Package 'mspms'

November 5, 2025

```
Type Package
Title Tools for the analysis of MSP-MS data
Version 1.3.0
Description This package provides functions for the analysis of data generated
      by the multiplex substrate profiling by mass spectrometry for proteases
      (MSP-MS) method. Data exported from upstream proteomics software is accepted
      as input and subsequently processed for analysis.
      Tools for statistical analysis, visualization, and interpretation of
      the data are provided.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2
Depends R (>= 4.4.0)
biocViews Proteomics, MassSpectrometry, Preprocessing
LazyData true
Imports QFeatures, limma, SummarizedExperiment, magrittr, rlang,
      dplyr, purrr, stats, tidyr, stringr, ggplot2, ggseqlogo,
      heatmaply, readr, rstatix, tibble, ggpubr
Suggests knitr, testthat (>= 3.0.0), downloadthis, DT, rmarkdown,
      BiocStyle, imputeLCMD
Config/testthat/edition 3
URL https://github.com/baynec2/mspms
BugReports https://github.com/baynec2/mspms/issues
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/mspms
git_branch devel
git_last_commit fa7b34d
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
```

2 Contents

Date/Publication 2025-11-04

Author Charlie Bayne [aut, cre] (ORCID:

<https://orcid.org/0000-0003-1870-5298>)

Maintainer Charlie Bayne

baynec2@gmail.com>

Contents

mspms-package
add_cleavages
add_peptide_data
all_possible_8mers_from_228_library
calculate_all_cleavages
calc_AA_count_of_motif
calc_AA_fc
calc_AA_motif_zscore
calc_AA_percent_difference
calc_AA_prop_of_motif
calc_limma_contrasts
calc_limma_design_matrix
calc_per_samples_library_nd
calc_sig_zscores
check_file_is_valid_fragpipe
check_file_is_valid_pd
check_file_is_valid_peaks
$check_peptide_library \dots \dots$
colData
consolidate_cleavages
count_cleavages_per_pos
cterm_cleavage
generate_report
icelogo_col_scheme
limma_stats
load_colData
log2fc_t_test
log2fc_t_test_data
mspms_log2fc
mspms_tidy
mspms_tidy_data
mspms_t_tests
nterm_cleavage
peaks_prepared_data
peptide_library
plot_all_icelogos
plot_cleavages_per_pos
plot_heatmap
plot_icelogo
plot_nd_peptides

menme nockoga	2
mspms-package	J

plot_pca	26
plot_qc_check	27
plot_time_course	28
plot_volcano	29
prepared_to_qf	29
prepare_fc	30
prepare_for_PCA	31
prepare_fragpipe	31
prepare_icelogo_data	32
prepare_pd	33
prepare_peaks	34
prepare_qc_check_data	35
prepare_sig_p_dif	35
processed_qf	36
process_qf	37
remaining_cd_names	37
rlog2	38
%>%	38
	20
	39

mspms-package

mspms: Tools for the analysis of MSP-MS data

Description

Index

This package provides functions for the analysis of data generated by the multiplex substrate profiling by mass spectrometry for proteases (MSP-MS) method. Data exported from upstream proteomics software is accepted as input and subsequently processed for analysis. Tools for statistical analysis, visualization, and interpretation of the data are provided.

Author(s)

Maintainer: Charlie Bayne <baynec2@gmail.com> (ORCID)

See Also

Useful links:

- https://github.com/baynec2/mspms
- Report bugs at https://github.com/baynec2/mspms/issues

4 add_peptide_data

add_cleavages

add_cleavages

Description

Adds cleavage information to a tibble by wraping the n_term_cleavage and c_term_cleavage functions into a consolidated function.

Usage

```
add_cleavages(joined_with_library, n_residues = 4)
```

Arguments

joined_with_library

a tibble containing columns named "peptide", "library_match_sequence", and

"library_real_sequence".

n_residues the number of residues to the left and right of the cleavage site to include in the

output.

Value

a tibble with cleavage information added.

add_peptide_data

add_peptide_data

Description

adds peptide information for every peptide in the data.

Usage

```
add_peptide_data(tibble, qf)
```

Arguments

tibble

tibble you would like to add peptide info to. Must have column named peptide

qf

a QFeatures object with rowData for peptides. cleavage_seq, cleavage_pos, and

cleavage_type.

Value

a tibble with column named peptide.

all_possible_8mers_from_228_library

all_possible_8mers_from_228_library All possible 8mers from the standard (as of 26April2024) 228 MSP-MS peptide library (This is equivalent to the result of mspms::calculate_all_cleavages(mspms::peptide_library\$real_cleavage_seq,n=4)) vector of the 14 AA peptides used in the library.

Description

all_possible_8mers_from_228_library All possible 8mers from the standard (as of 26April2024) 228 MSP-MS peptide library (This is equivalent to the result of mspms::calculate_all_cleavages(mspms::peptide_library\$real vector of the 14 AA peptides used in the library.

Usage

```
all_possible_8mers_from_228_library
```

Format

'all_possible_8mers_from_228_library' A vector with 2964 entries

Source

<standard peptide library used with MSP-MS method in the O'Donoghue lab as of 26April2024>

calculate_all_cleavages

calculate_all_cleavages calculate all possible cleavages for a defined peptide library containing peptides of the same length.

