Package ‘flowWorkspace’

October 31, 2025
Type Package
Version 4.23.0

Title Infrastructure for representing and interacting with gated and
ungated cytometry data sets.

Date 2011-06-10
Author Greg Finak, Mike Jiang
Maintainer Greg Finak <greg@ozette.com>, Mike Jiang <mike@ozette.com>

Description This package is designed to facilitate comparison of automated
gating methods against manual gating done in flowJo. This package allows
you to import basic flowJo workspaces into BioConductor and replicate the
gating from flowJo using the flowCore functionality. Gating hierarchies,
groups of samples, compensation, and transformation are performed so that
the output matches the flowJo analysis.

License AGPL-3.0-only
License_restricts_use no
LazyLoad yes

Imports Biobase, BiocGenerics, cytolib (>=2.13.1), XML, ggplot2,
graph, graphics, grDevices, methods, stats, stats4, utils,
RBGL, tools, Rgraphviz, data.table, dplyr, scales(>= 1.3.0),
matrixStats, RProtoBufLib, flowCore(>= 2.1.1), ncdfFlow(>=
2.25.4), DelayedArray, S4Vectors

Collate 'cytoframe.R' 'cytoset.R' 'AllClasses.R' 'getStats.R'
'GatingHierarchy_Methods.R' 'GatingSet_Methods.R'
'GatingSetList_Methods.R' filterObject_Methods.R'
'add_Methods.R' 'copyNode.R' 'cpp11.R' 'deprecated.R’
'flow_trans.R' 'getDescendants.R' 'getSingleCellExpression.R'
'identifier.R' 'load_fcs.R' 'load_gs.R' 'merge_GatingSet.R’
'merge_gslist.R' 'moveNode.R' 'parse_transformer.R'
'setGate_Methods.R' 'updatelndices.R' 'utils.R' 'zzz.R'

Suggests testthat, flowWorkspaceData (>= 2.23.2), knitr, rmarkdown,
ggcyto, parallel, CytoML, openCyto

LinkingTo cppll, BH(>= 1.62.0-1), RProtoBufLib(>= 1.99.4), cytolib (>=
2.3.7),Rhdf5lib

2 Contents

VignetteBuilder knitr

biocViews ImmunoOncology, FlowCytometry, Datalmport, Preprocessing,
DataRepresentation

SystemRequirements GNU make, C++11

Encoding UTF-8

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/flow Workspace
git_branch devel

git_last_commit 824996d

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-10-31

Contents
flowWorkspace-package L Lo 5
asinhtGmI2_trans e 5
asinh_Gml2 e e 6
booleanFilter-class 7
cf_append_cols 8
cf_backend_type 8
cf_get url 9
cf is_subsetted e 10
cf_write_disk 10
cf write_hS e 11
cleanup e e e 11
cleanup_temp e e e 12
COMPENSALE . . « v v v v v e et e e e e e e e e e e e e e e e e e e 12
e8] 17 13
convert_backend L L e e 15
convert_legacy_gs e 15
cs_add_cytoframe 16
CS_EEL UM .« . v v vt e e e e 17
cs_set_cytoframe e e e e e e 17
cytoframe 18
cytoframe-labels 24
CYLOSEL . v v v v e e e e e e e e e e e e e e 25
delete_gs e e 30
estimateLogicle 31
extract_cluster_pop_name_from_node o, 31
filter_to liSt s 32
flowjo_biexp e e e e 32
flowjo_biexp_trans 33

flowjo_fasinh 34

Contents

3
flowjo_fasinh_trans 35
flowjo_log trans 36
flowWorkspace-deprecated 37
flow_breaks e e 38
flow_trans 39
GatingHierarchy-class L 40
GatingSet-class L e 41
GatingSet-methods 42
GatingSetList-class 42
get_default_backend 44
get_log level e 45
gh_apply_to_CS e e e 45
gh_apply_to_new_fcs 46
gh_copy_gate 47
gh_get_cluster_labels 48
gh get compensations 48
gh_get_transformations 49
gh_plot_pop_count_Cv e e 50
gh_pop_compare_statS e e e e 51
gh_pop_get_cluster_name 51
gh_pop_get_data 52
gh_pop_get_descendants 53
gh pop_get full path L 54
gh_pop_get_indices 54
gh_pop_get_indices_mat e 55
gh pop_get_proportion 56
gh_pop_move e 56
gh_pop_set_indices 57
gh_pop_set_xml_count 58
gSliSt_tO_gS e e e 58
gs_check_redundant_nodes 59
gs_cyto_data e e e e e e 59
gs_get_compensation_internal oL Lo o 60
gs_get_leaf nodes. 61
gs_get_pop_paths 61
gs_get_singlecell_expression 62
GS_AS_PErsiStento L. e e e e e 64
gs_plot_diff tree 65
gs_pop_add e e 65
gs_pop_get_count_fast 68
SS_POP_ZEL_Ae e e e e e e 69
ES_POP_ZEL S . . o i e e e e e e 70
ES_POP_GEL_PATENt i e e e e e e e e e e e e 71
gS_POP_EeL_Stats e e e e e e e 72
gs_pop_get_stats_tfiltero 73
ES_POP_SEL_ate e e e e e e e e e e 74
€S_POP_SEL NAME o o v vt it e e e e e e e e e e e e e e e e e 75

