CON (Conditional Quantile Normalization)

Kasper Daniel Hansen Zhijin Wu
khansen@jhsph.edu zhijin_wulbrown.edu

Modified: August 8, 2012. Compiled: October 30, 2025

Introduction

This package contains the CQN (conditional quantile normalization) method for normalizing RNA-
seq datasets. This method is described in [1].

> library(cqn)
> library(scales)

Data

As an example we use ten samples from Montgomery [2]. The data has been processed as described
in [1]. First we have the region by sample count matrix

> data (montgomery.subset)
> dim(montgomery.subset)

[1] 23552 10
> montgomery.subset[1:4,1:4]

NAO6985 NA06994 NAO7037 NA10847

ENSG0O0000000419 69 54 67 70
ENSG00000000457 53 37 27 41
ENSG00000000460 12 25 33 22
ENSG00000000938 168 270 140 103

> colnames (montgomery.subset)

[1] "NAO6985" "NA(06994"™ "NAO7037" "NA10847" "NA11920" "NA11918"
[7] "NA11931" "NA12003"™ "NAl12006™ "NA12287"

Because of (disc) space issues, We have removed all genes that have zero counts in all 10 samples.
Next we have the sizeFactors which simply tells us how deep each sample was sequenced:

> data(sizeFactors.subset)
> sizeFactors.subset[1:4]

NAO6985 NAO6994 NAO7037 NA10847
3107420 2388948 3087234 2852972

Finally, we have a matrix containing length and GC-content for each gene.

> data (uCovar)
> head (uCovar)

length gccontent

ENSG00000000419 1207 0.3976802
ENSG00000000457 2861 0.4606781
ENSG00000000460 4912 0.4338355
ENSG00000000938 3524 0.5749149
ENSG0O0000000971 8214 0.3613343
ENSG00000001036 2590 0.4312741

Note that the row ordering of the count matrix is the same as the row ordering of the matrix
containing length and GC-content and that the sizeFactor vector has the same column order as the
count matrix. We can formally check this

> stopifnot (all (rownames (montgomery.subset) == rownames (uCovar)))
> stopifnot (colnames (montgomery.subset) == names (sizeFactors.subset))
Normalization

The methodology is described in [1]. The main workhorse is the function cgn which fits the
following model
log, (RPM) = s(z) + s(log,(length))

where z is some covariate, s are smooth functions (specifically natural cubic splines with 5 knots),
and RPM are “reads per millions”. It is also possible to just fit a model like

log,(RPKM) = s(x)

2

In this model gene length is included as a known offset. This is done by using the cgn (1lengthMethod
= "fixed"). If this is done, and 1lengths is equal to 1000, it is equivalent to not using gene
length at all.

The basic call to cqn is relatively easy, we need the count matrix, a vector of lengths, a vector of
GC content and a vector of sizeFactors. Make sure that they all have the same ordering.

> cgn.subset <- cgn(montgomery.subset, lengths = uCovarSlength,

+ x = uCovarSgccontent, sizeFactors = sizeFactors.subset,
+ verbose = TRUE)

RO fit

SQON

> cqgn.subset

Call:
cgn (counts = montgomery.subset, x = uCovar$Sgccontent, lengths = uCovar$len
sizeFactors = sizeFactors.subset, verbose = TRUE)

Object of class 'cgn' with
23552 regions
10 samples

fitted using smooth length

This normalized matrix is similar, but not equivalent, to the data examined in [1]. The main
differences are (1) in [1] we normalize 60 samples together, not 10 and (2) we have removed all
genes with zero counts in all 10 samples.

We can examine plots of systematic effects by using cqnplot. The n argument refers to the
systematic effect, n=1 is always the covariate specified by the x argument above, while n=2 is
lengths.