Description

calculate_all_cleavages calculate all possible cleavages for a defined peptide library containing peptides of the same length.

Usage

```
calculate_all_cleavages(peptide_library_seqs, n_AA_after_cleavage = 4)
```

Arguments

peptide_library_seqs

The sequences of each peptide in the peptide library. They should all be the same length.

n_AA_after_cleavage

The number of AA after (and before) the cleavage site to consider.

6 calc_AA_fc

Value

a vector of all the possible cleavages for the peptide library sequences

Examples

```
calculate_all_cleavages(mspms::peptide_library$library_real_sequence,
    n_AA_after_cleavage = 4
)
```

```
calc_AA_count_of_motif
```

calc_AA_count_of_motif

Description

Calculate the counts of amino acids at each position of a motif for all the sequences in a vector.

Usage

```
calc_AA_count_of_motif(cleavage_motif)
```

Arguments

cleavage_motif a vector of cleavage motifs

Value

a matrix of counts

```
calc_AA_fc
```

calc_AA_fc

Description

Calculate the fold change of each amino acid by position.

Usage

```
calc_AA_fc(experimental_prop_matrix, background_prop_matrix, sig_zscores)
```

Arguments

```
experimental_prop_matrix
```

a matrix of the experimental proportions (from your vector of cleavage sequences) at each position.

```
background_prop_matrix
```

a matrix of the background proportions of AAs at each position

sig_zscores a tibble of the significant zscores.

calc_AA_motif_zscore 7

Value

a matrix

```
calc_AA_motif_zscore calc_AA_motif_zscore
```

Description

Calculate the Z score for the amino acids at each position

Usage

```
calc_AA_motif_zscore(
  background_count_matrix,
  background_prop_matrix,
  experimental_count_matrix,
  experimental_prop_matrix
)
```

Arguments

Value

a data frame of Zscores for each amino acid at each position.

```
calc\_AA\_percent\_difference \\ calc\_AA\_percent\_difference
```

Description

Calculate the percent difference between a matrix of background proportions and a matrix of experimentally observed proportions.

Usage

```
calc_AA_percent_difference(background_prop_matrix, experimental_prop_matrix)
```

Arguments

```
background_prop_matrix
```

a proportion matrix of amino acids per position from background cleavage sequences

experimental_prop_matrix

a proportion matrix of amino acids per position from experimental cleavage sequences

Value

a data frame of percent differences

```
{\tt calc\_AA\_prop\_of\_motif} \ \ {\it calc\_AA\_prop\_of\_motif}
```

Description

Calculate the proportion of amino acids at each position in a vector of motifs.

Usage

```
calc_AA_prop_of_motif(count_matrix)
```

Arguments

count_matrix this is a matrix of the counts of cleavage motifs

Value

a matrix with proportions of counts.

calc_limma_contrasts 9

```
calc_limma_contrasts calc_limma_contrasts
```

Description

Calculates limma contrasts given colData. The contrasts returned are pairwise relative to T0 for each timepoint assayed.

Usage

```
calc_limma_contrasts(colData, design_mat)
```

Arguments

colData colData from mspms experiment

design_mat as returned by calc_limma_design_matrix

Value

a contrast matrix

```
calc\_limma\_design\_matrix\\ calc\_limma\_design\_matrix
```

Description

Calculates a limma compatible design matrix for mspms data.

Usage

```
calc_limma_design_matrix(colData, norm_data)
```

Arguments

colData colData with condition and time variables as factors norm_data normalized data from QFeatures object to use

Value

a model matrix

10 calc_sig_zscores

```
calc_per_samples_library_nd
```

calc_per_samples_library_nd Calculate the percentage of samples each library_id peptide was not detected in.

Description

calc_per_samples_library_nd Calculate the percentage of samples each library_id peptide was not detected in.

Usage

```
calc_per_samples_library_nd(
  processed_qf,
  peptide_library_ids = mspms::peptide_library$library_id
)
```

Arguments

processed_qf

a QFeatures object with a SummarizedExperiment named "peptides". Intended to be prepared by one of the pre-processing prepare_x_data functions of the mspms R package.

peptide_library_ids

a character vector containing the names of the library_ids

Value

a tibble containing percentage of samples each library id was detected in, both as full length, and as cleavage products.

calc_sig_zscores

calc_sig_zscores Determine which Zscores are significant at the given alpha for a matrix of scores

Description

calc_sig_zscores Determine which Zscores are significant at the given alpha for a matrix of scores

Usage

```
calc_sig_zscores(zscores, pval = 0.05)
```

Arguments

```
zscores = a data frame of zscores
```

pval = p value threshold for significance. Default is 0.05

Value

a tibble of significant zscores

```
check_file_is_valid_fragpipe
```

check_file_is_valid_fragpipe Check to make sure the input data looks like the expected FragPipe file.

Description

check_file_is_valid_fragpipe Check to make sure the input data looks like the expected FragPipe file.

Usage

```
check_file_is_valid_fragpipe(fragpipe_data)
```

Arguments

fragpipe_data combined_peptide.tsv file generated by FragPipe read into R.

