
Package ‘miloR’
November 1, 2025

Type Package

Title Differential neighbourhood abundance testing on a graph

Version 2.7.0

Description Milo performs single-cell differential abundance testing. Cell states are modelled
as representative neighbourhoods on a nearest neighbour graph. Hypothesis testing is per-
formed using either
a negative bionomial generalized linear model or negative binomial generalized lin-
ear mixed model.

License GPL-3 + file LICENSE

Encoding UTF-8

URL https://marionilab.github.io/miloR

BugReports https://github.com/MarioniLab/miloR/issues

biocViews SingleCell, MultipleComparison, FunctionalGenomics, Software

LinkingTo Rcpp, RcppArmadillo, RcppEigen, RcppML

Depends R (>= 4.0.0), edgeR

Imports BiocNeighbors, BiocGenerics, SingleCellExperiment, Matrix (>=
1.3-0), MatrixGenerics, S4Vectors, stats, stringr, methods,
igraph, irlba, utils, cowplot, BiocParallel, BiocSingular,
limma, ggplot2, tibble, matrixStats, ggraph, gtools,
SummarizedExperiment, patchwork, tidyr, dplyr, ggrepel,
ggbeeswarm, RColorBrewer, grDevices, Rcpp, pracma, numDeriv

Suggests testthat, mvtnorm, scater, scran, covr, knitr, rmarkdown,
uwot, scuttle, BiocStyle, MouseGastrulationData,
MouseThymusAgeing, magick, RCurl, MASS, curl, scRNAseq,
graphics, sparseMatrixStats

RoxygenNote 7.3.2

NeedsCompilation no

Collate 'AllClasses.R' 'AllGenerics.R' 'buildFromAdjacency.R'
'buildGraph.R' 'calcNhoodExpression.R' 'calcNhoodDistance.R'
'checkSeparation.R' 'countCells.R' 'findNhoodMarkers.R'
'graphSpatialFDR.R' 'glmm.R' 'makeNhoods.R' 'milo.R'

1

https://marionilab.github.io/miloR
https://github.com/MarioniLab/miloR/issues

2 Contents

'miloR-package.R' 'methods.R' 'plotNhoods.R' 'sim_discrete.R'
'sim_family.R' 'sim_nbglmm.R' 'sim_trajectory.R' 'testNhoods.R'
'testDiffExp.R' 'utils.R' 'buildNhoodGraph.R'
'annotateNhoods.R' 'groupNhoods.R' 'findNhoodGroupMarkers.R'
'RcppExports.R' 'miloR.R'

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/miloR

git_branch devel

git_last_commit 6c5c6a3

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-10-31

Author Mike Morgan [aut, cre] (ORCID: <https://orcid.org/0000-0003-0757-0711>),
Emma Dann [aut, ctb]

Maintainer Mike Morgan <michael.morgan@abdn.ac.uk>

Contents
miloR-package . 3
annotateNhoods . 3
buildFromAdjacency . 4
buildGraph . 5
buildNhoodGraph . 7
calcNhoodDistance . 8
calcNhoodExpression . 9
checkSeparation . 10
computePvalue . 11
countCells . 12
findNhoodGroupMarkers . 13
findNhoodMarkers . 15
fitGeneticPLGlmm . 17
fitGLMM . 19
fitPLGlmm . 22
glmmControl.defaults . 25
graphSpatialFDR . 26
groupNhoods . 27
initialiseG . 28
initializeFullZ . 29
makeNhoods . 30
matrix.trace . 32
Milo-class . 32
Milo-methods . 34
miloR . 36
plotDAbeeswarm . 36
plotNhoodCounts . 37

https://orcid.org/0000-0003-0757-0711

miloR-package 3

plotNhoodExpressionDA . 38
plotNhoodGraph . 40
plotNhoodGraphDA . 41
plotNhoodGroups . 42
plotNhoodMA . 43
plotNhoodSizeHist . 44
Satterthwaite_df . 45
sim_discrete . 46
sim_family . 47
sim_nbglmm . 47
sim_trajectory . 48
testDiffExp . 49
testNhoods . 51

Index 55

miloR-package The miloR package

Description

The miloR package provides modular functions to perform differential abundance testing on repli-
cated single-cell experiments. For details please see the vignettes vignette("milo_demo", package="miloR")
and vignette("milo_gastrulation", package="miloR").

Value

The miloR package

Author(s)

Mike Morgan & Emma Dann

annotateNhoods Add annotations from colData to DA testing results

Description

This function assigns a categorical label to neighbourhoods in the differential abundance results
data.frame (output of testNhoods), based on the most frequent label among cells in each neigh-
bourhood. This can be useful to stratify DA testing results by cell types or samples. Also the
fraction of cells carrying that label is stored.

Usage

annotateNhoods(x, da.res, coldata_col, subset.nhoods = NULL)

4 buildFromAdjacency

Arguments

x A Milo object containing single-cell gene expression and neighbourhoods.

da.res A data.frame containing DA results, as expected from running testNhoods.

coldata_col A character scalar determining which column of colData(x) stores the annota-
tion to be added to the neighbourhoods

subset.nhoods A character, numeric or logical vector that will subset the annotation to the spe-
cific nhoods. If a character vector these should correspond to row names of
nhoodCounts. If a logical vector then these should have the same length as
nrow of nhoodCounts. If numeric, then these are assumed to correspond to in-
dices of nhoodCounts - if the maximal index is greater than nrow(nhoodCounts(x))
an error will be produced. This is necessary if testNhoods was run using
subset.nhoods=....

Details

For each neighbourhood, this calculates the most frequent value of colData(x)[coldata_col]
among cells in the neighbourhood and assigns that value as annotation for the neighbourhood,
adding a column in the da.res data.frame. In addition, a coldata_col_fraction column will be
added, storing the fraction of cells carrying the assigned label. While in practice neighbourhoods
are often homogeneous, one might choose to remove an annotation label when the fraction of cells
with the label is too low (e.g. below 0.6).

Value

A data.frame of model results (as da.res input) with two new columns: (1) coldata_col storing
the assigned label for each neighbourhood; (2) coldata_col_fraction storing the fraction of cells
in the neighbourhood with the assigned label.

Author(s)

Emma Dann

Examples

NULL

buildFromAdjacency Build a graph from an input adjacency matrix

Description

Construct a kNN-graph from an input adjacency matrix - either binary or distances between NNs.

buildGraph 5

Arguments

x An n X n matrix of single-cells, where values represent edges between cells;
0 values are taken to mean no edge between cells. If the matrix is not binary,
then it is assumed the values are distances; 0 retain the same meaning. This
behaviour can be toggled using is.binary=TRUE.

k (optional) Scalar value that represents the number of nearest neighbours in the
original graph. This can also be inferred directly from the adjacency matrix x.

is.binary Logical scalar indicating if the input matrix is binary or not.

Details

This function will take a matrix as input and construct the kNN graph that it describes. If the matrix
is not symmetric then the graph is assumed to be directed, whereas if the matrix is not binary, i.e.
all 0’s and 1’s then the input values are taken to be distances between graph vertices; 0 values are
assumed to represent a lack of edge between vertices.

Value

A Milo with the graph slot populated.

Author(s)

Mike Morgan

Examples

r <- 1000
c <- 1000
k <- 35
m <- floor(matrix(runif(r*c), r, c))
for(i in seq_along(1:r)){

m[i, sample(1:c, size=k)] <- 1
}

milo <- buildFromAdjacency(m)

buildGraph Build a k-nearest neighbour graph

Description

This function is borrowed from the old buildKNNGraph function in scran. Instead of returning an
igraph object it populates the graph and distance slots in a Milo object. If the input is a Single-
CellExperiment object or a matrix then it will return a de novo Milo object with the same slots
filled.

6 buildGraph

Usage

buildGraph(
x,
k = 10,
d = 50,
transposed = FALSE,
get.distance = FALSE,
reduced.dim = "PCA",
BNPARAM = KmknnParam(),
BSPARAM = bsparam(),
BPPARAM = SerialParam()

)

Arguments

x A matrix, SingleCellExperiment or Milo object containing feature X cell gene
expression data.

k An integer scalar that specifies the number of nearest-neighbours to consider for
the graph building.

d The number of dimensions to use if the input is a matrix of cells X reduced
dimensions. If this is provided, transposed should also be set=TRUE.

transposed Logical if the input x is transposed with rows as cells.

get.distance A logical scalar whether to compute distances during graph construction.

reduced.dim A character scalar that refers to a specific entry in the reduceDim slot of the
Milo object.

BNPARAM refer to buildKNNGraph for details.

BSPARAM refer to buildKNNGraph for details.

BPPARAM refer to buildKNNGraph for details.

Details

This function computes a k-nearest neighbour graph. Each graph vertex is a single-cell connected by
the edges between its neighbours. Whilst a kNN-graph is strictly directed, we remove directionality
by forcing all edge weights to 1; this behaviour can be overriden by providing directed=TRUE.

If you wish to use an alternative graph structure, such as a shared-NN graph I recommend you
construct this separately and add to the relevant slot in the Milo object.

Value

A Milo object with the graph and distance slots populated.

Author(s)

Mike Morgan, with KNN code written by Aaron Lun & Jonathan Griffiths.

buildNhoodGraph 7

Examples

library(SingleCellExperiment)
ux <- matrix(rpois(12000, 5), ncol=200)
vx <- log2(ux + 1)
pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList(PCA=pca$x))

milo <- Milo(sce)
milo <- buildGraph(milo, d=30, transposed=TRUE)

milo

buildNhoodGraph Build an abstracted graph of neighbourhoods for visualization

Description

Build an abstracted graph of neighbourhoods for visualization

Usage

buildNhoodGraph(x, overlap = 1)

Arguments

x A Milo object with a non-empty nhoods slot.

overlap A numeric scalar that thresholds graph edges based on the number of overlap-
ping cells between neighbourhoods.

Details

This constructs a weighted graph where nodes represent neighbourhoods and edges represent the
number of overlapping cells between two neighbourhoods.

Value

A Milo object containg an igraph graph in the nhoodGraph slot.

Author(s)

Emma Dann

Examples

NULL

8 calcNhoodDistance

calcNhoodDistance Calculate within neighbourhood distances

Description

This function will calculate Euclidean distances between single-cells in a neighbourhood using the
same dimensionality as was used to construct the graph. This step follows the makeNhoods call to
limit the number of distance calculations required.

Usage

calcNhoodDistance(x, d, reduced.dim = NULL, use.assay = "logcounts")

Arguments

x A Milo object with a valid graph slot. If reduced.dims is not provided and
there is no valid populated reducedDim slot in x, then this is computed first with
d + 1 principal components.

d The number of dimensions to use for computing within-neighbourhood dis-
tances. This should be the same value used construct the graph.

reduced.dim If x is an Milo object, a character indicating the name of the reducedDim slot in
the Milo object to use as (default: ’PCA’). Otherwise this should be an N X P
matrix with rows in the same order as the columns of the input Milo object x.

use.assay A character scalar defining which assay slot in the Milo to use

Value

A Milo object with the distance slots populated.