> par (mfrow=c(1,2))
> cqgnplot (cgn.subset, n = 1, xlab = "GC content"”, 1ty = 1, ylim = c(1,7))
> cqgnplot (cgn.subset, n = 2, xlab = "length", 1ty = 1, ylim = c(1,7))

N~ N~ —
o o -
0 — 0 —
E - E -
o o
o — o
AN o
- 1 1 1 1 1 - 1 11 1 1
| | 1 | | | | | | I |
03 04 05 06 07 038 -4 -2 0 2 4
GC content length

The normalized expression values are

> RPKM.cgn <—- cgn.subsetSy + cgn.subsetSoffset
> RPKM.cgn[1:4,1:4]

NAO6985 NA06994 NAO7037 NA10847
.762238 5.569121 5.547639 5.976197
.436361 4.109930 3.394016 4.139084
.604267 3.444244 3.776973 3.068567
.152196 6.084587 4.698017 4.281492

ENSG0O0000000419
ENSG00000000457
ENSG00000000460
ENSG00000000938

g N O
o W b U

These values are on the log,-scale.

We can do a MA plot of these fold changes, and compare it to fold changes based on standard
RPKM. First we compute the standard RPKM (on a log, scale):

> RPM <- sweep (logZ2 (montgomery.subset + 1), 2, log2(sizeFactors.subset/10"6
> RPKM.std <- sweep (RPM, 1, logZ2(uCovarSlength / 1073))

We now look at differential expression between two groups of samples. We use the same grouping
as in [1], namely

> grpl <- c("NA06985", "NA06994", "NAO7037", "NA10847", "NAI1920")
> grp2 <- c("NA11918", "NA11931", "NA12003", "NA12006", "NA12287")

We now do an MA-plot, but we only choose to plot genes with average standard log,-RPKM of
log,(5) or greater, and we also form the M and A values:

> whGenes <- which (rowMeans (RPKM.std) >= 2 & uCovarSlength >= 100)

> M.std <- rowMeans (RPKM.std[whGenes, grpl]) - rowMeans (RPKM.std[whGenes,
> A.std <- rowMeans (RPKM.std[whGenes,])

> M.cqn <- rowMeans (RPKM.cgn[whGenes, grpl]) - rowMeans (RPKM.cqn[whGenes,
> A.cqn <—- rowMeans (RPKM.cqgn[whGenes,])

Now we do the MA plots, with alpha-blending

> par (mfrow = c(1,2))

> plot (A.std, M.std, cex = 0.5, pch = 16, xlab = "A", ylab = "M",

+ main = "Standard RPKM", ylim = c(-4,4), xlim = c(0,12),

+ col = alpha ("black", 0.25))

> plot (A.cgn, M.cgn, cex = 0.5, pch = 16, xlab = "A", ylab = "M",

+ main = "CQON normalized RPKM", ylim = c(-4,4), xlim = c(0,12),
+ col = alpha("black", 0.25))

Standard RPKM CQN normalized RPKM

< <
Al — o
S o ¢ S o
[qN (o
¥ - ¥ -

[| I I [[| [| I I [[|

0O 2 4 6 8 10 12 0O 2 4 6 8 10 12

A A

We can also color the genes according to whether they have high/low GC-content. Here one needs
to be careful, because of overplotting. One solution is to leave out all genes with intermediate GC
content. We define high/low GC content as the 10% most extreme genes:

par (mfrow = c(1,2))

gccontent <- uCovarSgccontent [whGenes]

whHigh <- which (gccontent > quantile (gccontent, 0.9))

whLow <- which (gccontent < quantile (gccontent, 0.1))

plot (A.std[whHigh], M.std[whHigh], cex = 0.2, pch = 16, xlab = "A",
ylab = "M", main = "Standard RPKM",

+ vV Vv Vv vV

g.

g.

+ ylim = c(-4,4), xl1im = c(0,12), col = "red")

> points (A.std[whLow], M.std[whLow], cex = 0.2, pch = 16, col = "blue'")
> plot (A.cgn[whHigh], M.cgn[whHigh], cex = 0.2, pch = 16, xlab = "A",
+ ylab = "M", main = "CQON normalized RPKM",
+ ylim = ¢(-4,4), xlim = c(0,12), col = "red")
> points (A.cgn[whLow], M.cqn[whLow], cex = 0.2, pch = 16, col = "blue")
Standard RPKM CQN normalized RPKM
< < -
Al o
S o - S o -
QA S QA S
¥ ¥
| | | | | | | | | | | | | |
0 2 4 6 8 10 12 0 2 4 6 8 10 12
A A

Note that genes/regions with very small counts should not be relied upon, even if the CQN nor-
malized fold change are big. They should be filtered out using some kind of statistical test, good
packages for this are DESeq[3] and edgeR[4, 5].