Value

a stop command with a informative message if file looks unexpected. otherwise, nothing.

```
check_file_is_valid_pd
```

check_file_is_valid_pd Check to make sure the input data looks like the expected ProteomeDiscoverer file.

Description

check_file_is_valid_pd Check to make sure the input data looks like the expected ProteomeDiscoverer file.

Usage

```
check_file_is_valid_pd(pd_data)
```

Arguments

pd_data

PeptideGroups.txt file generated by ProteomeDiscover and read into R.

Value

a stop command with a informative message if file looks unexpected. otherwise, nothing.

```
check_file_is_valid_peaks
```

check_file_is_valid_peaks Check to make sure the input data looks like the expected PEAKS file.

Description

check_file_is_valid_peaks Check to make sure the input data looks like the expected PEAKS file.

Usage

```
check_file_is_valid_peaks(peaks_data)
```

Arguments

peaks_data

protein-peptides-lfq.csv file generated by PEAKS read into R.

Value

a stop command with a informative message if file looks unexpected. otherwise, nothing.

```
check\_peptide\_library \quad check\_peptide\_library
```

Description

```
check_peptide_library
```

Usage

```
check_peptide_library(peptide_library)
```

Arguments

```
peptide_library
```

Value

an informative error if the column names of the peptide library are unexpected. Otherwise nothing.

colData 13

colData a ssociated with an experiment to proc

Description

colData A tibble containing the colData associated with an experiment to proc

Usage

colData

Format

```
## 'colData' A tibble: 42 \times 4
```

Source

colData corresponding to cathepsin A-D MSP-MS experiment

```
consolidate_cleavages consolidate_cleavages
```

Description

Consolidate the n term and c term cleavage data. The nterm and cterm cleavage information are consolidated into a single column and rows

Usage

```
consolidate_cleavages(cleavage_added_data)
```

Arguments

Value

a tibble with the cleavage information combined into a single column and rows with no cleavage information or double information removed.

14 cterm_cleavage

Description

Count the number of cleavages per position

Usage

```
count_cleavages_per_pos(data, peptide_library = mspms::peptide_library)
```

Arguments

data

a tibble containing columns named peptide, cleavage_pos, condition, and time. Other column names can be included.

Value

```
a ggplot2 object
```

cterm_cleavage

cterm_cleavage

Description

Finding the cleavage sequences on the C terminus of a given peptide in reference to the peptide library it was derived from

Usage

```
cterm_cleavage(
  peptide_sequence,
  library_match_sequence,
  library_real_sequence,
  n_residues = 4
)
```

Arguments

```
peptide_sequence
```

the peptide sequence represented in single letter code. "_" denotes cleavage site.

generate_report 15

library_match_sequence

the sequence the peptide matches to with the proteomics search software used. Note, this may not be the true sequence of the peptide depending on how the library was constructed. For example, in the standard MSP-MS 228 member library, methionine has been replaced with norleucine (n). This was done because norleucine looks like methionine to a protease, but it cannot be oxidized. Norleucine's (n) mass is the same as leucine (L), so it is recognized by the proteomics software as L.

library_real_sequence

the sequence the peptide truly is. In the standard MSP_MS 228 member library, some of the amino acids recognize as leucine (L) are truly Norleucine (n).

n_residues the number of residues to the left and right of the cleavage event to return

Value

a tibble with the peptide sequence, cleavage sequences (converted from the matching to real sequence), with n number of amino acids to the left and right of the c term cleavage, and the position of the c-term cleavage in the library sequence

generate_report

generate_report

Description

wrapper function to generate an automatic .html report of a basic mspms analysis.

Usage

```
generate_report(
  prepared_data,
  peptide_library = mspms::peptide_library,
  n_residues = 4,
  outdir = getwd(),
  output_file = paste0(Sys.Date(), "_mspms_report.html")
)
```

Arguments

prepared_data a QFeatures object containing a SummarizedExperiment named "peptides".

peptide_library

peptide library used with experiment. Contains columns "library_id", "library_match_sequence",

and "library_real_sequence".

n_residues the number of amino acid residues before and after the cleavage site to generate

a cleavage seq for.

outdir the output directory you would like to render the report to.

output_file the file name to export.

limma_stats

Value

a knited .html report of the mspms analysis.

Examples

```
generate_report(mspms::peaks_prepared_data)
```

 $icelogo_col_scheme$

icelogo_col_scheme Defining a color scheme for our iceLogos

Description

icelogo_col_scheme Defining a color scheme for our iceLogos

Usage

```
icelogo_col_scheme()
```

Value

a ggseqlogo color scheme function

limma_stats

limma_stats

Description

Calculates statistics for each condition relative to time 0 using limma for differential analysis. Results are then formatted to be consistent with results produced by other statistic approaches used in the mspms package (log2fc_t_test).

Usage

```
limma_stats(processed_qf)
```

Arguments

```
processed_qf mspms data in a QFeatures object.
```

Value

a tibble containing statistics

Examples

```
mspms_limma_results <- limma_stats(mspms::processed_qf)</pre>
```

load_colData 17

load_colData

load_colData

Description

load a .csv file containing sample colData. Check for errors

Usage

```
load_colData(colData_filepath)
```

Arguments

```
colData_filepath
```

filepath to .csv file containing colData.