Author(s)

Mike Morgan, Emma Dann

Examples

library(SingleCellExperiment)
ux <- matrix(rpois(12000, 5), ncol=200)
vx <- log2(ux + 1)
pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList(PCA=pca$x))

milo <- Milo(sce)
milo <- buildGraph(milo, d=30, transposed=TRUE)
milo <- makeNhoods(milo)
milo <- calcNhoodDistance(milo, d=30)

milo

calcNhoodExpression 9

calcNhoodExpression Average expression within neighbourhoods

Description

This function calculates the mean expression of each feature in the Milo object stored in the assays
slot. Neighbourhood expression data are stored in a new slot nhoodExpression.

Usage

calcNhoodExpression(x, assay = "logcounts", subset.row = NULL, exprs = NULL)

Arguments

x A Milo object with nhoods slot populated, alternatively a NxM indicator matrix
of N cells and M nhoods.

assay A character scalar that describes the assay slot to use for calculating neighbour-
hood expression.

subset.row A logical, integer or character vector indicating the rows of x to use for sumam-
rizing over cells in neighbourhoods.

exprs If x is a list of neighbourhoods, exprs is a matrix of genes X cells to use for
calculating neighbourhood expression.

Details

This function computes the mean expression of each gene, subset by subset.rows where present,
across the cells contained within each neighbourhood.

Value

A Milo object with the nhoodExpression slot populated.

Author(s)

Mike Morgan

Examples

require(SingleCellExperiment)
m <- matrix(rnorm(100000), ncol=100)
milo <- Milo(SingleCellExperiment(assays=list(logcounts=m)))
milo <- buildGraph(m, k=20, d=30)
milo <- makeNhoods(milo)
milo <- calcNhoodExpression(milo)
dim(nhoodExpression(milo))

10 checkSeparation

checkSeparation Check for separation of count distributions by variables

Description

Check the count distributions for each nhood according to a test variable of interest. This is im-
portant for checking if there is separation in the GLMM to inform either nhood subsetting or re-
computation of the NN-graph and refined nhoods.

Arguments

x Milo object with a non-empty nhoodCounts slot.

design.df A data.frame containing meta-data in which condition is a column vari-
able. The rownames must be the same as, or a subset of, the colnames of
nhoodCounts(x).

condition A character scalar of the test variable contained in design.df. This should be a
factor variable if it is numeric or character it will be cast to a factor variable.

min.val A numeric scalar that sets the minimum number of counts across condition level
samples, below which separation is defined.

factor.check A logical scalar that sets the factor variable level checking. See details for more
information.

Details

This function checks across nhoods for separation based on the separate levels of an input factor
variable. It checks if condition is a factor variable, and if not it will cast it to a factor. Note that the
function first checks for the number of unique values - if this exceeds > 50 error is generated. Users
can override this behaviour with factor.check=FALSE.

Value

A logical vector of the same length as ncol(nhoodCounts(x)) where TRUE values represent
nhoods where separation is detected. The output of this function can be used to subset nhood-based
analyses e.g. testNhoods(..., subset.nhoods=checkSepartion(x, ...)).

Author(s)

Mike Morgan

Examples

library(SingleCellExperiment)
ux.1 <- matrix(rpois(12000, 5), ncol=400)
ux.2 <- matrix(rpois(12000, 4), ncol=400)
ux <- rbind(ux.1, ux.2)
vx <- log2(ux + 1)
pca <- prcomp(t(vx))

computePvalue 11

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList(PCA=pca$x))

milo <- Milo(sce)
milo <- buildGraph(milo, k=20, d=10, transposed=TRUE)
milo <- makeNhoods(milo, k=20, d=10, prop=0.3)
milo <- calcNhoodDistance(milo, d=10)

cond <- rep("A", ncol(milo))
cond.a <- sample(1:ncol(milo), size=floor(ncol(milo)*0.25))
cond.b <- setdiff(1:ncol(milo), cond.a)
cond[cond.b] <- "B"
meta.df <- data.frame(Condition=cond, Replicate=c(rep("R1", 132), rep("R2", 132), rep("R3", 136)))
meta.df$SampID <- paste(meta.df$Condition, meta.df$Replicate, sep="_")
milo <- countCells(milo, meta.data=meta.df, samples="SampID")

test.meta <- data.frame("Condition"=c(rep("A", 3), rep("B", 3)), "Replicate"=rep(c("R1", "R2", "R3"), 2))
test.meta$Sample <- paste(test.meta$Condition, test.meta$Replicate, sep="_")
rownames(test.meta) <- test.meta$Sample

check.sep <- checkSeparation(milo, design.df=test.meta, condition='Condition')
sum(check.sep)

computePvalue Compute the p-value for the fixed effect parameters

Description

Based on the asymptotic t-distribution, comptue the 2-tailed p-value that estimate != 0. This func-
tion is not intended to be used directly, but is included for reference or if an alternative estimate of
the degrees of freedom is available.

Usage

computePvalue(Zscore, df)

Arguments

Zscore A numeric vector containing the Z scores for each fixed effect parameter

df A numeric vector containing the estimated degrees of freedom for each fixed
effect parameter

Details

Based on sampling from a 2-tailed t-distribution with df degrees of freedom, compute the proba-
bility that the calculated Zscore is greater than or equal to what would be expected from random
chance.

12 countCells

Value

Numeric vector of p-values, 1 per fixed effect parameter

Author(s)

Mike Morgan & Alice Kluzer

Examples

NULL

countCells Count cells in neighbourhoods

Description

This function quantifies the number of cells in each neighbourhood according to an input experi-
mental design. This forms the basis for the differential neighbourhood abundance testing.

Usage

countCells(x, samples, meta.data = NULL)

Arguments

x A Milo object with non-empty graph and nhoods slots.

samples Either a string specifying which column of data should be used to identify the
experimental samples for counting, or a named vector of sample ids mapping
each single cell to it’s respective sample.

meta.data A cell X variable data.frame containing study meta-data including experimen-
tal sample IDs. Assumed to be in the same order as the cells in the input Milo
object.

Details

This function generates a counts matrix of nhoods X samples, and populates the nhoodCounts slot
of the input Milo object. This matrix is used down-stream for differential abundance testing.

Value

A Milo object containing a counts matrix in the nhoodCounts slot.

Author(s)

Mike Morgan, Emma Dann

findNhoodGroupMarkers 13

Examples

library(igraph)
m <- matrix(rnorm(100000), ncol=100)
milo <- buildGraph(t(m), k=20, d=10)
milo <- makeNhoods(milo, k=20, d=10, prop=0.3)

cond <- rep("A", nrow(m))
cond.a <- sample(seq_len(nrow(m)), size=floor(nrow(m)*0.25))
cond.b <- setdiff(seq_len(nrow(m)), cond.a)
cond[cond.b] <- "B"
meta.df <- data.frame(Condition=cond, Replicate=c(rep("R1", 330), rep("R2", 330), rep("R3", 340)))
meta.df$SampID <- paste(meta.df$Condition, meta.df$Replicate, sep="_")
milo <- countCells(milo, meta.data=meta.df, samples="SampID")
milo

findNhoodGroupMarkers Identify post-hoc neighbourhood marker genes

Description

This function will perform differential gene expression analysis on groups of neighbourhoods. Ad-
jacent and concordantly DA neighbourhoods can be defined using groupNhoods or by the user.
Cells between these aggregated groups are compared. For differential gene experession based on an
input design within DA neighbourhoods see testDiffExp.

Usage

findNhoodGroupMarkers(
x,
da.res,
assay = "logcounts",
aggregate.samples = FALSE,
sample_col = NULL,
subset.row = NULL,
gene.offset = TRUE,
subset.nhoods = NULL,
subset.groups = NULL,
na.function = "na.pass"

)

Arguments

x A Milo object containing single-cell gene expression and neighbourhoods.

da.res A data.frame containing DA results, as expected from running testNhoods, as
a NhoodGroup column specifying the grouping of neighbourhoods, as expected
from

14 findNhoodGroupMarkers

assay A character scalar determining which assays slot to extract from the Milo ob-
ject to use for DGE testing.

aggregate.samples

logical indicating wheather the expression values for cells in the same sample
and neighbourhood group should be merged for DGE testing. This allows to
perform testing exploiting the replication structure in the experimental design,
rather than treating single-cells as independent replicates. The function used for
aggregation depends on the selected gene expression assay: if assay="counts"
the expression values are summed, otherwise we take the mean.

sample_col a character scalar indicating the column in the colData storing sample informa-
tion (only relevant if aggregate.samples==TRUE)

subset.row A logical, integer or character vector indicating the rows of x to use for sumam-
rizing over cells in neighbourhoods.

gene.offset A logical scalar the determines whether a per-cell offset is provided in the DGE
GLM to adjust for the number of detected genes with expression > 0.

subset.nhoods A logical, integer or character vector indicating which neighbourhoods to subset
before aggregation and DGE testing (default: NULL).

subset.groups A character vector indicating which groups to test for markers (default: NULL)

na.function A valid NA action function to apply, should be one of na.fail, na.omit,
na.exclude, na.pass.

Details

Using a one vs. all approach, each aggregated group of cells is compared to all others using the
single-cell log normalized gene expression with a GLM (for details see limma-package), or the
single-cell counts using a negative binomial GLM (for details see edgeR-package). When using
the latter it is recommended to set gene.offset=TRUE as this behaviour adjusts the model offsets
by the number of detected genes in each cell.

Value

A data.frame of DGE results containing a log fold change and adjusted p-value for each aggre-
gated group of neighbourhoods. If return.groups then the return value is a list with the slots
groups and dge containing the aggregated neighbourhood groups per single-cell and marker gene
results, respectively.

Warning: If all neighbourhoods are grouped together, then it is impossible to run findNhoodMarkers.
In this (hopefully rare) instance, this function will return a warning and return NULL.

Examples

NULL

findNhoodMarkers 15

findNhoodMarkers Identify post-hoc neighbourhood marker genes

Description

This function will perform differential gene expression analysis on differentially abundant neigh-
bourhoods, by first aggregating adjacent and concordantly DA neighbourhoods, then comparing
cells between these aggregated groups. For differential gene experession based on an input design
within DA neighbourhoods see testDiffExp.

Arguments

x A Milo object containing single-cell gene expression and neighbourhoods.

da.res A data.frame containing DA results, as expected from running testNhoods.

da.fdr A numeric scalar that determines at what FDR neighbourhoods are declared DA
for the purposes of aggregating across concorantly DA neighbourhoods.

assay A character scalar determining which assays slot to extract from the Milo ob-
ject to use for DGE testing.

aggregate.samples

logical indicating wheather the expression values for cells in the same sample
and neighbourhood group should be merged for DGE testing. This allows to
perform testing exploiting the replication structure in the experimental design,
rather than treating single-cells as independent replicates. The function used for
aggregation depends on the selected gene expression assay: if assay="counts"
the expression values are summed, otherwise we take the mean.

sample_col a character scalar indicating the column in the colData storing sample informa-
tion (only relevant if aggregate.samples==TRUE)

overlap A scalar integer that determines the number of cells that must overlap between
adjacent neighbourhoods for merging.

lfc.threshold A scalar that determines the absolute log fold change above which neighbour-
hoods should be considerd ’DA’ for merging. Default=NULL

merge.discord A logical scalar that overrides the default behaviour and allows adjacent neigh-
bourhoods to be merged if they have discordant log fold change signs. Using
this argument is generally discouraged, but may be useful for constructing an
empirical null group of cells, regardless of DA sign.

subset.row A logical, integer or character vector indicating the rows of x to use for sumam-
rizing over cells in neighbourhoods.

gene.offset A logical scalar the determines whether a per-cell offset is provided in the DGE
GLM to adjust for the number of detected genes with expression > 0.

return.groups A logical scalar that returns a data.frame of the aggregated groups per single-
cell. Cells that are members of non-DA neighbourhoods contain NA values.

subset.nhoods A logical, integer or character vector indicating which neighbourhoods to subset
before aggregation and DGE testing.