Import into edgeR

First we construct a DGEList. In the groups argument we use that the first 5 samples (columns)
in montgomery.subset is what we earlier called grpl and the last 5 samples (columns) are

grp2.

> library (edgeR)
> d.mont <- DGEList (counts = montgomery.subset, lib.size = sizeFactors.subs
+ group = rep(c("grpl", "grp2"), each = 5), genes = uCova

In this object we cannot (unfortunately, yet) also store the computed offsets. Since we will use
the offsets computed by cgn, there is no need to normalize using the normalization tools from
edgeR, such as calcNormFactors. Also, as is clearly described in the edgeR user’s guide, the
lib.size is unnecessary, since we plan to use the offsets computed from cgn.

6

However, we need to use the component glm.offset which is on the natural logarithmic scale
and also includes correcting for sizeFactors. It is possible to include the offset directly into
the DGEList, by post-processing the output like

> ## Not run
> d.montSoffset <- cgn.subsetSglm.offset

Using edgeR is well described in the user’s guide, and we refer to that document for further infor-
mation. The analysis presented below should be thought of as an example, and not necessarily the
best analysis of this data.

The first step is estimating the dispersion parameter(s). Several methods exists, such as est imateGLMCommonD
or estimateTagwiseDisp. We also need to setup a design matrix, which is particular simple

for this two group comparison. Further information about constructing design matrices may be

found in both the edgeR user’s guide and the /imma user’s guide.

> design <- model.matrix(~ d.montSsampleSgroup)
> d.montSoffset <- cgn.subsetSglm.offset
> d.mont.cqn <- estimateGLMCommonDisp (d.mont, design = design)

After fitting the dispersion parameter(s), we need to fit the model, and do a test for significance of
the parameter of interest. With this design matrix, there are two coefficients. The first coefficient is
just an intercept (overall level of expression for the gene) and it is (usually) not meaningful to test
for this effect. Instead, the interesting coefficient is the second one that encodes a group difference.

> efit.cqn <- glmFit (d.mont.cqgn, design = design)
> elrt.cqn <- glmLRT (efit.cqn, coef = 2)
> topTags (elrt.cgn, n = 2)

Coefficient: d.montS$Ssample$Sgroupgrp?

length gccontent logFC logCPM LR

ENSG00000211642 365 0.5835616 -10.28749 6.362869 126.1462

ENSG00000211660 411 0.5888078 -10.10868 5.999865 120.4701
PValue FDR

ENSG00000211642 2.856515e-29 6.727663e-25
ENSG00000211660 4.991361e-28 5.877826e-24

topTags shows (per default) the "top 10" genes. In this case, since we have biological replicates
and just a random group structure, we would expect no differentially expression genes. Instead we
get

> summary (decideTests (elrt.cqn))

d.mont$sampleSgroupgrp?2

Down 146
NotSig 22968
Up 438

significantly differentially expressed at an FDR (false discovery rate) of 5%. We may contrast this
with the result of not using cqn:

> d.mont.std <- estimateGLMCommonDisp (d.mont, design = design)
> efit.std <- glmFit (d.mont.std, design = design)

> elrt.std <- glmLRT (efit.std, coef = 2)
> summary (decideTests (elrt.std))

d.mont$sampleSgroupgrp?2

Down 146
NotSig 22968
Up 438

In this evaluation, it is not clear that using CQN is better.

What is arguably as important is that we achieve a much better estimation of the fold change using
cqn.

Question and Answers

Can I run cqn() on only 1 sample?

COQN is meant to normalize several samples together. It is not clear that it makes sense at all to use
this normalization technique on a single sample. But it is possible.

Can I use this for small RNA-seq (microRNAs)?

We do not have personal experience with using CQN to normalize small RNA sequencing data.
However, we believe it might be beneficial. As always, it is highly recommended to evaluate
whether it is necessary and beneficial.