Value

a tibble

log2fc_t_test

log2fc_t_test

Description

Calculates the log2 fold change and t-test statistics given a user specified reference variable and value.

Usage

```
log2fc\_t\_test(processed\_qf, \ reference\_variable = "time", \ reference\_value = 0)
```

Arguments

```
processed_qf mspms data in a QFeatures object.

reference_variable

the colData variable to use as reference
reference_value

the value of the colData variable to use as reference
```

Value

a tibble containing log2fc and t test statistics

Examples

```
log2fc_and_t_test <- log2fc_t_test(mspms::processed_qf)</pre>
```

18 mspms_log2fc

 $\label{eq:log2fc_t_test_data} log2fc_t_test_data \ A \ tibble \ containing \ the \ results \ of \ t-tests \ and \ log2fc \ compared \ to \ time \ 0 \ 14,497 \times 19$

Description

 $log2fc_t_test_data$ A tibble containing the results of t-tests and log2fc compared to time $0.14,497 \times 19$

Usage

```
log2fc_t_test_data
```

Format

```
## 'peaks_prepared_data' A tibble: 14,497 \times 19
```

Source

<mspms processed data originally from PEAKS files found in "tests/testdata/protein-peptides-id.csv" and "tests/testdata/protein-peptides-lfq.csv">

mspms_log2fc

mspms_log2fc

Description

calculates the log2fc for each time point within each condition relative to a specified value for a specified reference variable.

Usage

```
mspms_log2fc(processed_qf, reference_variable = "time", reference_value = 0)
```

Arguments

```
processed_qf a QFeatures object with a SummarizedExperiment named "peptides_norm". reference_variable
```

the variable to used as a reference (denominator of log2 fold change).

reference_value

the value of the reference variable to use as the reference

Value

a tibble with the t test statistics for each peptide within each group with the supplied value at the supplied variable as reference.

mspms_tidy 19

mspms_tidy	mspms_tidy Convert a SummarizedExperiment object within a QFeatures object into a tidy tibble.

Description

mspms_tidy Convert a SummarizedExperiment object within a QFeatures object into a tidy tibble.

Usage

```
mspms_tidy(processed_qf, se_name = "peptides_norm")
```

Arguments

processed_qf a QFeature object containing rowData and colData.

se_name the name of the SummarizedExperiment you would like to extract

Value

a tibble containing all the rowData, colData, and assay data for the specified SummarizedExperiment.

Examples

```
{\tt mspms\_data} \mathrel{<\!\!\!\!-} {\tt mspms\_tidy}({\tt mspms}:: {\tt processed\_qf})
```

mspms_tidy_data

mspms_tidy_data A tibble containing tidy data derived from QFeatures object

Description

mspms_tidy_data A tibble containing tidy data derived from QFeatures object

Usage

```
mspms_tidy_data
```

Format

```
## 'mspms_tidy_data' A tibble:
```

Source

```
processed_qf
```

20 nterm_cleavage

 $mspms_t_tests$

mspms_t_tests

Description

performs t-tests for each peptide within each group for the user specified. FDR adjustment is performed.

Usage

```
mspms_t_tests(processed_qf, reference_variable = "time", reference_value = "0")
```

Arguments

```
processed_qf
                 a QFeatures object with a SummarizedExperiment named "peptides_norm".
reference_variable
                 the variable to used as a reference.
reference_value
```

the value of the reference variable to use as the reference

Value

a tibble with the t test statistics for each peptide within each group with the supplied value at the supplied variable as reference.

nterm_cleavage

nterm_cleavage

Description

Finding the cleavage sequences on the N terminus of a given peptide in reference to the peptide library it was derived from.

Usage

```
nterm_cleavage(
  peptide_sequence,
  library_match_sequence,
  library_real_sequence,
  n_residues = 4
)
```

peaks_prepared_data 21

Arguments

peptide_sequence

the peptide sequence represented in single letter code. "_" denotes cleavage site.

library_match_sequence

the sequence the peptide matches to with the proteomics search software used. Note, this may not be the true sequence of the peptide depending on how the library was constructed. For example, in the standard MSP-MS 228 member library, methionine has been replaced with norleucine (n). This was done because norleucine looks like methionine to a protease, but it cannot be oxidized. Norleucine's (n) mass is the same as leucine (L), so it is recognized by the proteomics software as L.

library_real_sequence

the sequence the peptide truly is. In the standard MSP_MS 228 member library, some of the amino acids recognize as leucine (L) are truly Norleucine (n).

n_residues

the number of residues to the left and right of the cleavage event to return.

Value

a tibble with the peptide sequence, cleavage sequences n specified number of AA on the left and right of the n term cleavage, and the position of the n term cleavage in the library sequence.

peaks_prepared_data

peaks_prepared_data A QFeatures object prepared from PEAKS data of cathepsin data/.

Description

peaks_prepared_data A QFeatures object prepared from PEAKS data of cathepsin data/.

Usage

peaks_prepared_data

Format

'peaks_prepared_data' An instance of class QFeatures containing 1 assays: [1] peptides: SummarizedExperiment with 2071 rows and 42 columns

peptides Peptide Sequence Detected ...