gs_pop_set_visibility 76

Index

Contents

gs_remove_redundant_channels 76
gs_remove_redundant_nodes 77
gs_split_by_channels 78
gs_Split_bY_tree e e e e e e e 79
gs_update_channels 79
identifier-methods 80
keyword L e e e e 81
keyword-mutators Lo e 82
lapply-methods 84
length e e e 84
load_cytoframe 85
load_cytoframe_from_fcs oL Lo 85
load_cytoset_from_fcs L 87
load_meta e 90
lock . . . e e e e 90
logicleGmI2_trans. e e e e e e e 91
logicle_trans L e 92
logtGml2_trans e e e e e 92
markernames e 93
merge_list_to_@S e 94
ncFlowSet e e 95
nodeflags L e e e 95
openWorkspace 95
pData-methods 96
plot-methods e e e 96
pop_add 97
PrettyAXiS 98
TECOMPULE . .+ o v v v v v v e e e e e e e e e e e e e e e e e e 99
TOLALE_ZALE . .« . . v v v v e e e e e e e e e e e e e e e e e e 100
sampleNames L e 101
SAVE_CYLOSEL . . v v v v o e 102
SAVE_ZS .« v v e 103
scale_gate L. e e e e 104
shift_gate e e e e 106
standardize-GatingSet 107
stats.fun L L e e e 108
SUDSEt e e e e 109
swap_data_cols 109
transform L e e e e 110
transformerList L. e e 111
transform_gate L 112
[,GatingSet, ANY,ANY,ANY-method 114
115

flowWorkspace-package 5

flowWorkspace-package Import and replicate flowJo workspaces and gating schemes using
flowCore.

Description

Import flowJo workspaces into R. Generate the flowJo gating hierarchy and gates using flowCore
functionality. Transform and compensate data in accordance with flowJo settings. Plot gates, gating
hierarchies, population statistics, and compare flowJo vs flowCore population summaries.

Details
Package: flowWorkspace
Type: Package
Version: 0.5.40
Date: 2011-03-04
License: Artistic 2.0
LazyLoad: yes
Depends: R (>=2.16.0)
Author(s)

Greg Finak, Mike Jiang

References

http://www.rglab.org/

asinhtGml2_trans Inverse hyperbolic sine transformation.

Description

Used to construct inverse hyperbolic sine transform object.

Usage

asinhtGml2_trans(..., n = 6, equal.space = FALSE)

http://www.rglab.org/

Arguments

equal. space

Value

asinh_GmI2

parameters passed to asinh_Gml2

desired number of breaks (the actual number will be different depending on the
data range)

whether breaks at equal-spaced intervals

asinhtGml2 transformation object

Examples

trans.obj <- asinhtGml2_trans(equal.space = TRUE)

data <- 1:7e3

brks.func <- trans.obj[["breaks"]]
brks <- brks.func(data)
brks # fasinh space displayed at raw data scale

#transform it to verify it is equal-spaced at transformed scale
trans.func <- trans.obj[["transform”]]
brks.trans <- trans.func(brks)

brks.trans
asinh_Gml2 inverse hyperbolic sine transform function generator (GatingML 2.0
version)
Description

hyperbolic sine/inverse hyperbolic sine transform function constructor. It is simply a special form
of flowjo_fasinh with length set to 1 and different default values for parameters t,m, a.

Usage
asinh_Gml2(T =

Arguments

T
M
A

inverse

Value

262144, M = 4.5, A = 0, inverse = FALSE)

numeric the maximum value of input data
numeric the full width of the transformed display in asymptotic decades

numeric Additional negative range to be included in the display in asymptotic
decades

whether to return the inverse function

fasinh/fsinh transform function

booleanFilter-class 7

Examples

trans <- asinh_Gml2()
data.raw <- c(1,1e2,1e3)
data.trans <- trans(data.raw)
data.trans

inverse.trans <- asinh_Gml2(inverse = TRUE)
inverse.trans(data.trans)

booleanFilter-class A class describing logical operation (& or |) of the reference popula-
tions

Description

booleanFilter class inherits class expressionFilter and exists for the purpose of methods dis-
patching.

