen-
tal adjustment. For the comparism of the samples the noise is not relevant. Ensuing from the created
histogram images a rectangular region is defined to cut out the noise from each image. It is very im-
portant to set the boundaries correct which means that the selected region should only include relevant
information. The boundaries are only set once so you should check if they are suitable for every image.
The resulting subset images are saved as PNG image files in a new subfolder called "chic_subset". To
check the boundaries look at the images located in this subfolder.

3.3 Image analysis with flowViz and EBImage
At first, a list with all filenames of the subset histogram images is saved. The overlap and XOR images
are calculated, the areas and intensities are returned and can be saved as text files. The overlap area
describes the number of informative pixels of two images. The XOR operation highlights the differences
between two images. This procedure is described more detailed in [Koch et al., 2013].

3.4 Similarity calculation
The similarities found in the processed images are calculated using nonmetric multidimensional scaling.
Therefore, a dissimilarity matrix is calculated based on the intensities of the XOR image and the overlap
area fo every image pair. The results are shown as an NMDS plot. In addition, a cluster analysis can be
performed to reveal samples with high similarities. For additional information see [Koch et al., 2013].

4 Example data
For the next sections the FCS files that are included to the package and two datasets from the CHIC
paper [Koch et al., 2013] will serve as examples. These datasets are published on the FlowRepository
online database. They can be downloaded from https://flowrepository.org/id/FR-FCM-ZZ42 and from
http://flowrepository.org/id/FR-FCM-ZZ43. See the CHIC paper for more information about these
datasets. At the bottom left corner you can download the FCS files of the corresponding dataset. For
using the datasets save all the FCS files of one dataset in one folder. The FCS files that are included to
the package are selected from the first dataset.

2

https://flowrepository.org/id/FR-FCM-ZZ42
http://flowrepository.org/id/FR-FCM-ZZ43

5 Methods
This section gives an overview of the methods that are included in the package. For all parts the FCS
files that are included to the package are used for demonstration. In the last part the results are also
shown for the two downloadable datasets (see above).

5.1 Creating histogram images
First of all the package has to be loaded in R.

> # Load package
> library(flowCHIC)

For creating the histogram images the folder containing the FCS files should be set as working directory
and a list with the filenames of all FCS files should be saved. In this example it is also shown how to
create this list if you want to use the FCS files that are attached to this package. These files are also used
for the next parts. Then the X parameter (channel 1) and Y parameter (channel 2) used for creating the
histogram images have to be set. You can check the names of the parameters/channels of your FCS files
in the following way:

> # Set the working directory to the path where your FCS files are located
> # Type the path into the quotes
> setwd("")
> # Or in Windows use
> setwd(choose.dir(getwd(), "Choose the folder containing the FCS files"))
> # Get a list of the filenames of the FCS files located in your working directory
> files <- list.files(getwd(),full=TRUE,pattern="*.fcs")
> # Get a list of the filenames of the FCS files included to the package
> files <- list.files(system.file("extdata",package="flowCHIC"),
+ full=TRUE,pattern="*.fcs")
> # Read the first FCS file as flowFrame
> frame <- read.FCS(files[1],alter.names=TRUE,transformation=FALSE)
> # Get a list of the parameter/channel names
> unname(frame@parameters@data$name)

Both parameters/channels are used for every FCS file. The default parameters/channels are "FS.Log"
and "FL.4.Log". Note that the FCS files included to this package only contain the channels "FS.Log"
and "FL.4.Log". Maybe there are some warning messages printed to the R console. They have no effect
on the results.

> # Create the histogram images using default parameters
> fcs_to_img(files)
> # Create the histogram images using different channels
> # Not working for the FCS files attached to the package
> fcs_to_img(files,ch1="SS.Log",ch2="FL.1.Log")

A new subfolder called "chic_images" is created in the working directory containing the histogram images
of all FCS files.