Source

<mspms processed data originally from PEAKS files found in "tests/testdata/protein-peptides-id.csv" and "tests/testdata/protein-peptides-lfq.csv">

22 plot_all_icelogos

peptide_library

peptide_library

Description

This is the 228 peptide library used by the O'Donoghue lab as of 26April2024.

Usage

```
peptide_library
```

Format

'peptide_library' A data frame with 228 rows and 3 columns:

library_reference_id reference id of the detected peptide as put in upstream software

library_match_sequence the sequence match to the peptide library, methionine is replaced with norleucine, which should function the same as methionine for proteases but has the same mass as L

library_real_sequence Ls corresponding to norleucine are replaced back with n (for norleucine) ...

Source

<O'Donoghue lab as of 26April2024 >

```
plot_all_icelogos plot_all_icelogos
```

Description

Easily plot a iceLogo corresponding to peptides of interest across each condition of an experiment.

Usage

```
plot_all_icelogos(
    sig_cleavage_data,
    type = "percent_difference",
    pval = 0.05,
    background_universe = mspms::all_possible_8mers_from_228_library
)
```

plot_cleavages_per_pos 23

Arguments

sig_cleavage_data

a tibble of data of interest containing a column labeled peptide, cleavage_seq,

and condition

type this is the type of iceLogo you would like to generate, can be either "per-

cent_difference" or "fold_change".

pval this is the pvalue threshold (<=) to consider significant when determining the

significance of the sig_cleavages relative to the background at each position of

the iceLogo.

background_universe

this is a list cleavages you would like to compare to as background of the iceL-

ogo

Value

a ggplot object that shows the motif of the cleavage sequences

Examples

```
# Determining cleavages of interest
sig_cleavage_data <- mspms::log2fc_t_test_data %>%
    dplyr::filter(p.adj <= 0.05, log2fc > 3)
# Plotting a iceLogo for each condition.
plot_all_icelogos(sig_cleavage_data)
```

```
plot_cleavages_per_pos
```

plot_cleavages_per_pos

Description

plot the number of cleavages at each

Usage

```
plot_cleavages_per_pos(sig_cleavage_data, ncol = NULL)
```

Arguments

sig_cleavage_data

a tibble of data of interest containing a column labeled peptide, cleavage_seq,

condition, and cleavage_pos.

ncol the number of columns to plot.

Value

```
a ggplot2 object
```

24 plot_heatmap

Examples

```
# Defining the significant peptides
sig_cleavage_data <- log2fc_t_test_data %>%
    dplyr::filter(p.adj <= 0.05, log2fc > 3)
# Plotting
p1 <- mspms::plot_cleavages_per_pos(sig_cleavage_data)
p1</pre>
```

plot_heatmap

plot_heatmap

Description

This produces a heatmaply interactive heatmap of the QFeatures object with color bars representing the condition and time for each sample in each row.

Usage

```
plot_heatmap(
   mspms_tidy_data,
   value_colname = "peptides_norm",
   scale = "column",
   plot_method = "plotly",
   show_dendrogram = c(TRUE, TRUE)
)
```

Arguments

mspms_tidy_data

tidy mspms data (prepared from QFeatures object by mspms_tidy())

value_colname the name of the column containing values.

scale how would you like the data scaled? default is none, but can also be "row",

"column", or "none"

plot_method what plot method would you like to use, can use plotly or ggplot2.

show_dendrogram

Logical vector of length two, controlling whether the row and/or column dendrograms are displayed. If a logical scalar is provided, it is repeated to become a logical vector of length two.

Details

Each column has a colored bar representing whether the peptide is a cleavage product or a full length member of the peptide library.

Value

a heatmaply interactive heatmap

plot_icelogo 25

Examples

```
plot_heatmap(mspms::mspms_tidy_data)
```

plot_icelogo

plot_icelogo

Description

This function plots the cleavage motifs that were enriched relative to background as implemented in the iceLogo method. https://iomics.ugent.be/icelogoserver/resources/manual.pdf

Usage

```
plot_icelogo(
  cleavage_seqs,
  background_universe = mspms::all_possible_8mers_from_228_library,
  pval = 0.05,
  type = "percent_difference"
)
```

Arguments

cleavage_seqs these are the cleavage sequences of interest background_universe

this is a list of cleavage sequences to use as the background in building the

iceLogo.

pval this is the pvalue threshold (<=) to consider significant when determining the

significance of the sig_cleavages relative to the background at each position of

the iceLogo.

type this is the type of visualization you would like to perform, accepted values are

either "percent_difference" or "fold_change".

Value

a ggplot2 object

Examples

```
# Determining significant cleavages for catA
catA_sig_cleavages <- mspms::log2fc_t_test_data %>%
    dplyr::filter(p.adj <= 0.05, log2fc > 3) %>%
    dplyr::filter(condition == "CatA") %>%
    dplyr::pull(cleavage_seq) %>%
    unique()

# Plotting icelogo
plot_icelogo(catA_sig_cleavages,
    background_universe = all_possible_8mers_from_228_library)
```

26 plot_pca

plot_nd_peptides

plot_nd_peptides

Description

plot the percentage of samples each peptide from library was undetected in (if the percentage is > 0).