One special aspect of small RNAs is that they all have very similar length. Fitting a model with a
smooth effect of gene length might very well lead to mathematical instability (you get an error).
This can be avoided by using the argument lengthMethod = "fixed" which just divides the
gene counts by the gene length instead of using a smooth function. Additionally, it may be coupled
with setting lengths = 1 which completely removes gene length from the model.

Could it be true that genes with higher GC content are higher expressed?

It has been suggested that genes that are either extremely high or extremely low expressed are
under some form of selection leading to “extreme” GC content. What CQN does, is making the
effect of GC content comparable across samples, and we show in [1] that this leads to improved
inference. It also flattens the effect of GC content on gene expression, but we believe this is better
than having the effect of GC content depend on the sample.

Does cqn remove batch effects?

No, unless a batch effect only (or mainly) affects your measurements through GC content. We
believe that the sample-specific effect of GC content on gene expression is a kind of batch effect,
but is unlikely to be the only one. CQN does normalize your RNA-seq data in the same way that
say quantile normalization normalizes microarray data, but such normalization does not remove
batch effects.

I don’t understand the difference between offset and glm.offset?

This comes from a historical error. In our paper, we use the quantity
> cqnSy + cgnSoffset

as the CQN-corrected estimated expression measures. However, the offset quantity is on the
wrong scale for inclusion into a GLM-type model (like edgeR or DEseq2). For this purpose,
use glm.offset. We have kept the original naming in order to achieve backwards compatibility.

SessionInfo

* R Under development (unstable) (2025-10-20 r88955), x86_64-pc—-1linux—gnu

e Locale: LC_CTYPE=en_ US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_ US.UTF-8,LC_IDENTIFICATION=C

* Time zone: America/New_York

e TZcode source: system (glibc)

* Running under: Ubuntu 24.04.3 LTS
* Matrix products: default

e BLAS: /home/biocbuild/bbs-3.23-bioc/R/1lib/1libRblas.so

LAPACK: /usr/1lib/x86_64—-1inux—gnu/lapack/liblapack.s0.3.12.0

Base packages: base, datasets, grDevices, graphics, methods, stats, utils

Other packages: cqn 1.57.0, edgeR 4.9.0, limma 3.67.0, mclust 6.1.1, scales 1.4.0

Loaded via a namespace (and not attached): MASS 7.3-65, Matrix 1.7-4,
MatrixModels 0.5-4, R6 2.6.1, RColorBrewer 1.1-3, SparseM 1.84-2, cli 3.6.5,
compiler 4.6.0, dichromat 2.0-0.1, farver 2.1.2, glue 1.8.0, grid 4.6.0, lattice 0.22-7,
lifecycle 1.0.4, locfit 1.5-9.12, norlmix 1.3-3, quantreg 6.1, rlang 1.1.6, splines 4.6.0,
statmod 1.5.1, survival 3.8-3, tools 4.6.0

References

[1] KD Hansen, RA Irizarry, and Z Wu. Removing technical variability in RNA-seq data us-
ing conditional quantile normalization. Biostatistics 2012, 13(2), 204-216. DOI: 10.1093/
biostatistics/kxr054.

[2] SB Montgomery et al. Transcriptome genetics using second generation sequencing in a Cau-
casian population. Nature 2010, 464, 773-777. DOI: . 10.1038/nature08903

[3] S Anders and W Huber. Differential expression analysis for sequence count data. Genome
Biology 2010, 11(10), R106. DOI: 10.1186/gb-2010-11-10-r106.

[4] MD Robinson, DJ McCarthy, GK Smyth. edgeR: a Bioconductor package for differential ex-
pression analysis of digital gene expression data. Bioinformatics 2010, 26(1), 139-140. DOI:
10.1093/bioinformatics/btp6l6.

[5] DJ McCarthy, Y Chen, GK Smyth. Differential expression analysis of multifactor RNA-Seq
experiments with respect to biological variation. Nucleic Acids Research 2012, 40, 4288- 4297.
DOI: 10.1093/nar/gks042.

10

http://dx.doi.org/10.1093/biostatistics/kxr054
http://dx.doi.org/10.1093/biostatistics/kxr054
http://dx.doi.org/10.1038/nature08903
http://dx.doi.org/10.1186/gb-2010-11-10-r106
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1093/nar/gks042