16 findNhoodMarkers

na.function A valid NA action function to apply, should be one of na.fail, na.omit,
na.exclude, na.pass.

compute.new A logical scalar indicating whether to force computing a new neighbourhood
adjacency matrix if already present.

Details

Louvain clustering is applied to the neighbourhood graph. This graph is first modified based on
two criteria: 1) neighbourhoods share at least overlap number of cells, and 2) the DA log fold
change sign is concordant. This behaviour can be modulated by setting overlap to be more or less
stringent. Additionally, a threshold on the log fold-changes can be set, such that lfc.threshold
is required to retain edges between adjacent neighbourhoods. Note: adjacent neighbourhoods will
never be merged with opposite signs.

Using a one vs. all approach, each aggregated group of cells is compared to all others using the
single-cell log normalized gene expression with a GLM (for details see limma-package), or the
single-cell counts using a negative binomial GLM (for details see edgeR-package). When using
the latter it is recommended to set gene.offset=TRUE as this behaviour adjusts the model offsets
by the number of detected genes in each cell.

Value

A data.frame of DGE results containing a log fold change and adjusted p-value for each aggre-
gated group of neighbourhoods. If return.groups then the return value is a list with the slots
groups and dge containing the aggregated neighbourhood groups per single-cell and marker gene
results, respectively.

Warning: If all neighbourhoods are grouped together, then it is impossible to run findNhoodMarkers.
In this (hopefully rare) instance, this function will return a warning and return NULL.

Author(s)

Mike Morgan & Emma Dann

Examples

library(SingleCellExperiment)
ux.1 <- matrix(rpois(12000, 5), ncol=400)
ux.2 <- matrix(rpois(12000, 4), ncol=400)
ux <- rbind(ux.1, ux.2)
vx <- log2(ux + 1)
pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList(PCA=pca$x))

colnames(sce) <- paste0("Cell", seq_len(ncol(sce)))
milo <- Milo(sce)
milo <- buildGraph(milo, k=20, d=10, transposed=TRUE)
milo <- makeNhoods(milo, k=20, d=10, prop=0.3)
milo <- calcNhoodDistance(milo, d=10)

cond <- rep("A", ncol(milo))

fitGeneticPLGlmm 17

cond.a <- sample(seq_len(ncol(milo)), size=floor(ncol(milo)*0.25))
cond.b <- setdiff(seq_len(ncol(milo)), cond.a)
cond[cond.b] <- "B"
meta.df <- data.frame(Condition=cond, Replicate=c(rep("R1", 132), rep("R2", 132), rep("R3", 136)))
meta.df$SampID <- paste(meta.df$Condition, meta.df$Replicate, sep="_")
milo <- countCells(milo, meta.data=meta.df, samples="SampID")

test.meta <- data.frame("Condition"=c(rep("A", 3), rep("B", 3)), "Replicate"=rep(c("R1", "R2", "R3"), 2))
test.meta$Sample <- paste(test.meta$Condition, test.meta$Replicate, sep="_")
rownames(test.meta) <- test.meta$Sample
da.res <- testNhoods(milo, design=~0 + Condition, design.df=test.meta[colnames(nhoodCounts(milo)),])

nhood.dge <- findNhoodMarkers(milo, da.res, overlap=1, compute.new=TRUE)
nhood.dge

fitGeneticPLGlmm GLMM parameter estimation using pseudo-likelihood with a custom
covariance matrix

Description

Iteratively estimate GLMM fixed and random effect parameters, and variance component parame-
ters using Fisher scoring based on the Pseudo-likelihood approximation to a Normal loglihood. This
function incorporates a user-defined covariance matrix, e.g. a kinship matrix for genetic analyses.

Usage

fitGeneticPLGlmm(
Z,
X,
K,
muvec,
offsets,
curr_beta,
curr_theta,
curr_u,
curr_sigma,
curr_G,
y,
u_indices,
theta_conv,
rlevels,
curr_disp,
REML,
maxit,
solver,
vardist

)

18 fitGeneticPLGlmm

Arguments

Z mat - sparse matrix that maps random effect variable levels to observations

X mat - sparse matrix that maps fixed effect variables to observations

K mat - sparse matrix that defines the known covariance patterns between indi-
vidual observations. For example, a kinship matrix will then adjust for the
known/estimated genetic relationships between observations.

muvec vec vector of estimated phenotype means

offsets vec vector of model offsets

curr_beta vec vector of initial beta estimates

curr_theta vec vector of initial parameter estimates

curr_u vec of initial u estimates

curr_sigma vec of initial sigma estimates

curr_G mat c X c matrix of variance components

y vec of observed counts

u_indices List a List, each element contains the indices of Z relevant to each RE and all its
levels

theta_conv double Convergence tolerance for paramter estimates

rlevels List containing mapping of RE variables to individual levels

curr_disp double Dispersion parameter estimate

REML bool - use REML for variance component estimation

maxit int maximum number of iterations if theta_conv is FALSE

solver string which solver to use - either HE (Haseman-Elston regression) or Fisher
scoring

vardist string which variance form to use NB = negative binomial, P=Poisson [not yet
implemented]/

Details

Fit a NB-GLMM to the counts provided in y. The model uses an iterative approach that switches
between the joint fixed and random effect parameter inference, and the variance component estima-
tion. A pseudo-likelihood approach is adopted to minimise the log-likelihood of the model given
the parameter estimates. The fixed and random effect parameters are estimated using Hendersons
mixed model equations, and the variance component parameters are then estimated with the speci-
fied solver, i.e. Fisher scoring, Haseman-Elston or constrained Haseman-Elston regression. As the
domain of the variance components is [0, +Inf], any negative variance component estimates will
trigger the switch to the HE-NNLS solver until the model converges.

Value

A list containing the following elements (note: return types are dictated by Rcpp, so the R types
are described here):

FE: numeric vector of fixed effect parameter estimates.

fitGLMM 19

RE: list of the same length as the number of random effect variables. Each slot contains the best
linear unbiased predictors (BLUPs) for the levels of the corresponding RE variable.

Sigma: numeric vector of variance component estimates, 1 per random effect variable. For this
model the last variance component corresponds to the input K matrix.

converged: logical scalar of whether the model has reached the convergence tolerance or not.

Iters: numeric scalar with the number of iterations that the model ran for. Is strictly <= max.iter.

Dispersion: numeric scalar of the dispersion estimate computed off-line

Hessian: matrix of 2nd derivative elements from the fixed and random effect parameter inference.

SE: matrix of standard error estimates, derived from the hessian, i.e. the square roots of the
diagonal elements.

t: numeric vector containing the compute t-score for each fixed effect variable.

COEFF: matrix containing the coefficient matrix from the mixed model equations.

P: matrix containing the elements of the REML projection matrix.

Vpartial: list containing the partial derivatives of the (pseudo)variance matrix with respect to
each variance component.

Ginv: matrix of the inverse variance components broadcast to the full Z matrix.

Vsinv: matrix of the inverse pseudovariance.

Winv: matrix of the inverse elements of W = D^-1 V D^-1

VCOV: matrix of the variance-covariance for all model fixed and random effect variable parameter
estimates. This is required to compute the degrees of freedom for the fixed effect parameter
inference.

CONVLIST: list of list containing the parameter estimates and differences between current and
previous iteration estimates at each model iteration. These are included for each fixed effect,
random effect and variance component parameter. The list elements for each iteration are:
ThetaDiff, SigmaDiff, beta, u, sigma.

Author(s)

Mike Morgan

Examples

NULL

fitGLMM Perform differential abundance testing using a NB-generalised linear
mixed model

Description

This function will perform DA testing per-nhood using a negative binomial generalised linear mixed
model

20 fitGLMM

Usage

fitGLMM(
X,
Z,
y,
offsets,
init.theta = NULL,
Kin = NULL,
random.levels = NULL,
REML = FALSE,
glmm.control = list(theta.tol = 1e-06, max.iter = 100, init.sigma = NULL, init.beta =

NULL, init.u = NULL, solver = NULL),
dispersion = 1,
geno.only = FALSE,
intercept.type = "fixed",
solver = NULL

)

Arguments

X A matrix containing the fixed effects of the model.

Z A matrix containing the random effects of the model.

y A matrix containing the observed phenotype over each neighborhood.

offsets A vector containing the (log) offsets to apply normalisation for different num-
bers of cells across samples.

init.theta A column vector (m X 1 matrix) of initial estimates of fixed and random effect
coefficients

Kin A n x n covariance matrix to explicitly model variation between observations

random.levels A list describing the random effects of the model, and for each, the different
unique levels.

REML A logical value denoting whether REML (Restricted Maximum Likelihood)
should be run. Default is TRUE.

glmm.control A list containing parameter values specifying the theta tolerance of the model,
the maximum number of iterations to be run, initial parameter values for the
fixed (init.beta) and random effects (init.u), and glmm solver (see details).

dispersion A scalar value for the initial dispersion of the negative binomial.

geno.only A logical value that flags the model to use either just the matrix ‘Kin‘ or the
supplied random effects.

intercept.type A character scalar, either fixed or random that sets the type of the global intercept
variable in the model. This only applies to the GLMM case where additional ran-
dom effects variables are already included. Setting intercept.type="fixed"
or intercept.type="random" will require the user to test their model for fail-
ures with each. In the case of using a kinship matrix, intercept.type="fixed"
is set automatically.

fitGLMM 21

solver a character value that determines which optimisation algorithm is used for the
variance components. Must be either HE (Haseman-Elston regression) or Fisher
(Fisher scoring).

Details

This function runs a negative binomial generalised linear mixed effects model. If mixed effects are
detected in testNhoods, this function is run to solve the model. The solver defaults to the Fisher op-
timiser, and in the case of negative variance estimates it will switch to the non-negative least squares
(NNLS) Haseman-Elston solver. This behaviour can be pre-set by passing glmm.control$solver="HE"
for Haseman-Elston regression, which is the recommended solver when a covariance matrix is pro-
vided, or glmm.control$solver="HE-NNLS" which is the constrained HE optimisation algorithm.

Value

A list containing the GLMM output, including inference results. The list elements are as follows:

FE: numeric vector of fixed effect parameter estimates.