Usage

```
plot_nd_peptides(
   processed_qf,
   peptide_library_ids = mspms::peptide_library$library_id
)
```

Arguments

```
processed_qf a QFeatures object containing a SummarizedExperiment named "peptides" peptide_library_ids a vector of all peptide library ids in the experiment.
```

Value

```
a ggplot2 object
```

Examples

```
plot_nd_peptides(mspms::processed_qf)
```

plot_pca

plot_pca

Description

Easily create a PCA plot from a QFeatures object containing mspms data. Ellipses are drawn around the points at a 95 Shape and colors are user specified.

Usage

```
plot_pca(
   mspms_tidy_data,
   value_colname = "peptides_norm",
   color = "time",
   shape = "condition"
)
```

plot_qc_check 27

Arguments

Value

```
a ggplot2 object
```

Examples

```
plot_pca(mspms::mspms_tidy_data)
```

plot_qc_check

plot_qc_check plot the the percentage of the peptide library undetected in each sample per each sample group.

Description

plot_qc_check plot the the percentage of the peptide library undetected in each sample per each sample group.

Usage

```
plot_qc_check(
  processed_qf,
  peptide_library = mspms::peptide_library$library_id,
  full_length_threshold = NULL,
  cleavage_product_threshold = NULL,
  ncol = 2
)
```

Arguments

28 plot_time_course

Value

```
a ggplot2 object.
```

Examples

```
plot_qc_check(mspms::processed_qf)
```

plot_time_course

plot_time_course

Description

Easily plot a time course of all peptides in a QFeatures object by peptide.

Usage

```
plot_time_course(
  mspms_tidy_data,
  value_colname = "peptides_norm",
  summarize_by_mean = FALSE
)
```

Arguments

Value

a ggplot2 object

Examples

```
# Determining peptide of interest
max_log2fc_pep <- mspms::log2fc_t_test_data %>%
    dplyr::filter(p.adj <= 0.05, log2fc > 3) %>%
    dplyr::filter(log2fc == max(log2fc)) %>%
    dplyr::pull(peptide)

# Defining QFeatures filter
filtered <- mspms::mspms_tidy_data %>%
    dplyr::filter(peptide == max_log2fc_pep) %>%
    plot_time_course()
```

plot_volcano 29

plot_volcano

plot_volcano

Description

create a volcano plot to generate log2fc and adjusted p values for experimental conditions

Usage

```
plot_volcano(
  log2fc_t_test_data,
  log2fc_threshold = 3,
  padj_threshold = 0.05,
  facets = "grid",
  ncol = 1
)
```

Arguments

```
log2fc_t_test_data
a tibble containing the log2fc and adjusted p values
log2fc_threshold
the log2fc threshold that you want displayed on plot
padj_threshold the padj threshold that you want displayed on plot
facets how facets should be displayed. Accepted values are grid and wrap
ncol ncol to include if facets = "wrap"
```

Value

```
a ggplot2 object
```

Examples

```
p1 <- mspms::plot_volcano(mspms::log2fc_t_test_data, log2fc_threshold = 3)
p1</pre>
```

prepared_to_qf

convert prepared data to a QFeatures object

Description

convert prepared data to a QFeatures object

30 prepare_fc

Usage

```
prepared_to_qf(
  prepared_data,
  colData,
  peptide_library = mspms::peptide_library,
  n_residues = 4
)
```

Arguments

prepared_data data prepared within one of the prepare functions

colData sample metadata

peptide_library

the peptide library used.

n_residues the number of residues reported in the cleavage site

Value

a QFeatures object

prepare_fc

prepare_fc

Description

Prepare fold changes of amino acids by position for Icelogo visualization.

Usage

```
prepare_fc(fold_change, sig_zscores)
```

Arguments

fold_change a matrix of the fold changes of the AA by position.

sig_zscores a tibble of the significant zscores.

Value

a matrix of the fold changes of the significant AAs at each position.

prepare_for_PCA 31

```
prepare_for_PCA
```

Description

```
prepare QFeatures object for PCA analysis
```

Usage

```
prepare_for_PCA(mspms_tidy_data, value_colname = "peptides_norm")
```

Arguments

```
mspms_tidy_data
tidy mspms data (prepared from QFeatures object by mspms_tidy())
value_colname the name of the column containing values.
```

Value

a tibble

```
prepare_fragpipe
prepare_fragpipe
```

Description

Prepare a label free quantification file exported from Fragpipe for subsequent mspms analysis.

Usage

```
prepare_fragpipe(
  combined_peptide_filepath,
  colData_filepath,
  peptide_library = mspms::peptide_library,
  n_residues = 4
)
```

Arguments

```
combined_peptide_filepath
file path the combined_peptide.tsv file generated by FragPipe.

colData_filepath
file path to .csv file containing colData. Must have columns named "quant-Cols", "group", "condition", and "time".
```

```
peptide_library
```

peptide library used with experiment. Contains columns "library_id", "library_match_sequence",

and "library_real_sequence".

n_residues the number of amino acid residues before and after the cleavage site to generate

a cleavage seq for.