5.2 Creating subsets of histogram images
For creating the subsets the list with the filenames of the FCS files from section 5.1 is used again. Now, a
rectangular region is defined to cut out the noise from each image. Therefore, the parameters "x_start"
(default=0), "x_end" (default=4095), "y_start" (default=0) and "y_end" (default=4095) are used to
set the boundaries. The default values of the rectangular gate represent the whole histogram image
if the values of the parameters/channels are stored on log scale. Again, the parameters/channels for
creating the subset images are set. They should be equal to the parameters/channels used for creating
the histogram images in section 5.1.

3

> # Create the histogram image subsets using default parameters
> img_sub(files,ch1="FS.Log",ch2="FL.4.Log")

A new folder called "chic_subset" containing the subset histogram images of all FCS files is created in
the working directory.

The boundaries are changed to create subset images that only contain relevant information (see section
3.2). The parameters "xbin" and "maxv" can be changed in this part, too. "xbin" describes the number
of bins within the histogram and can be seen as the resolution of the data values. The default value
(128) is taken over from [Koch et al., 2013]. The default value will probably work for most measurements
recorded under similar settings (diverse microbial community, 200.000 to 250.000 recorded events). For
very different applications see [Koch et al., 2013] for a possible way of optimizing the resolution. "maxv"
describes the maximal value of the expressions within the histogram that is set to the highest color value
(black). This parameter depends on the data and may be adapted. Usually, we are working with samples
containing a very high number of events and very different distributions regarding to the abundance of a
subcommunity. The default value (200) works well in this case. If the distributions are more similar this
value should be decreased. In practice, values between 130 and 200 revealed the best results.

> # Create the histogram images using different boundaries for the x/y axis
> # and a different value for the maximal value set to black
> # These values work well for the first downloadable dataset and
> # the FCS files included to the package
> img_sub(files,x_start=200,x_end=3500,y_start=1000,y_end=3000,maxv=160)

5.3 Image analysis
At first, save the filenames of all subset image files as a list. The next method calculates the overlap and
XOR images for each combination of every image from this list. To continue with the next part save the
returned values as a list called "results".

> # Save the names of all subset images as a list
> subsets <- list.files(path=paste(getwd(),"chic_subset",sep="/"),full=TRUE,pattern="*.png")
> # Calculate overlap and XOR images and write values to two new files
> results<-calculate_overlaps_xor(subsets)

You can also save the calculated values to text files.

> # Save the names of all subset images as a list
> subsets <- list.files(path=paste(getwd(),"chic_subset",sep="/"),full=TRUE,pattern="*.png")
> # Calculate overlap and XOR images and write values to two new files
> calculate_overlaps_xor(subsets,verbose=TRUE)

Two files called "Results_overlaps.txt" and "Results_xor.txt" are created in the working directoy.
The file "Results_overlaps.txt" contains the number of pixel within the overlapping area for each
combination of every subset histogram image. The file "Results_xor.txt" contains the sum of all pixel
values of the XOR images for each combination of every subset histogram image. These are the same
values that are returned and saved to the list "results" in the example before.

4

5.4 Calculating the similarities
The last part includes the calculation of the similarities found in the histogram images of cytometric
data. NMDS (nonmetric multidimensional scaling) is a mathematical technique to visualize the distances
between the samples. The distances within the plot are used to be in accordance with the dis-/similarities
of the respective samples. For more details see [Koch et al., 2013]. After finishing the previous part you
can use the values saved to the returned list called "results" or you can read the created text files in R.
Use the retuned values to show the similarities of these 3 samples. A NMDS plot is displayed using the
names of the samples as data point texts. By default the plotting symbols are black circles. The position
of the text is below the data points. The order and the number of the samples is printed to the R console.

> # Show a NMDS plot of the samples
> plot_nmds(results$overlap,results$xor)

If you saved the values as text files you first have to read them in R.

> # Type the filename of the overlap data (including extension) into the quotes
> Results_overlaps<-read.table("Results_overlaps.txt",header=TRUE,sep="\t")
> # Type the filename of the XOR data (including extension) into the quotes
> Results_xor<-read.table("Results_xor.txt",header=TRUE,sep="\t")

Then you can use them to to create the NMDS plot as well.