RE: list of the same length as the number of random effect variables. Each slot contains the best
linear unbiased predictors (BLUPs) for the levels of the corresponding RE variable.

Sigma: numeric vector of variance component estimates, 1 per random effect variable.

converged: logical scalar of whether the model has reached the convergence tolerance or not.

Iters: numeric scalar with the number of iterations that the model ran for. Is strictly <= max.iter.

Dispersion: numeric scalar of the dispersion estimate computed off-line

Hessian: matrix of 2nd derivative elements from the fixed and random effect parameter inference.

SE: matrix of standard error estimates, derived from the hessian, i.e. the square roots of the
diagonal elements.

t: numeric vector containing the compute t-score for each fixed effect variable.

COEFF: matrix containing the coefficient matrix from the mixed model equations.

P: matrix containing the elements of the REML projection matrix.

Vpartial: list containing the partial derivatives of the (pseudo)variance matrix with respect to
each variance component.

Ginv: matrix of the inverse variance components broadcast to the full Z matrix.

Vsinv: matrix of the inverse pseudovariance.

Winv: matrix of the inverse elements of W = D^-1 V D^-1

VCOV: matrix of the variance-covariance for all model fixed and random effect variable parameter
estimates. This is required to compute the degrees of freedom for the fixed effect parameter
inference.

DF: numeric vector of the number of inferred degrees of freedom. For details see Satterthwaite_df.

PVALS: numeric vector of the compute p-values from a t-distribution with the inferred number of
degrees of freedom.

ERROR: list containing Rcpp error messages - used for internal checking.

22 fitPLGlmm

Author(s)

Mike Morgan

Examples

data(sim_nbglmm)
random.levels <- list("RE1"=paste("RE1", levels(as.factor(sim_nbglmm$RE1)), sep="_"),

"RE2"=paste("RE2", levels(as.factor(sim_nbglmm$RE2)), sep="_"))
X <- as.matrix(data.frame("Intercept"=rep(1, nrow(sim_nbglmm)), "FE2"=as.numeric(sim_nbglmm$FE2)))
Z <- as.matrix(data.frame("RE1"=paste("RE1", as.numeric(sim_nbglmm$RE1), sep="_"),

"RE2"=paste("RE2", as.numeric(sim_nbglmm$RE2), sep="_")))
y <- sim_nbglmm$Mean.Count
dispersion <- 0.5

glmm.control <- glmmControl.defaults()
glmm.control$theta.tol <- 1e-6
glmm.control$max.iter <- 15
model.list <- fitGLMM(X=X, Z=Z, y=y, offsets=rep(0, nrow(X)), random.levels=random.levels,

REML = TRUE, glmm.control=glmm.control, dispersion=dispersion, solver="Fisher")
model.list

fitPLGlmm GLMM parameter estimation using pseudo-likelihood

Description

Iteratively estimate GLMM fixed and random effect parameters, and variance component parame-
ters using Fisher scoring based on the Pseudo-likelihood approximation to a Normal loglihood.

Usage

fitPLGlmm(
Z,
X,
muvec,
offsets,
curr_beta,
curr_theta,
curr_u,
curr_sigma,
curr_G,
y,
u_indices,
theta_conv,
rlevels,
curr_disp,
REML,

fitPLGlmm 23

maxit,
solver,
vardist

)

Arguments

Z mat - sparse matrix that maps random effect variable levels to observations

X mat - sparse matrix that maps fixed effect variables to observations

muvec vec vector of estimated phenotype means

offsets vec vector of model offsets

curr_beta vec vector of initial beta estimates

curr_theta vec vector of initial parameter estimates

curr_u vec of initial u estimates

curr_sigma vec of initial sigma estimates

curr_G mat c X c matrix of variance components

y vec of observed counts

u_indices List a List, each element contains the indices of Z relevant to each RE and all its
levels

theta_conv double Convergence tolerance for paramter estimates

rlevels List containing mapping of RE variables to individual levels

curr_disp double Dispersion parameter estimate

REML bool - use REML for variance component estimation

maxit int maximum number of iterations if theta_conv is FALSE

solver string which solver to use - either HE (Haseman-Elston regression) or Fisher
scoring

vardist string which variance form to use NB = negative binomial, P=Poisson [not yet
implemented.]

Details

Fit a NB-GLMM to the counts provided in y. The model uses an iterative approach that switches
between the joint fixed and random effect parameter inference, and the variance component estima-
tion. A pseudo-likelihood approach is adopted to minimise the log-likelihood of the model given
the parameter estimates. The fixed and random effect parameters are estimated using Hendersons
mixed model equations, and the variance component parameters are then estimated with the speci-
fied solver, i.e. Fisher scoring, Haseman-Elston or constrained Haseman-Elston regression. As the
domain of the variance components is [0, +Inf], any negative variance component estimates will
trigger the switch to the HE-NNLS solver until the model converges.

24 fitPLGlmm

Value

A list containing the following elements (note: return types are dictated by Rcpp, so the R types
are described here):

FE: numeric vector of fixed effect parameter estimates.

RE: list of the same length as the number of random effect variables. Each slot contains the best
linear unbiased predictors (BLUPs) for the levels of the corresponding RE variable.

Sigma: numeric vector of variance component estimates, 1 per random effect variable.

converged: logical scalar of whether the model has reached the convergence tolerance or not.

Iters: numeric scalar with the number of iterations that the model ran for. Is strictly <= max.iter.

Dispersion: numeric scalar of the dispersion estimate computed off-line

Hessian: matrix of 2nd derivative elements from the fixed and random effect parameter inference.

SE: matrix of standard error estimates, derived from the hessian, i.e. the square roots of the
diagonal elements.

t: numeric vector containing the compute t-score for each fixed effect variable.

COEFF: matrix containing the coefficient matrix from the mixed model equations.

P: matrix containing the elements of the REML projection matrix.

Vpartial: list containing the partial derivatives of the (pseudo)variance matrix with respect to
each variance component.

Ginv: matrix of the inverse variance components broadcast to the full Z matrix.

Vsinv: matrix of the inverse pseudovariance.

Winv: matrix of the inverse elements of W = D^-1 V D^-1

VCOV: matrix of the variance-covariance for all model fixed and random effect variable parameter
estimates. This is required to compute the degrees of freedom for the fixed effect parameter
inference.

CONVLIST: list of list containing the parameter estimates and differences between current and
previous iteration estimates at each model iteration. These are included for each fixed effect,
random effect and variance component parameter. The list elements for each iteration are:
ThetaDiff, SigmaDiff, beta, u, sigma.

Author(s)

Mike Morgan

Examples

NULL

glmmControl.defaults 25

glmmControl.defaults glmm control default values

Description

This will give the default values for the GLMM solver

Usage

glmmControl.defaults(...)

Arguments

... see fitGLMM for details

Details

The default values for the parameter estimation convergence is 1e-6, and the maximum number of
iterations is 100. In practise if the solver converges it generally does so fairly quickly on moderately
well conditioned problems. The default solver is Fisher scoring, but this will switch (with a warning
produced) to the NNLS Haseman-Elston solver if negative variance estimates are found.

Value

list containing the default values GLMM solver. This can be saved in the user environment and
then passed to testNhoods directly to modify the convergence criteria of the solver that is used.

theta.tol: numeric scalar that sets the convergence threshold for the parameter inference - this
is applied globally to fixed and random effect parameters, and to the variance estimates.

max.iter: numeric scalar that sets the maximum number of iterations that the NB-GLMM will
run for.

solver: character scalar that sets the solver to use. Valid values are Fisher, HE or HE-NNLS.
See fitGLMM for details.

Author(s)

Mike Morgan

Examples

mmcontrol <- glmmControl.defaults()
mmcontrol
mmcontrol$solver <- "HE-NNLS"
mmcontrol

26 graphSpatialFDR

graphSpatialFDR Control the spatial FDR

Description

Borrowing heavily from cydar which corrects for multiple-testing using a weighting scheme based
on the volumetric overlap over hyperspheres. In the instance of graph neighbourhoods this weight-
ing scheme can use graph connectivity or incorpate different within-neighbourhood distances for
the weighted FDR calculation.

Arguments

x.nhoods A list of vertices and the constituent vertices of their neighbourhood

graph The kNN graph used to define the neighbourhoods

pvalues A vector of p-values calculated from a GLM or other appropriate statistical test
for differential neighbourhood abundance

k A numeric integer that determines the kth nearest neighbour distance to use for
the weighted FDR. Only applicaple when using weighting="k-distance".

weighting A string scalar defining which weighting scheme to use. Choices are: max,
k-distance, neighbour-distance or graph-overlap.

reduced.dimensions

(optional) A matrix of cells X reduced dimensions used to calculate the kNN
graph. Only necessary if this function is being used outside of testNhoods
where the Milo object is not available

distances (optional) A matrix of cell-to-cell distances or a list of distance matrices, 1
per neighbourhood. Only necessary if this function is being used outside of
testNhoods where the Milo object is not available.

indices (optional) A list of neighbourhood index vertices in the same order as the input
neighbourhoods. Only used for the k-distance weighting.

Details

Each neighbourhood is weighted according to the weighting scheme defined. k-distance uses
the distance to the kth nearest neighbour of the index vertex, neighbour-distance uses the aver-
age within-neighbourhood Euclidean distance in reduced dimensional space, max uses the largest
within-neighbourhood distance from the index vertex, and graph-overlap uses the total number of
cells overlapping between neighborhoods (distance-independent measure). The frequency-weighted
version of the BH method is then applied to the p-values, as in cydar.

Value

A vector of adjusted p-values

Author(s)

Adapted by Mike Morgan, original function by Aaron Lun

groupNhoods 27

Examples

NULL

groupNhoods Group neighbourhoods

Description

This function groups overlapping and concordantly DA neighbourhoods, using the louvain commu-
nity detection algorithm.

Usage

groupNhoods(
x,
da.res,
da.fdr = 0.1,
overlap = 1,
max.lfc.delta = NULL,
merge.discord = FALSE,
subset.nhoods = NULL,
compute.new = FALSE,
na.function = "na.pass",
original.behaviour = TRUE

)

Arguments

x A Milo object containing single-cell gene expression and neighbourhoods.

da.res A data.frame containing DA results, as expected from running testNhoods.

da.fdr A numeric scalar that determines at what FDR neighbourhoods are declared DA
for the purposes of aggregating across concorantly DA neighbourhoods.

overlap A scalar integer that determines the number of cells that must overlap between
adjacent neighbourhoods for merging.

max.lfc.delta A scalar that determines the absolute difference in log fold change below which
neighbourhoods should not be considered adjacent. Default=NULL

merge.discord A logical scalar that overrides the default behaviour and allows adjacent neigh-
bourhoods to be merged if they have discordant log fold change signs. Using
this argument is generally discouraged, but may be useful for constructing an
empirical null group of cells, regardless of DA sign.

subset.nhoods A logical, integer or character vector indicating which neighbourhoods to subset
before grouping. All other neighbourhoods will be assigned NA

compute.new A logical scalar indicating whether to force computing a new neighbourhood
adjacency matrix if already present.