Usage

booleanFilter(expr, ..., filterId = "defaultBooleanFilter")

char2booleanFilter(expr, ..., filterId = "defaultBooleanFilter")
Arguments

expr expression

further arguments to the expression

filterId character identifier

See Also

add GatingHierarchy

Examples

"4+/TNFa+" and "4+/IL2+" are two existing gates
#note: no spaces between node names and & , ! operators
booleanFilter (" 4+/TNFa+&!4+/IL2+")

#programmatically

nl <- "4+/TNFa+"

n2 <- "4+/IL2+"

exprs <- pasted(nl, "&!", n2)

call <- substitute(booleanFilter(v), list(v = as.symbol(exprs)))
eval(call)

8 cf_backend_type

cf_append_cols Append data columns to a flowFrame

Description

Append data columns to a flowFrame

Usage

cf_append_cols(cf, cols)

Arguments
cf A cytoframe.
cols A numeric matrix containing the new data columns to be added. Must has col-
umn names to be used as new channel names.
Details

It is used to add extra data columns to the existing flowFrame. It handles keywords and parameters
properly to ensure the new flowFrame can be written as a valid FCS through the functionwrite.FCS

Examples

library(flowCore)

data(GvHD)

tmp <- GvHD[[1]]

cf <- flowFrame_to_cytoframe(tmp)

kf <- kmeansFilter("FSC-H"=c("Pop1","Pop2","Pop3"”), filterId="myKmFilter")
fres <- filter(cf, kf)

cols <- as.numeric(fres@subSet)

cols <- matrix(cols, dimnames = list(NULL, "km"))

cf <- cf_append_cols(cf, cols)

cf_backend_type return the cytoframe backend storage format

Description

return the cytoframe backend storage format

cf_get_uri 9
Usage

cf_backend_type(cf)

Arguments

cf cytoframe

Value

one of "mem","h5", "tile"

cf_get_uri Return the file path of the underlying hS5 file

Description

Return the file path of the underlying h5 file

Usage

cf_get_uri(cf)

cf_get_h5_file_path(cf)

Arguments

cf cytoframe object

Details

For the in-memory version of cytoframe, it returns an empty string. This can be used to check
whether it is on-disk format.

See Also

Other cytoframe/cytoset IO functions: cf_write_disk(), cf_write_h5(), cs_get_uri(), load_cytoframe_from_fcs(),
load_cytoframe(), load_cytoset_from_fcs()

10 cf write_disk

cf_is_subsetted check whether a cytoframe/cytoset is a subsetted(by column or by row)
view

Description

check whether a cytoframe/cytoset is a subsetted(by column or by row) view

Usage

cf_is_subsetted(x)

cs_is_subsetted(x)

Arguments
X a cytoset or cytoframe
cf_write_disk Save the cytoframe to disk
Description

Save the cytoframe to disk

Usage

cf_write_disk(cf, filename, backend = get_default_backend())

Arguments
cf cytoframe object
filename the full path of the output file
backend either "h5" or "tile"

See Also

Other cytoframe/cytoset IO functions: cf_get_uri(), cf_write_h5(), cs_get_uri(), load_cytoframe_from_fcs(),
load_cytoframe(), load_cytoset_from_fcs()

cf_write_h5 11

cf_write_h5 Save the cytoframe as h5 format

Description

Save the cytoframe as h5 format

Usage

cf_write_h5(cf, filename)

Arguments

cf cytoframe object

filename the full path of the output h5 file
See Also

Other cytoframe/cytoset IO functions: cf_get_uri(), cf_write_disk(), cs_get_uri(), load_cytoframe_from_fcs(),
load_cytoframe(), load_cytoset_from_fcs()

cleanup Remove on-disk files associatated with flowWorkspace data classes

Description
These methods immediately delete the on-disk storage associated with cytoframe, cytoset, Gat-
ingHierarchy, or GatingSet objects

Usage

cf_cleanup(cf)

Arguments

cf a cytoframe, cytoset, GatingHierarchy, or GatingSet object

Details

this will override tempdir() in determining the top directory under which files can safely be removed.

12 compensate

cleanup_temp Remove temporary files associatated with flowWorkspace data classes

Description

These methods immediately delete the on-disk h5 storage associated with cytoframe, cytoset, Gat-
ingHierarchy, or GatingSet objects, but only if it is under the directory pointed to by tempdir() or
alternatively specified by the temp_dir option. The temp_dir option should be used with caution as
it acts as a guard against accidental removal of non-temporary storage.

Usage
cf_cleanup_temp(x, temp_dir = NULL)
cs_cleanup_temp(x, temp_dir = NULL)
gh_cleanup_temp(x, temp_dir = NULL)

gs_cleanup_temp(x, temp_dir = NULL)

Arguments
X a cytoframe, cytoset, GatingHierarchy, or GatingSet object
temp_dir an optional argument designating another path as temporary storage. If specified
this will override tempdir() in determining the top directory under which files
can safely be removed.
Details

Use of these functions will generally be unnecessary for most users, but they are provided for
workflows that involve repeated creation of such data structures within the same R session to avoid
overwhelming temporary storage.

compensate compensate the flow data asssociated with the GatingSet

Description

The compensation is saved in the GatingSet and can be retrieved by gh_get_compensations.