> # Show a NMDS plot of the samples
> plot_nmds(Results_overlaps,Results_xor)

The attached datasets Results_overlaps and Results_xor contain the same values and are used to
show the result.

The content of Results_overlaps looks as follows:

Label Area
overlap_BCK_30_Sep_11_21_&_BCK_30_Sep_11_30.png 51941
overlap_BCK_30_Sep_11_21_&_BCK_30_Sep_11_77.png 51625
overlap_BCK_30_Sep_11_30_&_BCK_30_Sep_11_77.png 50736

Table 1: Content of Results_overlaps

The content of Results_xor looks as follows:

Label IntDen
overlap_BCK_30_Sep_11_21_&_BCK_30_Sep_11_30.png 390644010
overlap_BCK_30_Sep_11_21_&_BCK_30_Sep_11_77.png 347357340
overlap_BCK_30_Sep_11_30_&_BCK_30_Sep_11_77.png 313110630

Table 2: Content of Results_xor

5

> # Load datasets
> data(Results_overlaps)
> data(Results_xor)
> # Show a NMDS plot of the samples
> plot_nmds(Results_overlaps,Results_xor)

−40 −20 0 20 40

−2
0

−1
0

0
10

20
30

NMDS1

N
M

D
S

2

BCK_30_Sep_11_21

BCK_30_Sep_11_30

BCK_30_Sep_11_77

Figure 1: NMDS plot of the samples included to the package using default parameters

Instead of the default parameters the plotting symbols can be changed e.g. to red triangles. The text
can be set above the data points and a title can be added to the plot.

6

> # Change default parameters
> plot_nmds(Results_overlaps,Results_xor,main="NMDS plot",pos=3,pch=2,col_nmds="red")

−40 −20 0 20 40

−2
0

−1
0

0
10

20
30

NMDS plot

NMDS1

N
M

D
S

2

BCK_30_Sep_11_21

BCK_30_Sep_11_30

BCK_30_Sep_11_77

Figure 2: NMDS plot of the samples included to the package using different parameters

In the following the datasets Results_overlaps_mix, Results_xor_mix, Results_overlaps_incol and
Results_xor_incol are used for demonstration and the influence of different parameter settings of the
method on the resulting NMDS plot (e.g. groups, colors). The 4 datasets are attached to the package.

Results_overlaps_mix and Results_xor_mix contain the results after performing the last three steps
on the first downloadable dataset. Results_overlaps_incol and Results_xor_incol contain the re-
sults after performing the last three steps on the second downloadable dataset. For the second dataset
the boundaries for creating the subset histogram images were adapted. The contents of these datasets
(excerpts) are shown before the plots.

7

> # Load dataset
> data(Results_overlaps_mix)
> # Show data (first five lines)
> Results_overlaps_mix[1:5,]

Label Area
1 overlap_BCK_30_Sep_11_100_&_BCK_30_Sep_11_101.png 46359
2 overlap_BCK_30_Sep_11_100_&_BCK_30_Sep_11_102.png 46526
3 overlap_BCK_30_Sep_11_100_&_BCK_30_Sep_11_103.png 46577
4 overlap_BCK_30_Sep_11_100_&_BCK_30_Sep_11_104.png 46629
5 overlap_BCK_30_Sep_11_100_&_BCK_30_Sep_11_105.png 46573

> # Load dataset
> data(Results_xor_mix)
> # Show data (first five lines)
> Results_xor_mix[1:5,]

Label IntDen
1 xor_BCK_30_Sep_11_100_&_BCK_30_Sep_11_101.png 142388910
2 xor_BCK_30_Sep_11_100_&_BCK_30_Sep_11_102.png 322747110
3 xor_BCK_30_Sep_11_100_&_BCK_30_Sep_11_103.png 325748070
4 xor_BCK_30_Sep_11_100_&_BCK_30_Sep_11_104.png 325175130
5 xor_BCK_30_Sep_11_100_&_BCK_30_Sep_11_105.png 275680440