Value

32

a QFeatures object containing a summarizedExperiment named "peptides"

Examples

```
fragpipe_combined_peptide <- system.file("extdata/fragpipe_combined_peptide.tsv", package = "mspms")
colData_filepath <- system.file("extdata/colData.csv", package = "mspms")
# Prepare the data
fragpipe_prepared_data <- mspms::prepare_fragpipe(fragpipe_combined_peptide, colData_filepath)</pre>
```

Description

Prepare the final matrix containing iceLogo data for plotting.

Usage

```
prepare_icelogo_data(
  cleavage_seqs,
  background_universe = mspms::all_possible_8mers_from_228_library,
  pval = 0.05,
  type = "percent_difference"
)
```

Arguments

cleavage_seqs the cleavage sequences that are observed in the experiment

background_universe

a vector of the cleavage sequences to use as the background.

pval the p-value threshold to consdier

type the type of iceLogo calculation to perform. Accepted values are "percent_difference"

or "fold_change".

Value

a matrix of enriched amino acids per position

prepare_pd 33

prepare_pd	prepare_pd Prepare a label free quantification file exported from Proteome Discoverer for subsequent mspms analysis.
prepare_pd	

Description

prepare_pd Prepare a label free quantification file exported from Proteome Discoverer for subsequent mspms analysis.

Usage

```
prepare_pd(
  peptide_groups_filepath,
  colData_filepath,
  peptide_library = mspms::peptide_library,
  n_residues = 4
)
```

Arguments

```
peptide_groups_filepath
filepath to PeptideGroups.txt file exported from proteome discoverer.

colData_filepath
file path to .csv file containing colData. Must have columns named "quant-Cols", "group", "condition", and "time".

peptide_library
peptide_library used with experiment. Contains columns "library_id", "library_match_sequence", and "library_real_sequence".

n_residues
the number of amino acid residues before and after the cleavage site to generate a cleavage seq for.
```

Value

a QFeatures object containing a summarizedExperiment named "peptides"

Examples

```
peptide_groups_filepath <- system.file(
   "extdata/proteome_discoverer_PeptideGroups.txt",
   package = "mspms"
)
colData_filepath <- system.file("extdata/colData.csv", package = "mspms")</pre>
```

34 prepare_peaks

prepare_peaks

prepare_peaks Prepare a label free quantification file exported from PEAKS for subsequent mspms analysis.

Description

prepare_peaks Prepare a label free quantification file exported from PEAKS for subsequent mspms analysis.

Usage

```
prepare_peaks(
    lfq_filepath,
    colData_filepath,
    quality_threshold = 0.3,
    peptide_library = mspms::peptide_library,
    n_residues = 4
)
```

Arguments

```
lfq_filepath this is the file path to a .csv file exported from PEAKS
colData_filepath file path to .csv file containing colData. Must have columns named "quant-Cols","group","condition",and "time".

quality_threshold only consider peptides with quality scores > than this threshold.

peptide_library peptide library used in the experiment.

n_residues the number of amino acid residues before and after the cleavage site to generate a cleavage seq for.
```

Value

a QFeatures object containing a summarizedExperiment named "peptides"

Examples

```
lfq_filepath <- system.file("extdata/peaks_protein-peptides-lfq.csv", package = "mspms")
colData_filepath <- system.file("extdata/colData.csv", package = "mspms")
# Prepare the data
peaks_prepared_data <- mspms::prepare_peaks(lfq_filepath, colData_filepath)</pre>
```

prepare_qc_check_data prepare_qc_check Run simple quality control checks on the data. This checks to see how many peptides belonging to the library were identified in the data in each sample. Computes full length, and cleavage products independantly.

Description

prepare_qc_check Run simple quality control checks on the data. This checks to see how many peptides belonging to the library were identified in the data in each sample. Computes full length, and cleavage products independantly.

Usage

```
prepare_qc_check_data(
 processed_qf,
 peptide_library_ids = mspms::peptide_library$library_id
```

Arguments

processed_qf

a QFeatures object with a SummarizedExperiment named "peptides". Intended to be prepared by one of the pre-processing prepare_x_data functions of the mspms R package.

```
peptide_library_ids
```

a character vector containing the names of the library_ids

Value

a tibble containing percentage of library_ids detected per sample, both as full length, and as cleavage products.

```
prepare_sig_p_dif
```

prepare_sig_p_dif

Description

Prepare significant percent difference data frame for iceLogo

Usage

```
prepare_sig_p_dif(percent_difference, sig_zscores)
```

36 processed_qf

Arguments

percent_difference

a data frame containing the percent differences

sig_zscores a matrix of significant amino acids at each position based on z-scores

Value

a tibble

processed_qf

processed_qf A QFeatures object prepared from PEAKS data of Cathepsin data that has been processed (imputation/normalization)

Description

processed_qf A QFeatures object prepared from PEAKS data of Cathepsin data that has been processed (imputation/normalization)

Usage

processed_qf

Format

'peaks_prepared_data' An instance of class QFeatures containing 5 assays: [1] peptides: SummarizedExperiment with 2071 rows and 42 columns [2] peptides_log: SummarizedExperiment with 2071 rows and 42 columns [3] peptides_log_norm: SummarizedExperiment with 2071 rows and 42 columns [4] peptides_log_impute_norm: SummarizedExperiment with 2071 rows and 42 columns [5] peptides_norm: SummarizedExperiment with 2071 rows and 42 columns

peptides Peptide Sequence Detected ...