28 initialiseG

na.function A valid NA action function to apply, should be one of na.fail, na.omit,
na.exclude, na.pass (default=’na.pass’).

original.behaviour

A logical scalar indicating whether to use the original nhood grouping behaviour
that can give rise to nhood groups with discordant LFC. If original.behaviour=FALSE
then the more intuitive functionality that forces nhood groups to have only con-
cordant LFC signs.

Details

Louvain clustering is applied to the neighbourhood graph. This graph is first modified based on
two criteria: 1) neighbourhoods share at least overlap number of cells, and 2) the DA log fold
change sign is concordant. This behaviour can be modulated by setting overlap to be more or less
stringent. Additionally, a threshold on the log fold-changes can be set, such that max.lfc.delta
is required to retain edges between adjacent neighbourhoods. Note: adjacent neighbourhoods will
never be merged with opposite signs.

Value

A data.frame of model results (as da.res input) with a new column storing the assigned group
label for each neighbourhood (NhoodGroup column)

Author(s)

Emma Dann & Mike Morgan

initialiseG Construct the initial G matrix

Description

This function maps the variance estimates onto the full c x q levels for each random effect. This
ensures that the matrices commute in the NB-GLMM solver. This function is included for reference,
and should not be used directly

Usage

initialiseG(cluster_levels, sigmas, Kin = NULL)

Arguments

cluster_levels A list containing the random effect levels for each variable

sigmas A matrix of c X 1, i.e. a column vector, containing the variance component
estimates

Kin A matrix containing a user-supplied covariance matrix

initializeFullZ 29

Details

Broadcast the variance component estimates to the full c*q x c*q matrix.

Value

matrix of the full broadcast variance component estimates.

Author(s)

Mike Morgan & Alice Kluzer

Examples

data(sim_nbglmm)
random.levels <- list("RE1"=paste("RE1", levels(as.factor(sim_nbglmm$RE1)), sep="_"),

"RE2"=paste("RE2", levels(as.factor(sim_nbglmm$RE2)), sep="_"))
rand.sigma <- matrix(runif(2), ncol=1)
rownames(rand.sigma) <- names(random.levels)
big.G <- initialiseG(random.levels, rand.sigma)
dim(big.G)

initializeFullZ Construct the full Z matrix

Description

Using a simplified version of the n x c Z matrix, with one column per variable, construct the fully
broadcast n x (c*q) binary matrix that maps each individual onto the random effect variable levels.
It is not intended for this function to be called by the user directly, but it can be useful to debug
mappings between random effect levels and input variables.

Usage

initializeFullZ(Z, cluster_levels, stand.cols = FALSE)

Arguments

Z A n x c matrix containing the numeric or character levels

cluster_levels A list that maps the column names of Z onto the individual levels

stand.cols A logical scalar that determines if Z* should be computed which is the row-
centered and scaled version of the full Z matrix

Details

To make sure that matrices commute it is necessary to construct the full n x c*q matrix. This is a bi-
nary matrix where each level of each random effect occupies a column, and the samples/observations
are mapped onto the correct levels based on the input Z.

30 makeNhoods

Value

matrix Fully broadcast Z matrix with one column per random effect level for all random effect
variables in the model.

Author(s)

Mike Morgan & Alice Kluzer

Examples

data(sim_nbglmm)
random.levels <- list("RE1"=paste("RE1", levels(as.factor(sim_nbglmm$RE1)), sep="_"),

"RE2"=paste("RE2", levels(as.factor(sim_nbglmm$RE2)), sep="_"))
Z <- as.matrix(data.frame("RE1"=paste("RE1", as.numeric(sim_nbglmm$RE1), sep="_"),

"RE2"=paste("RE2", as.numeric(sim_nbglmm$RE2), sep="_")))
fullZ <- initializeFullZ(Z, random.levels)
dim(Z)
dim(fullZ)

makeNhoods Define neighbourhoods on a graph (fast)

Description

This function randomly samples vertices on a graph to define neighbourhoods. These are then re-
fined by either computing the median profile for the neighbourhood in reduced dimensional space
and selecting the nearest vertex to this position (refinement_scheme = "reduced_dim"), or by com-
puting the vertex with the highest number of triangles within the neighborhood (refinement_scheme
= "graph"). Thus, multiple neighbourhoods may be collapsed down together to prevent over-
sampling the graph space.

Usage

makeNhoods(
x,
prop = 0.1,
k = 21,
d = 30,
refined = TRUE,
reduced_dims = "PCA",
refinement_scheme = "reduced_dim"

)

makeNhoods 31

Arguments

x A Milo object with a non-empty graph slot. Alternatively an igraph object on
which neighbourhoods will be defined.

prop A double scalar that defines what proportion of graph vertices to randomly sam-
ple. Must be 0 < prop < 1.

k An integer scalar - the same k used to construct the input graph.

d The number of dimensions to use if the input is a matrix of cells X reduced
dimensions.

refined A logical scalar that determines the sampling behavior, default=TRUE imple-
ments a refined sampling scheme, specified by the refinement_scheme argu-
ment.

reduced_dims If x is an Milo object, a character indicating the name of the reducedDim slot
in the Milo object to use as (default: ’PCA’). If x is an igraph object, a matrix
of vertices X reduced dimensions with rownames() set to correspond to the
cellIDs.

refinement_scheme

A character scalar that defines the sampling scheme, either "reduced_dim" or
"graph". Default is "reduced_dim".

Details

This function randomly samples graph vertices, then refines them to collapse down the number of
neighbourhoods to be tested. The refinement behaviour can be turned off by setting refine=FALSE,
however, we do not recommend this as neighbourhoods will contain a lot of redundancy and lead
to an unnecessarily larger multiple-testing burden.

Value

A Milo object containing a list of vertices and the indices of vertices that constitute the neighbour-
hoods in the nhoods slot. If the input is a igraph object then the output is a matrix containing a list
of vertices and the indices of vertices that constitute the neighbourhoods.

Author(s)

Emma Dann, Mike Morgan

Examples

require(igraph)
m <- matrix(rnorm(100000), ncol=100)
milo <- buildGraph(m, d=10)

milo <- makeNhoods(milo, prop=0.1)
milo

32 Milo-class

matrix.trace Compute the trace of a matrix

Description

Exactly what it says on the tin - compute the sum of the matrix diagonal

Usage

matrix.trace(x)

Arguments

x A matrix

Details

It computes the matrix trace of a square matrix.

Value

numeric scalar of the matrix trace.

Author(s)

Mike Morgan

Examples

matrix.trace(matrix(runif(9), ncol=3, nrow=3))

Milo-class The Milo constructor

Description

The Milo class extends the SingleCellExperiment class and is designed to work with neighbour-
hoods of cells. Therefore, it inherits from the SingleCellExperiment class and follows the same
usage conventions. There is additional support for cell-to-cell distances via distance, and the KNN-
graph used to define the neighbourhoods.

Milo-class 33

Usage

Milo(
...,
graph = list(),
nhoodDistances = Matrix(0L, sparse = TRUE),
nhoods = Matrix(0L, sparse = TRUE),
nhoodCounts = Matrix(0L, sparse = TRUE),
nhoodIndex = list(),
nhoodExpression = Matrix(0L, sparse = TRUE),
.k = NULL

)

Arguments

... Arguments passed to the Milo constructor to fill the slots of the base class. This
should be either a SingleCellExperiment or matrix of features X cells

graph An igraph object or list of adjacent vertices that represents the KNN-graph

nhoodDistances A list containing sparse matrices of cell-to-cell distances for cells in the same
neighbourhoods, one list entry per neighbourhood.

nhoods A list of graph vertices, each containing the indices of the constiuent graph
vertices in the respective neighbourhood

nhoodCounts A matrix of neighbourhood X sample counts of the number of cells in each
neighbourhood derived from the respective samples

nhoodIndex A list of cells that are the neighborhood index cells.
nhoodExpression

A matrix of gene X neighbourhood expression.

.k An integer value. The same value used to build the k-NN graph if already com-
puted.

Details

In this class the underlying structure is the gene/feature X cell expression data. The additional
slots provide a link between these single cells and the neighbourhood representation. This can be
further extended by the use of an abstracted graph for visualisation that preserves the structure of
the single-cell KNN-graph

A Milo object can also be constructed by inputting a feature X cell gene expression matrix. In this
case it simply constructs a SingleCellExperiment and fills the relevant slots, such as reducedDims.

Value

a Milo object

Author(s)

Mike Morgan

34 Milo-methods

Examples

library(SingleCellExperiment)
ux <- matrix(rpois(12000, 5), ncol=200)
vx <- log2(ux + 1)
pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList(PCA=pca$x))

milo <- Milo(sce)
milo

Milo-methods Get and set methods for Milo objects

Description

Get and set methods for Milo object slots. Generally speaking these methods are used internally, but
they allow the user to assign their own externally computed values - should be used with caution.

Value

See individual methods for return values

Getters

In the following descriptions x is always a Milo object.

graph(x): Returns an igraph object representation of the KNN-graph, with number of vertices
equal to the number of single-cells.

nhoodDistances(x): Returns a list of sparse matrix of cell-to-cell distances between nearest neigh-
bours, one list entry per neighbourhood. Largely used internally for computing the k-distance
weighting in graphSpatialFDR.

nhoodCounts(x): Returns a NxM sparse matrix of cell counts in each of N neighbourhoods with
respect to the M experimental samples defined.

nhoodExpression(x): Returns a GxN matrix of gene expression values.

nhoodIndex(x): Returns a list of the single-cells that are the neighbourhood indices.

nhoodReducedDim(x): Returns an NxP matrix of reduced dimension positions. Either generated
by projectNhoodExpression(x) or by providing an NxP matrix (see setter method below).

nhoods(x): Returns a sparse matrix of CxN mapping of C single-cells toN neighbourhoods.

nhoodGraph(x): Returns an igraph object representation of the graph of neighbourhoods, with
number of vertices equal to the number of neighbourhoods.

nhoodAdjacency(x): Returns a matrix of N by N neighbourhoods with entries of 1 where neigh-
bourhods share cells, and 0 elsewhere.

Milo-methods 35

Setters

In the following descriptions x is always a Milo object.

graph(x) <- value: Populates the graph slot with value - this should be a valid graph representa-
tion in either igraph or list format.

nhoodDistances(x) <- value: Replaces the internally comptued neighbourhood distances. This
is normally computed internally during graph building, but can be defined externally. Must
be a list with one entry per neighbourhood containing the cell-to-cell distances for the cells
within that neighbourhood.

nhoodCounts(x) <- value: Replaces the neighbourhood counts matrix. This is normally com-
puted and assigned by countCells, however, it can also be user-defined.

nhoodExpression(x) <- value: Replaces the nhoodExpression slot. This is calculated inter-
nally by calcNhoodExpression, which calculates the mean expression. An alternative sum-
mary function can be used to assign an alternative in this way.

nhoodIndex(x) <- value: Replaces the list of neighbourhood indices. This is provided purely for
completeness, and is usually only set internally in makeNhoods.

nhoodReducedDim(x) <- value: Replaces the reduced dimensional representation or projection of
neighbourhoods. This can be useful for externally computed projections or representations.

nhoods(x) <- value: Replaces the neighbourhood matrix. Generally use of this function is dis-
couraged, however, it may be useful for users to define their own bespoke neighbourhoods by
some means.

nhoodGraph(x) <- value: Populates the nhoodGraph slot with value - this should be a valid
graph representation in either igraph or list format.

nhoodAdjacency(x) <- value: Populates the nhoodAdjacency slot with value - this should be a
N by N matrix with elements denoting which neighbourhoods share cells

Miscellaneous

A collection of non-getter and setter methods that operate on Milo objects.

show(x): Prints information to the console regarding the Milo object.