> # Plot
> plot_nmds(Results_overlaps_mix,Results_xor_mix)

−30 −20 −10 0 10 20 30

−
2

0
−

1
0

0
1

0

NMDS1

N
M

D
S

2

BCK_30_Sep_11_100
BCK_30_Sep_11_101

BCK_30_Sep_11_102BCK_30_Sep_11_103
BCK_30_Sep_11_104

BCK_30_Sep_11_105BCK_30_Sep_11_106BCK_30_Sep_11_107

BCK_30_Sep_11_18
BCK_30_Sep_11_19BCK_30_Sep_11_20

BCK_30_Sep_11_21

BCK_30_Sep_11_22

BCK_30_Sep_11_23

BCK_30_Sep_11_24

BCK_30_Sep_11_25

BCK_30_Sep_11_26

BCK_30_Sep_11_27

BCK_30_Sep_11_28

BCK_30_Sep_11_29

BCK_30_Sep_11_30

BCK_30_Sep_11_31
BCK_30_Sep_11_32

BCK_30_Sep_11_33

BCK_30_Sep_11_34

BCK_30_Sep_11_35

BCK_30_Sep_11_36
BCK_30_Sep_11_37
BCK_30_Sep_11_38

BCK_30_Sep_11_39
BCK_30_Sep_11_40
BCK_30_Sep_11_41

BCK_30_Sep_11_42
BCK_30_Sep_11_43BCK_30_Sep_11_44

BCK_30_Sep_11_45
BCK_30_Sep_11_46BCK_30_Sep_11_47

BCK_30_Sep_11_48

BCK_30_Sep_11_49

BCK_30_Sep_11_50

BCK_30_Sep_11_51
BCK_30_Sep_11_52

BCK_30_Sep_11_53

BCK_30_Sep_11_54BCK_30_Sep_11_55BCK_30_Sep_11_56

BCK_30_Sep_11_57BCK_30_Sep_11_58BCK_30_Sep_11_59

BCK_30_Sep_11_60
BCK_30_Sep_11_61

BCK_30_Sep_11_62

BCK_30_Sep_11_63
BCK_30_Sep_11_64
BCK_30_Sep_11_65

BCK_30_Sep_11_66BCK_30_Sep_11_67

BCK_30_Sep_11_68 BCK_30_Sep_11_69
BCK_30_Sep_11_70
BCK_30_Sep_11_71

BCK_30_Sep_11_72

BCK_30_Sep_11_73

BCK_30_Sep_11_74

BCK_30_Sep_11_75BCK_30_Sep_11_76
BCK_30_Sep_11_77

BCK_30_Sep_11_78
BCK_30_Sep_11_79BCK_30_Sep_11_80

BCK_30_Sep_11_81
BCK_30_Sep_11_82BCK_30_Sep_11_83BCK_30_Sep_11_84

BCK_30_Sep_11_85

BCK_30_Sep_11_86

BCK_30_Sep_11_87BCK_30_Sep_11_88
BCK_30_Sep_11_89BCK_30_Sep_11_90

BCK_30_Sep_11_91BCK_30_Sep_11_92BCK_30_Sep_11_93BCK_30_Sep_11_94BCK_30_Sep_11_95BCK_30_Sep_11_96BCK_30_Sep_11_97BCK_30_Sep_11_98

BCK_30_Sep_11_99

Figure 3: NMDS plot of the samples of the first dataset using default parameters

8

> # Load dataset
> data(Results_overlaps_incol)
> # Show data (first five lines)
> Results_overlaps_incol[1:5,]

Label Area
1 overlap_S1_&_S10.png 48168
2 overlap_S1_&_S11.png 48114
3 overlap_S1_&_S12.png 50115
4 overlap_S1_&_S13.png 52019
5 overlap_S1_&_S14.png 50615