Source

<mspms processed data originally from PEAKS files found in "tests/testdata/protein-peptides-id.csv" and "tests/testdata/protein-peptides-lfq.csv">

process_qf 37

process_qf

process_qf

Description

```
process_qf
```

Usage

```
process_qf(prepared_qf)
```

Arguments

```
prepared_qf
```

this is a QFeatures object containing a SummarizedExperiment named "peptides"

Value

```
a QFeatures object containing a SummarizedExperiments named "peptides", "peptides_log", "peptides_log_norm", "peptides_log_impute_norm", and "peptides_norm"
```

Examples

```
processed_qf <- process_qf(mspms::peaks_prepared_data)</pre>
```

remaining_cd_names

remaining_cd_names

Description

determine what the remaining colData names are when removing the reference variable.

Usage

```
remaining_cd_names(processed_qf, reference_variable)
```

Arguments

```
processed_qf a QFeatures object
reference_variable
name of reference variable
```

Value

a vector of the remaining names in the colData

38 %>%

rlog2

rlog2 Reverse log2 transformation

Description

rlog2 Reverse log2 transformation

Usage

rlog2(x)

Arguments

Х

a numeric value

Value

a reverse log2 transformed value

%>%

Pipe operator

Description

```
See magrittr::%>% for details.
```

Usage

1hs %>% rhs

Arguments

1hs A value or the magrittr placeholder.

rhs A function call using the magrittr semantics.

Value

The result of calling 'rhs(lhs)'.

Index

```
* datasets
                                                    remaining_cd_names, 37
    all_possible_8mers_from_228_library,
                                                    rlog2, 38
                                                %>%, 38, 38
    colData, 13
                                                add_cleavages, 4
    log2fc_t_test_data, 18
                                                add_peptide_data, 4
    mspms_tidy_data, 19
                                                all_possible_8mers_from_228_library, 5
    peaks_prepared_data, 21
    peptide_library, 22
                                                calc_AA_count_of_motif, 6
    processed_qf, 36
                                                calc_AA_fc, 6
* internal
                                                calc_AA_motif_zscore, 7
    %>%, 38
                                                {\tt calc\_AA\_percent\_difference}, 7
    add_cleavages, 4
                                                calc_AA_prop_of_motif, 8
    add_peptide_data, 4
                                                calc_limma_contrasts, 9
    calc_AA_count_of_motif, 6
                                                calc_limma_design_matrix, 9
    calc_AA_fc, 6
                                                calc_per_samples_library_nd, 10
    calc_AA_motif_zscore, 7
                                                calc_sig_zscores, 10
    calc_AA_percent_difference, 7
                                                calculate_all_cleavages, 5
    calc_AA_prop_of_motif, 8
                                                check_file_is_valid_fragpipe, 11
    calc_limma_contrasts, 9
                                                check_file_is_valid_pd, 11
    calc_limma_design_matrix, 9
                                                check_file_is_valid_peaks, 12
    calc_per_samples_library_nd, 10
                                                check_peptide_library, 12
    calc_sig_zscores, 10
                                                colData, 13
    check_file_is_valid_peaks, 12
                                                consolidate_cleavages, 13
    check_peptide_library, 12
                                                count_cleavages_per_pos, 14
    consolidate_cleavages, 13
                                                cterm_cleavage, 14
    count_cleavages_per_pos, 14
                                                generate_report, 15
    cterm_cleavage, 14
    icelogo_col_scheme, 16
                                                icelogo_col_scheme, 16
    load_colData, 17
    mspms-package, 3
                                                limma_stats, 16
    mspms_log2fc, 18
                                                load_colData, 17
    mspms_t_tests, 20
                                                log2fc_t_test, 17
    nterm_cleavage, 20
                                                log2fc_t_test_data, 18
    prepare_fc, 30
    prepare_for_PCA, 31
                                                mspms (mspms-package), 3
    prepare_icelogo_data, 32
                                                mspms-package, 3
    prepare_qc_check_data, 35
                                                mspms_log2fc, 18
    prepare_sig_p_dif, 35
                                                mspms_t_tests, 20
    prepared_to_qf, 29
                                                mspms_tidy, 19
```

40 INDEX

```
mspms_tidy_data, 19
nterm_cleavage, 20
peaks_prepared_data, 21
peptide_library, 22
plot_all_icelogos, 22
plot_cleavages_per_pos, 23
plot_heatmap, 24
plot\_icelogo, 25
plot_nd_peptides, 26
plot_pca, 26
plot_qc_check, 27
\verb|plot_time_course|, 28|
plot_volcano, 29
prepare_fc, 30
prepare_for_PCA, 31
prepare_fragpipe, 31
prepare_icelogo_data, 32
prepare_pd, 33
prepare_peaks, 34
prepare_qc_check_data, 35
prepare_sig_p_dif, 35
prepared_to_qf, 29
process_qf, 37
processed_qf, 36
remaining_cd_names, 37
rlog2, 38
```