Author(s)

Mike Morgan

Examples

example(Milo, echo=FALSE)
show(milo)

36 plotDAbeeswarm

miloR miloR

Description

Milo performs single-cell differential abundance testing. Cell states are modelled as representative
neighbourhoods on a nearest neighbour graph. Hypothesis testing is performed using a negative
bionomial generalized linear model.

plotDAbeeswarm Visualize DA results as a beeswarm plot

Description

This function constructs a beeswarm plot using the ggplot engine to visualise the distribution of log
fold changes across neighbourhood annotations.

Usage

plotDAbeeswarm(da.res, group.by = NULL, alpha = 0.1, subset.nhoods = NULL)

Arguments

da.res a data.frame of DA testing results

group.by a character scalar determining which column of da.res to use for grouping.
This can be a column added to the DA testing results using the ‘annotateNhoods‘
function. If da.res[,group.by] is a character or a numeric, the function will
coerce it to a factor (see details) (default: NULL, no grouping)

alpha significance level for Spatial FDR (default: 0.1)

subset.nhoods A logical, integer or character vector indicating a subset of nhoods to show in
plot (default: NULL, no subsetting)

Details

The group.by variable will be coerced to a factor. If you want the variables in group.by to be in a
given order make sure you set the column to a factor with the levels in the right order before running
the function.

Value

a ggplot object

Author(s)

Emma Dann

plotNhoodCounts 37

Examples

NULL

plotNhoodCounts Plot the number of cells in a neighbourhood per sample and condition

Description

Plot the number of cells in a neighbourhood per sample and condition

Usage

plotNhoodCounts(x, subset.nhoods, design.df, condition, n_col = 3)

Arguments

x A Milo object with a non-empty nhoodCounts slot.

subset.nhoods A logical, integer or character vector indicating the rows of nhoodCounts(x)
to use for plotting. If you use a logical vector, make sure the length matches
nrow(nhoodCounts(x)).

design.df A data.frame which matches samples to a condition of interest. The row names
should correspond to the samples. You can use the same design.df that you
already used in the testNhoods function.

condition String specifying the condition of interest Has to be a column in the design.

n_col Number of columns in the output ggplot.

Value

A ggplot-class object

Author(s)

Nick Hirschmüller

Examples

require(SingleCellExperiment)
ux.1 <- matrix(rpois(12000, 5), ncol=300)
ux.2 <- matrix(rpois(12000, 4), ncol=300)
ux <- rbind(ux.1, ux.2)
vx <- log2(ux + 1)
pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList(PCA=pca$x))

milo <- Milo(sce)

38 plotNhoodExpressionDA

milo <- buildGraph(milo, k=20, d=10, transposed=TRUE)
milo <- makeNhoods(milo, k=20, d=10, prop=0.3)
milo <- calcNhoodDistance(milo, d=10)

cond <- sample(c("A","B","C"),300,replace=TRUE)

meta.df <- data.frame(Condition=cond, Replicate=c(rep("R1", 100), rep("R2", 100), rep("R3", 100)))
meta.df$SampID <- paste(meta.df$Condition, meta.df$Replicate, sep="_")
milo <- countCells(milo, meta.data=meta.df, samples="SampID")

design.mtx <- data.frame("Condition"=c(rep("A", 3), rep("B", 3), rep("C",3)),
"Replicate"=rep(c("R1", "R2", "R3"), 3))

design.mtx$SampID <- paste(design.mtx$Condition, design.mtx$Replicate, sep="_")
rownames(design.mtx) <- design.mtx$SampID

plotNhoodCounts(x = milo,
subset.nhoods = c(1,2),
design.df = design.mtx,
condition = "Condition")

plotNhoodExpressionDA Visualize gene expression in neighbourhoods

Description

Plots the average gene expression in neighbourhoods, sorted by DA fold-change

Plots the average gene expression in neighbourhood groups

Usage

plotNhoodExpressionDA(
x,
da.res,
features,
alpha = 0.1,
subset.nhoods = NULL,
cluster_features = FALSE,
assay = "logcounts",
scale_to_1 = FALSE,
show_rownames = TRUE,
highlight_features = NULL

)

plotNhoodExpressionGroups(
x,
da.res,
features,

plotNhoodExpressionDA 39

alpha = 0.1,
subset.nhoods = NULL,
cluster_features = FALSE,
assay = "logcounts",
scale_to_1 = FALSE,
show_rownames = TRUE,
highlight_features = NULL,
grid.space = "free"

)

Arguments

x A Milo object
da.res a data.frame of DA testing results
features a character vector of features to plot (they must be in rownames(x))
alpha significance level for Spatial FDR (default: 0.1)
subset.nhoods A logical, integer or character vector indicating a subset of nhoods to show in

plot (default: NULL, no subsetting)
cluster_features

logical indicating whether features should be clustered with hierarchical cluster-
ing. If FALSE then the order in features is maintained (default: FALSE)

assay A character scalar that describes the assay slot to use for calculating neighbour-
hood expression. (default: logcounts) Of note: neighbourhood expression will
be computed only if the requested features are not in the nhoodExpression slot
of the milo object. If you wish to plot average neighbourhood expression from
a different assay, you should run calcNhoodExpression(x) with the desired
assay.

scale_to_1 A logical scalar to re-scale gene expression values between 0 and 1 for visuali-
sation.

show_rownames A logical scalar whether to plot rownames or not. Generally useful to set this to
show_rownames=FALSE when plotting many genes.

highlight_features

A character vector of feature names that should be highlighted on the right side
of the heatmap. Generally useful in conjunction to show_rownames=FALSE, if
you are interested in only a few features

grid.space a character setting the space parameter for facet.grid ('fixed' for equally
sized facets, 'free' to adapt the size of facent to number of neighbourhoods in
group)

Value

a ggplot object

a ggplot object

Author(s)

Emma Dann

40 plotNhoodGraph

Examples

NULL

NULL

plotNhoodGraph Plot graph of neighbourhood

Description

Visualize graph of neighbourhoods

Usage

plotNhoodGraph(
x,
layout = "UMAP",
colour_by = NA,
subset.nhoods = NULL,
size_range = c(0.5, 3),
node_stroke = 0.3,
is.da = FALSE,
highlight.da = FALSE,
...

)

Arguments

x A Milo object

layout this can be (a) a character indicating the name of the reducedDim slot in the
Milo object to use for layout (default: ’UMAP’) (b) an igraph layout object

colour_by this can be a data.frame of milo results or a character corresponding to a column
in colData

subset.nhoods A logical, integer or character vector indicating a subset of nhoods to show in
plot (default: NULL, no subsetting). This is necessary if testNhoods was run
using subset.nhoods=....

size_range a numeric vector indicating the range of node sizes to use for plotting (to avoid
overplotting in the graph)

node_stroke a numeric indicating the desired thickness of the border around each node

is.da logical scalar that tells plotNhoodGraph to order nhoods by |LFC| which can
help to visually emphasise which nhoods are DA.

plotNhoodGraphDA 41

highlight.da logical or numeric scalar that emphasises the DA nhoods in the layout by adjust-
ing the transparency of the non-DA nhoods. Can only be used if is.da=TRUE,
otherwise will give a warning. If highlight.da is a numeric then it explicitly sets
the transparency level (must be between 0 and 1). If highlight.da is logical then
the transparency is set to 0.1

... arguments to pass to ggraph

Value

a ggplot-class object

Author(s)

Emma Dann

Examples

NULL

plotNhoodGraphDA Plot Milo results on graph of neighbourhood

Description

Visualize log-FC estimated with differential nhood abundance testing on embedding of original
single-cell dataset.

Usage

plotNhoodGraphDA(x, milo_res, alpha = 0.05, res_column = "logFC", ...)

Arguments

x A Milo object

milo_res a data.frame of milo results

alpha significance level for Spatial FDR (default: 0.05)

res_column which column of milo_res object to use for color (default: logFC)

... arguments to pass to plotNhoodGraph

Value

a ggplot object

Author(s)

Emma Dann

42 plotNhoodGroups

Examples

NULL

plotNhoodGroups Plot graph of neighbourhoods coloring by nhoodGroups

Description

Visualize grouping of neighbourhoods obtained with groupNhoods

Usage

plotNhoodGroups(x, milo_res, show_groups = NULL, ...)

Arguments

x A Milo object

milo_res a data.frame of milo results containing the nhoodGroup column

show_groups a character vector indicating which groups to plot all other neighbourhoods will
be gray

... arguments to pass to plotNhoodGraph

Value

a ggplot object

Author(s)

Emma Dann

Examples

NULL

plotNhoodMA 43

plotNhoodMA Visualize DA results as an MAplot

Description

Make an MAplot to visualise the relationship between DA log fold changes and neighbourhood
abundance. This is a useful way to diagnose issues with the DA testing, such as large compositional
biases and/or issues relating to large imbalances in numbers of cells between condition labels/levels.

Usage

plotNhoodMA(da.res, alpha = 0.05, null.mean = 0)

Arguments

da.res A data.frame of DA testing results

alpha A numeric scalar that represents the Spatial FDR threshold for statistical signif-
icance.

null.mean A numeric scalar determining the expected value of the log fold change under
the null hypothesis. default=0.

Details

MA plots provide a useful means to evaluate the distribution of log fold changes after differential
abundance testing. In particular, they can be used to diagnose global shifts that occur in the presence
of confounding between the number of cells acquired and the experimental variable of interest. The
expected null value for the log FC distribution (grey dashed line), along with the mean observed
log fold change for non-DA neighbourhoods (purple dashed line) are plotted for reference. The
deviation between these two lines can give an indication of biases in the results, such as in the
presence of a single strong region of DA leading to an increase in false positive DA neighbourhoods
in the opposite direction.