> # Load dataset
> data(Results_xor_incol)
> # Show data (first five lines)
> Results_xor_incol[1:5,]

Label IntDen
1 xor_S1_&_S10.png 152087580
2 xor_S1_&_S11.png 153945000
3 xor_S1_&_S12.png 152040870
4 xor_S1_&_S13.png 135726840
5 xor_S1_&_S14.png 151484040

> # Plot
> plot_nmds(Results_overlaps_incol,Results_xor_incol)

−10 0 10 20

−1
5

−1
0

−5
0

5
10

NMDS1

N
M

D
S2

S1

S10

S11

S12

S13

S14

S15
S16

S17

S2

S3

S4

S5

S6

S7

S8 S9

Figure 4: NMDS plot of the samples of the second dataset using default parameters

9

The samples can be classified into groups manually. Therefore, every sample has to be assigned to one
group. In this example 17 samples are assigned to three different groups using the data frame groups.
The data frame looks as follows:

> # Create data frame with group assignments
> groups<-data.frame("groups"=c(15,19,19,19,15,22,19,15,22,15,15,22,22,22,22,19,19))

groups
1 15
2 19
3 19
4 19
5 15
6 22
7 19
8 15
9 22
10 15
11 15
12 22
13 22
14 22
15 22
16 19
17 19

Table 3: Group assignments

This data frame has seventeen entries and describes the assignment of every sample to one group (three
groups overall in this example). Every sample is assigned to one value (1-25) so the same value means
the same group. Up to 25 groups are possible (as only 25 plotting symbols are available).

It is also possible to read a text file containing as many lines as samples whereas every line contains
one value that assigns the sample to the respective group. The samples can be grouped by e.g. treat-
ment, day of sampling or personal preferences. Always make sure to check the order of the samples. The
order and the number of the samples is printed to the R console after calling the plot_nmds() method.

10

> # Plot
> plot_nmds(Results_overlaps_incol,Results_xor_incol,group=groups)

−10 0 10 20

−1
5

−1
0

−5
0

5
10

NMDS1

N
M

D
S2

S1

S10

S11

S12

S13

S14

S15
S16

S17

S2

S3

S4

S5

S6

S7

S8 S9

15
19
22

Figure 5: NMDS plot of the samples of the second dataset with group assignment

In addition, abiotic parameters/gate information can be added to the NMDS plot suggesting the differ-
ences found within the plot. In this example the attached dataset abiotic_incol is used for demonstra-
tion. This dataset contains experimental data for every sample. The content looks as follows (excerpt):

> # Load dataset
> data(abiotic_incol)
> # Show data (first five lines)
> abiotic_incol[1:5,]

sample acetate methanol pH inoculumA inoculumB
1 S1 1 0 7 1 0
2 S10 0 1 8 1 0
3 S11 0 1 8,5 1 0
4 S12 0 1 7,5 1 0
5 S13 1 0 7,5 1 0

11

It is important that the order and the number of the lines are identical to the order and the number of
the samples printed in R. Otherwise, the output will be wrong since association of abiotic data with their
samples will fail. The significance level p is set to 0.05 and the color used for plotting is set to "magenta"
by default. If p is changed to 1 all abiotic parameters will be shown.

> # Plot
> plot_nmds(Results_overlaps_incol,Results_xor_incol,
+ abiotic=abiotic_incol[,-1])

−10 0 10 20

−1
5

−1
0

−5
0

5
10

NMDS1

N
M

D
S2

S1

S10

S11

S12

S13

S14

S15
S16

S17

S2

S3

S4

S5

S6

S7

S8 S9

acetate

methanol

inoculumA

inoculumB

Figure 6: NMDS plot of the samples of the second dataset with abiotic parameters

12

Grouping and plotting abiotic parameters/gate information can be combined in one plot.