Value

a ggplot object

Author(s)

Mike Morgan

Examples

NULL

44 plotNhoodSizeHist

plotNhoodSizeHist Plot histogram of neighbourhood sizes

Description

This function plots the histogram of the number of cells belonging to each neighbourhood

Usage

plotNhoodSizeHist(milo, bins = 50)

Arguments

milo A Milo object with a non-empty nhoods slot.

bins number of bins for geom_histogram

Value

A ggplot-class object

Author(s)

Emma Dann

Examples

require(igraph)
require(SingleCellExperiment)
ux.1 <- matrix(rpois(12000, 5), ncol=400)
ux.2 <- matrix(rpois(12000, 4), ncol=400)
ux <- rbind(ux.1, ux.2)
vx <- log2(ux + 1)
pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList(PCA=pca$x))

colnames(sce) <- paste0("Cell", seq_len(ncol(sce)))
milo <- Milo(sce)
milo <- buildGraph(milo, k=20, d=10, transposed=TRUE)

milo <- makeNhoods(milo, d=10, prop=0.1)
plotNhoodSizeHist(milo)

Satterthwaite_df 45

Satterthwaite_df Compute degrees of freedom using Satterthwaite method

Description

This function is not intended to be called by the user, and is included for reference

Usage

Satterthwaite_df(
coeff.mat,
mint,
cint,
SE,
curr_sigma,
curr_beta,
V_partial,
V_a,
G_inv,
random.levels

)

Arguments

coeff.mat A matrix class object containing the coefficient matrix from the mixed model
equations

mint A numeric scalar of the number of fixed effect variables in the model

cint A numeric scalar of the number of random effect variables in the model

SE A 1 x mint matrix, i.e. column vector, containing the standard errors of the
fixed effect parameter estimates

curr_sigma A 1 x cint matrix, i.e. column vector, of the variance component parameter
estimates

curr_beta A 1 x mint matrix, i.e. column vector, of the fixed effect parameter estimates

V_partial A list of the partial derivatives for each fixed and random effect variable in the
model

V_a A c+m x c+m variance-covariance matrix of the fixed and random effect variable
parameter estimates

G_inv A nxc X nxc inverse matrix containing the variance component estimates

random.levels A list containing the mapping between the random effect variables and each
respective set of levels for said variable.

46 sim_discrete

Details

The Satterthwaite degrees of freedom are computed, which estimates the numbers of degrees of
freedom in the NB-GLMM based on ratio of the squared standard errors and the product of the
Jacobians of the variance-covariance matrix from the fixed effect variable parameter estimation
with full variance-covariance matrix. For more details see Satterthwaite FE, Biometrics Bulletin
(1946) Vol 2 No 6, pp110-114.

Value

matrix containing the inferred number of degrees of freedom for the specific model.

Author(s)

Mike Morgan & Alice Kluzer

Examples

NULL

sim_discrete sim_discrete

Description

Simulated discrete groups data

Usage

data(sim_discrete)

Format

A list containing a Milo object in the "mylo" slot, and a data.frame containing experimental meta-
data in the "meta" slot.

Details

Data are simulated single-cells in 4 distinct groups of cells. Cells in each group are assigned to 1 of
2 conditions: A or B. Specifically, the cells in block 1 are highly abundant in the A condition, whilst
cells in block 4 are most abundant in condition B.

Examples

NULL

sim_family 47

sim_family sim_family

Description

Simulated counts data from a series of simulated family trees

Usage

data(sim_family)

Format

A list containing a data.frame in the "DF" slot containing the mean counts and meta-data, and a
matrix containing the kinship matrix across all families in the "IBD" slot.

Details

Data are simulated counts from 30 families and includes X and Z design matrices, as well as a single
large kinship matrix. Kinships between family members are dictated by the simulated family, i.e.
sibs=0.5, parent-sib=0.5, sib-grandparent=0.25, etc. These kinships, along with 2 other random
effects, are used to induce a defined covariance between simulated obserations as such:

Z:= random effect design matrix, n X q G:= matrix of variance components, including kinship
matrix

LL^T = Chol(ZGZ^T) := the Cholesky decomposition of the random effect contribution to the
sample covariance Ysim:= simulated means based on exp(offset + Xbeta + Zb) Y = LYsim :=
simulated means with defined covariance

Examples

NULL

sim_nbglmm sim_nbglmm

Description

Simulated counts data from a NB-GLMM for a single trait

Usage

data(sim_nbglmm)

48 sim_trajectory

Format

A data.frame sim_nbglmm containing the following columns:

Mean: numeric containing the base mean computed as the linear combination of the simulated
fixed and random effect weights multiplied by their respective weight matrices.

Mean.Count: numeric containing the integer count values randomly sampled from a negative bi-
nomail distribution with mean = Mean and dispersion = r

r: numeric containing the dispersion value used to simulate the integer counts in Mean.Count.

Intercept: numeric of all 1s which can be used to set the intercept term in the X design matrix.

FE1: numeric a binary fixed effect variable taking on values [0, 1]

FE2: numeric a continuous fixed effect variables

RE1: numeric a random effect variable with 10 levels

RE2: numeric a random effect variable with 7 levels

Details

Data are simulated counts from 50 samples in a single data frame, from which the X and Z design
matrices, can be constructed (see examples). There are 2 random effects and 2 fixed effect variables
used to simulate the count trait.

Examples

data(sim_nbglmm)
head(sim_nbglmm)

sim_trajectory Simulated linear trajectory data

Description

Data are simulated single-cells along a single linear trajectory. Cells are simulated from 5 groups,
and assigned to 1 of 2 conditions; A or B. Data were generated using in the simulate_linear_trajectory
function in the dyntoy package.

Usage

data(sim_trajectory)

Format

A list containing a Milo object in the "mylo" slot, and a data.frame containing experimental meta-
data in the "meta" slot.

testDiffExp 49

References

https://github.com/dynverse/dyntoy

Examples

NULL

testDiffExp Perform post-hoc differential gene expression analysis

Description

This function will perform differential gene expression analysis within differentially abundant neigh-
bourhoods, by first aggregating adjacent and concordantly DA neighbourhoods, then comparing
cells within these aggregated groups for differential gene expression using the input design. For
comparing between DA neighbourhoods see findNhoodMarkers.

Usage

testDiffExp(
x,
da.res,
design,
meta.data,
model.contrasts = NULL,
assay = "logcounts",
subset.nhoods = NULL,
subset.row = NULL,
gene.offset = TRUE,
n.coef = NULL,
na.function = "na.pass"

)

Arguments

x A Milo object containing single-cell gene expression and neighbourhoods.

da.res A data.frame containing DA results, as expected from running testNhoods.

design A formula or model.matrix object describing the experimental design for dif-
ferential gene expression testing. The last component of the formula or last
column of the model matrix are by default the test variable. This behaviour can
be overridden by setting the model.contrasts argument. This should be the
same as was used for DA testing.

meta.data A cell X variable data.frame containing single-cell meta-data to which design
refers. The order of rows (cells) must be the same as the Milo object columns.

50 testDiffExp

model.contrasts

A string vector that defines the contrasts used to perform DA testing. This should
be the same as was used for DA testing.

assay A character scalar determining which assays slot to extract from the Milo ob-
ject to use for DGE testing.

subset.nhoods A logical, integer or character vector indicating which neighbourhoods to subset
before aggregation and DGE testing (default: NULL).

subset.row A logical, integer or character vector indicating the rows of x to use for sumam-
rizing over cells in neighbourhoods.

gene.offset A logical scalar the determines whether a per-cell offset is provided in the DGE
GLM to adjust for the number of detected genes with expression > 0.

n.coef A numeric scalar refering to the coefficient to select from the DGE model. This
is especially pertinent when passing an ordered variable and only one specific
type of effects are to be tested.

na.function A valid NA action function to apply, should be one of na.fail, na.omit,
na.exclude, na.pass.

Details

Adjacent neighbourhoods are first merged based on two criteria: 1) they share at least overlap
number of cells, and 2) the DA log fold change sign is concordant. This behaviour can be modulated
by setting overlap to be more or less stringent. Additionally, a threshold on the log fold-changes
can be set, such that lfc.threshold is required to merge adjacent neighbourhoods. Note: adjacent
neighbourhoods will never be merged with opposite signs unless merge.discord=TRUE.

Within each aggregated group of cells differential gene expression testing is performed using the
single-cell log normalized gene expression with a GLM (for details see limma-package), or the
single-cell counts using a negative binomial GLM (for details see edgeR-package). When using
single-cell data for DGE it is recommended to set gene.offset=TRUE as this behaviour adjusts the
model by the number of detected genes in each cell as a proxy for differences in capture efficiency
and cellular RNA content.

Value

A list containing a data.frame of DGE results for each aggregated group of neighbourhoods.

Author(s)

Mike Morgan & Emma Dann

Examples

data(sim_discrete)

milo <- Milo(sim_discrete$SCE)
milo <- buildGraph(milo, k=20, d=10, transposed=TRUE)
milo <- makeNhoods(milo, k=20, d=10, prop=0.3)

meta.df <- sim_discrete$meta

testNhoods 51

meta.df$SampID <- paste(meta.df$Condition, meta.df$Replicate, sep="_")
milo <- countCells(milo, meta.data=meta.df, samples="SampID")

test.meta <- data.frame("Condition"=c(rep("A", 3), rep("B", 3)), "Replicate"=rep(c("R1", "R2", "R3"), 2))
test.meta$Sample <- paste(test.meta$Condition, test.meta$Replicate, sep="_")
rownames(test.meta) <- test.meta$Sample
da.res <- testNhoods(milo, design=~Condition, design.df=test.meta[colnames(nhoodCounts(milo)),])
da.res <- groupNhoods(milo, da.res, da.fdr=0.1)
nhood.dge <- testDiffExp(milo, da.res, design=~Condition, meta.data=meta.df)
nhood.dge

testNhoods Perform differential neighbourhood abundance testing

Description

This will perform differential neighbourhood abundance testing after cell counting.

Arguments

x A Milo object with a non-empty nhoodCounts slot.

design A formula or model.matrix object describing the experimental design for dif-
ferential abundance testing. The last component of the formula or last column
of the model matrix are by default the test variable. This behaviour can be over-
ridden by setting the model.contrasts argument

design.df A data.frame containing meta-data to which design refers to

kinship (optional) An n X n matrix containing pair-wise relationships between obser-
vations, such as expected relationships or computed from SNPs/SNVs/other ge-
netic variants. Row names and column names should correspond to the column
names of nhoods(x) and rownames of design.df.

min.mean A scalar used to threshold neighbourhoods on the minimum average cell counts
across samples.

model.contrasts

A string vector that defines the contrasts used to perform DA testing. For a
specific comparison we recommend a single contrast be passed to testNhoods.
More details can be found in the vignette milo_contrasts.

fdr.weighting The spatial FDR weighting scheme to use. Choice from max, neighbour-distance,
graph-overlap or k-distance (default). If none is passed no spatial FDR correc-
tion is performed and returns a vector of NAs.

robust If robust=TRUE then this is passed to edgeR and limma which use a robust
estimation for the global quasilikelihood dispersion distribution. See edgeR and
Phipson et al, 2013 for details.

52 testNhoods

norm.method A character scalar, either "logMS", "TMM" or "RLE". The "logMS" method nor-
malises the counts across samples using the log columns sums of the count ma-
trix as a model offset. "TMM" uses the trimmed mean of M-values normalisation
as described in Robinson & Oshlack, 2010, whilst "RLE" uses the relative log
expression method by Anders & Huber, 2010, to compute normalisation factors
relative to a reference computed from the geometric mean across samples. The
latter methods provides a degree of robustness against false positives when there
are very large compositional differences between samples.

cell.sizes A named numeric vector of cell numbers per experimental samples. Names
should correspond to the columns of nhoodCounts. This can be used to de-
fine the model normalisation factors based on a set of numbers instead of the
colSums(nhoodCounts(x)). The example use-case is when performing an
analysis of a subset of nhoods while retaining the need to normalisation based
on the numbers of cells collected for each experimental sample to avoid compo-
sitional biases. Infinite or NA values will give an error.

reduced.dim A character scalar referring to the reduced dimensional slot used to compute dis-
tances for the spatial FDR. This should be the same as used for graph building.