> # Plot
> plot_nmds(Results_overlaps_incol,Results_xor_incol,group=groups,abiotic=abiotic_incol[,-1])

−10 0 10 20

−1
5

−1
0

−5
0

5
10

NMDS1

N
M

D
S2

S1

S10

S11

S12

S13

S14

S15
S16

S17

S2

S3

S4

S5

S6

S7

S8 S9

15
19
22

acetate

methanol

inoculumA

inoculumB

Figure 7: NMDS plot of the samples of the second dataset with group assignment and abiotic parameters

13

Now, the legend is placed to the top right corner of the plot, the color of the arrows is changed to
"darkred" and the maximum p-value is set to 0.01. All abiotic parameters less or equal the maximum
p-value are added to the plot. Small variations are possible because the results of the NMDS plot vary
slightly everytime the method is called.

> # Plot
> plot_nmds(Results_overlaps_incol,Results_xor_incol,group=groups,
+ legend_pos="topright",abiotic=abiotic_incol[,-1],
+ p.max=0.01,col_abiotic="darkred")

−10 0 10 20

−1
5

−1
0

−5
0

5
10

NMDS1

N
M

D
S2

S1

S10

S11

S12

S13

S14

S15
S16

S17

S2

S3

S4

S5

S6

S7

S8 S9

15
19
22

Figure 8: NMDS plot of the samples of the second dataset with group assignment, abiotic parameters and changed plotting
parameters

14

In addition, dendrograms can be shown to reveal clusters (samples with high similarity) within the data.

> # Plot
> plot_nmds(Results_overlaps_incol,Results_xor_incol,show_cluster=TRUE,group=groups,
+ legend_pos="topright",abiotic=abiotic_incol[,-1],
+ p.max=0.01,col_abiotic="darkred")

S
1

6

S
1

5

S
8

S
9

S
1

0

S
1

1

S
1

4

S
1

2

S
1

7

S
4

S
5

S
6

S
7

S
1

3

S
1

S
2

S
3

1
8

2
2

2
6

3
0

Cluster Dendrogram

hclust (*, "average")
mat.dist

H
e

ig
h

t

−15 −10 −5 0 5 10 15 20

−
1

5
−

1
0

−
5

0
5

1
0

NMDS1

N
M

D
S

2
S1

S10
S11

S12

S13

S14

S15
S16

S17

S2

S3

S4

S5

S6

S7

S8 S9

15
19
22

inoculumA

inoculumB

Figure 9: NMDS plot of the samples of the second dataset with group assignment, abiotic parameters, changed plotting
parameters and cluster dendrogram

The results of the metaMDS method and the p-values of the abiotic parameters can also be printed to
the R console.

> # Plot and print results
> plot_nmds(Results_overlaps_incol,Results_xor_incol,show_cluster=TRUE,group=groups,
+ legend_pos="topright",abiotic=abiotic_incol[,-1],
+ p.max=0.01,col_abiotic="darkred",verbose=TRUE)

References
[Koch et al., 2013] Koch, C., Fetzer, I., Harms, H., and Müller, S. (2013). CHIC - an automated ap-

proach for the detection of dynamic variations in complex microbial communities. Cytometry Part A,
83(6):561–567.

[Koch et al., 2014a] Koch, C., Harms, H., and Müller, S. (2014a). Dynamics in the microbial cytome -
single cell analytics in natural systems. Current Opinion in Biotechnology, 27(0):134–141.

[Koch et al., 2014b] Koch, C., Müller, S., Harms, H., and Harnisch, F. (2014b). Microbiomes in bioenergy
production: From analysis to management. Current Opinion in Biotechnology, 27:65–72.

[Schumann et al., 2014] Schumann, J., Koch, C., Günther, S., Fetzer, I., and Müller, S. (2014). flowCy-
Bar: Analyze flow cytometric data. R package version 0.99.0.

15

	Introduction
	Overview
	Details
	Creation of images from flow cytometric raw data
	Subsets of the histogram images
	Image analysis with flowViz and EBImage
	Similarity calculation

	Example data
	Methods
	Creating histogram images
	Creating subsets of histogram images
	Image analysis
	Calculating the similarities