REML A logical scalar that controls the variance component behaviour to use either
restricted maximum likelihood (REML) or maximum likelihood (ML). The for-
mer is recommened to account for the bias in the ML variance estimates.

glmm.solver A character scalar that determines which GLMM solver is applied. Must be
one of: Fisher, HE or HE-NNLS. HE or HE-NNLS are recommended when
supplying a user-defined covariance matrix.

max.iters A scalar that determines the maximum number of iterations to run the GLMM
solver if it does not reach the convergence tolerance threshold.

max.tol A scalar that deterimines the GLMM solver convergence tolerance. It is recom-
mended to keep this number small to provide some confidence that the parameter
estimates are at least in a feasible region and close to a local optimum

subset.nhoods A character, numeric or logical vector that will subset the analysis to the spe-
cific nhoods. If a character vector these should correspond to row names of
nhoodCounts. If a logical vector then these should have the same length as
nrow of nhoodCounts. If numeric, then these are assumed to correspond to in-
dices of nhoodCounts - if the maximal index is greater than nrow(nhoodCounts(x))
an error will be produced.

intercept.type A character scalar, either fixed or random that sets the type of the global intercept
variable in the model. This only applies to the GLMM case where additional ran-
dom effects variables are already included. Setting intercept.type="fixed"
or intercept.type="random" will require the user to test their model for fail-
ures with each. In the case of using a kinship matrix, intercept.type="fixed"
is set automatically.

fail.on.error A logical scalar the determines the behaviour of the error reporting. Used for
debugging only.

BPPARAM A BiocParallelParam object specifying the arguments for parallelisation. By
default this will evaluate using SerialParam(). See detailson how to use
parallelisation in testNhoods.

testNhoods 53

force A logical scalar that overrides the default behaviour to nicely error when N <
50 and using a mixed effect model. This is because model parameter estimation
may be unstable with these sample sizes, and hence the fixed effect GLM is
recommended instead. If used with the LMM, a warning will be produced.

Details

This function wraps up several steps of differential abundance testing using the edgeR functions.
These could be performed separately for users who want to exercise more contol over their DA test-
ing. By default this function sets the lib.sizes to the colSums(x), and uses the Quasi-Likelihood
F-test in glmQLFTest for DA testing. FDR correction is performed separately as the default multiple-
testing correction is inappropriate for neighbourhoods with overlapping cells. The GLMM testing
cannot be performed using edgeR, however, a separate function fitGLMM can be used to fit a mixed
effect model to each nhood (see fitGLMM docs for details).

Parallelisation is currently only enabled for the NB-GLMM and uses the BiocParallel paradigm at
the level of R, and OpenMP to allow multi-threading of RCpp code. In general the GLM implemen-
tation in glmQLFit is sufficiently fast that it does not require parallelisation. Parallelisation requires
the user to pass a BiocParallelParam object with the parallelisation arguments contained therein.
This relies on the user specifying how to parallelise - for details see the BiocParallel package.

model.contrasts are used to define specific comparisons for DA testing. Currently, testNhoods
will take the last formula variable for comparisons, however, contrasts need this to be the first
variable. A future update will harmonise these behaviours for consistency. While it is strictly
feasible to compute multiple contrasts at once, the recommendation, for ease of interpretability, is
to compute one at a time.

If using the GLMM option, i.e. including a random effect variable in the design formula, then
testNhoods will check for the sample size of the analysis. If this is less than 60 it will stop and
produce an error. It is strongly recommended that the GLMM is not used with relatively small
sample sizes, i.e. N<60, and even up to N~100 may have unstable parameter estimates across
nhoods. This behaviour can be overriden by setting force=TRUE, but also be aware that parameter
estimates may not be accurate. A warning will be produced to alert you to this fact.

Value

A data.frame of model results, which contain:

logFC: Numeric, the log fold change between conditions, or for an ordered/continous variable the
per-unit change in (normalized) cell counts per unit-change in experimental variable.

logCPM: Numeric, the log counts per million (CPM), which equates to the average log normalized
cell counts across all samples.

F: Numeric, the F-test statistic from the quali-likelihood F-test implemented in edgeR.

PValue: Numeric, the unadjusted p-value from the quasi-likelihood F-test.

FDR: Numeric, the Benjamini & Hochberg false discovery weight computed from p.adjust.

Nhood: Numeric, a unique identifier corresponding to the specific graph neighbourhood.

SpatialFDR: Numeric, the weighted FDR, computed to adjust for spatial graph overlaps between
neighbourhoods. For details see graphSpatialFDR.

54 testNhoods

Author(s)

Mike Morgan

Examples

library(SingleCellExperiment)
ux.1 <- matrix(rpois(12000, 5), ncol=400)
ux.2 <- matrix(rpois(12000, 4), ncol=400)
ux <- rbind(ux.1, ux.2)
vx <- log2(ux + 1)
pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList(PCA=pca$x))

milo <- Milo(sce)
milo <- buildGraph(milo, k=20, d=10, transposed=TRUE)
milo <- makeNhoods(milo, k=20, d=10, prop=0.3)
milo <- calcNhoodDistance(milo, d=10)

cond <- rep("A", ncol(milo))
cond.a <- sample(1:ncol(milo), size=floor(ncol(milo)*0.25))
cond.b <- setdiff(1:ncol(milo), cond.a)
cond[cond.b] <- "B"
meta.df <- data.frame(Condition=cond, Replicate=c(rep("R1", 132), rep("R2", 132), rep("R3", 136)))
meta.df$SampID <- paste(meta.df$Condition, meta.df$Replicate, sep="_")
milo <- countCells(milo, meta.data=meta.df, samples="SampID")

test.meta <- data.frame("Condition"=c(rep("A", 3), rep("B", 3)), "Replicate"=rep(c("R1", "R2", "R3"), 2))
test.meta$Sample <- paste(test.meta$Condition, test.meta$Replicate, sep="_")
rownames(test.meta) <- test.meta$Sample
da.res <- testNhoods(milo, design=~Condition, design.df=test.meta[colnames(nhoodCounts(milo)),], norm.method="TMM")
da.res

Index

∗ datasets
sim_discrete, 46
sim_family, 47
sim_nbglmm, 47
sim_trajectory, 48

annotateNhoods, 3

BiocParallelParam, 52, 53
buildFromAdjacency, 4
buildGraph, 5
buildKNNGraph, 6
buildNhoodGraph, 7

calcNhoodDistance, 8
calcNhoodExpression, 9
checkSeparation, 10
computePvalue, 11
countCells, 12

data.frame, 15

findNhoodGroupMarkers, 13
findNhoodMarkers, 15, 49
fitGeneticPLGlmm, 17
fitGLMM, 19, 25
fitPLGlmm, 22

glmmControl.defaults, 25
graph (Milo-methods), 34
graph,Milo-method (Milo-methods), 34
graph<- (Milo-methods), 34
graph<-,Milo-method (Milo-methods), 34
graphSpatialFDR, 26, 53
groupNhoods, 27

initialiseG, 28
initializeFullZ, 29

makeNhoods, 30
matrix.trace, 32

Milo, 4–10, 12–15, 26, 27, 31, 34, 35, 37,
39–42, 44, 46, 48–51

Milo (Milo-class), 32
Milo-class, 32
Milo-methods, 34
miloR, 36
miloR-package, 3

nhoodAdjacency (Milo-methods), 34
nhoodAdjacency,Milo-method

(Milo-methods), 34
nhoodAdjacency<- (Milo-methods), 34
nhoodAdjacency<-,Milo-method

(Milo-methods), 34
nhoodCounts (Milo-methods), 34
nhoodCounts,Milo-method (Milo-methods),

34
nhoodCounts<- (Milo-methods), 34
nhoodCounts<-,Milo-method

(Milo-methods), 34
nhoodDistances (Milo-methods), 34
nhoodDistances,Milo-method

(Milo-methods), 34
nhoodDistances<- (Milo-methods), 34
nhoodDistances<-,Milo-method

(Milo-methods), 34
nhoodExpression (Milo-methods), 34
nhoodExpression,Milo-method

(Milo-methods), 34
nhoodExpression<- (Milo-methods), 34
nhoodExpression<-,Milo-method

(Milo-methods), 34
nhoodGraph (Milo-methods), 34
nhoodGraph,Milo-method (Milo-methods),

34
nhoodGraph<- (Milo-methods), 34
nhoodGraph<-,Milo-method

(Milo-methods), 34
nhoodIndex (Milo-methods), 34

55

56 INDEX

nhoodIndex,Milo-method (Milo-methods),
34

nhoodIndex<- (Milo-methods), 34
nhoodIndex<-,Milo-method

(Milo-methods), 34
nhoodReducedDim (Milo-methods), 34
nhoodReducedDim,Milo-method

(Milo-methods), 34
nhoodReducedDim<- (Milo-methods), 34
nhoodReducedDim<-,Milo-method

(Milo-methods), 34
nhoods (Milo-methods), 34
nhoods,Milo-method (Milo-methods), 34
nhoods<- (Milo-methods), 34
nhoods<-,Milo-method (Milo-methods), 34

plotDAbeeswarm, 36
plotNhoodCounts, 37
plotNhoodExpressionDA, 38
plotNhoodExpressionGroups

(plotNhoodExpressionDA), 38
plotNhoodGraph, 40
plotNhoodGraphDA, 41
plotNhoodGroups, 42
plotNhoodMA, 43
plotNhoodSizeHist, 44

Satterthwaite_df, 21, 45
show (Milo-methods), 34
show,Milo-method (Milo-methods), 34
sim_discrete, 46
sim_family, 47
sim_nbglmm, 47
sim_trajectory, 48
SingleCellExperiment, 6, 32, 33

testDiffExp, 13, 15, 49
testNhoods, 25, 51

	miloR-package
	annotateNhoods
	buildFromAdjacency
	buildGraph
	buildNhoodGraph
	calcNhoodDistance
	calcNhoodExpression
	checkSeparation
	computePvalue
	countCells
	findNhoodGroupMarkers
	findNhoodMarkers
	fitGeneticPLGlmm
	fitGLMM
	fitPLGlmm
	glmmControl.defaults
	graphSpatialFDR
	groupNhoods
	initialiseG
	initializeFullZ
	makeNhoods
	matrix.trace
	Milo-class
	Milo-methods
	miloR
	plotDAbeeswarm
	plotNhoodCounts
	plotNhoodExpressionDA
	plotNhoodGraph
	plotNhoodGraphDA
	plotNhoodGroups
	plotNhoodMA
	plotNhoodSizeHist
	Satterthwaite_df
	sim_discrete
	sim_family
	sim_nbglmm
	sim_trajectory
	testDiffExp
	testNhoods
	Index