Usage

S4 method for signature 'GatingSet,ANY'
compensate(x, spillover)

convert 13

Arguments

X GatingSet, GatingSetList, cytoframe, or cytoset

spillover compensation object or spillover matrix or a list of compensation objects
Value

a GatingSet, GatingSetList, cytoframe, or cytoset object with the underling flow data com-
pensated.

Examples

Not run:

cfile <- system.file("extdata”,"compdata”,"compmatrix"”, package="flowCore")
comp.mat <- read.table(cfile, header=TRUE, skip=2, check.names = FALSE)

create a compensation object

comp <- compensation(comp.mat,compensationId="comp1")

#add it to GatingSet

gs <- compensate(gs, comp)

End(Not run)

convert Methods for conversion between flowCore and flowWorkspace data
classes

Description

These methods perform conversions between flowWorkspace classes (cytoframe/cytoset) and flow-
Core classes (flowFrame/flowSet) as well as between single-sample and aggregated classes (e.g.
between cytoset and a list of cytoframes)

Usage
cytoframe_to_flowFrame(cf)
flowFrame_to_cytoframe(fr, ...)
cytoset_to_flowSet(cs)
flowSet_to_cytoset(
fs,
path = tempfile(),

backend = get_default_backend(),
tmp = tempfile(),

cytoset_to_list(cs)

14 convert

Arguments
cf cytoframe object
fr flowframe
additional arguments passed to load_cytoframe_from_fcs or load_cytoset_from_fcs.
cs cytoset
fs flowSet or ncdfFlowSet
path the hS path for cytoset
tmp the temp folder when the temporary files are written to during conversion by
default, it is system temp path. And it can be changed to the customized location
when there is not enough space at system path.
Details

The first set of methods consist of a pair of methods to coerce a cytoframe to or from a flowFrame
and another pair to coerce a cytoset to or from a flowSet.

The conversion between the two sets of data container classes mostly entails a conversion of the
back-end representation of the data. cytoframe and cytoset objects contain flowFrame and
flowSet objects respectively, so coercion of a cytoframe to flowFrame entails moving the data
from the *C’-level data structure to the corresponding exprs, description, and parameters slots.
Coercion of a flowFrame to a cytoframe entails creation of the C’-level data structure from the
flowFrame slots. The names of each of the methods are pretty self-explanatory.

The second set of methods perform disaggregation of data objects that represent multiple samples
in to lists of data objects that represent a single sample. The opposite direction is handled by the
constructors for the aggregate data classes.

Methods

cytoframe_to_flowFrame(object = ""cytoframe'') Returns a flowFrame object coerced from a
cytoframe object.

flowFrame_to_cytoframe(object = ''flowFrame'') Returns a cytoframe object coerced from a
flowFrame object.

cytoset_to_flowSet(object = "'cytoset'') Returns a flowSet object coerced from a cytoset object.

flowSet_to_cytoset(object = ""flowSet'') Returns a cytoset object coerced from a flowSet ob-
ject.

flowSet_to_list(object = '"flowSet'') Returns a list of cytoframe objects with names provided by
the sampleNames of the original cytoset

flowSet(object = "list) Constructs a cytoset object from a list of cytoframe objects. See docu-
mentation for cytoset

cytoset_to_list(object = "'cytoset'') Returns a list of cytoframe objects with names provided by
the sampleNames of the original cytoset

cytoset(object = "'list) Constructs a cytoset object from a list of cytoframe objects. See docu-
mentation for flowSet

convert_backend 15
See Also

merge_list_to_gs
Examples

library(flowCore)

data("GvHD")

fs <- GvHD[1]

cs <- flowSet_to_cytoset(fs)

cf <- c¢s[[1, returnType="cytoframe"]]

ff <- cytoframe_to_flowFrame(cf)

convert_backend convert h5 based gs archive to tiledb

Description

convert h5 based gs archive to tiledb
Usage

convert_backend(gs_dir, output_dir)
Arguments

gs_dir existing gs archive path

output_dir the new gs path

convert_legacy_gs convert the legacy GatingSet archive (mixed with R and C++ files) to
the new format (C++ only)

Description

Older versions of flowWorkspace represented GatingSet-class objects using a combination of R
and C++ files, while newer versions have moved the representation entirely to the C++ level for the
sake of efficiency. In order to use GatingSet or GatingSetList archives created in older versions,

they will need to be converted to the new format.

Usage

convert_legacy_gs(from, to, ...)

convert_legacy_gslist(from, to, ...)

16

Arguments

from

to

Details

cs_add_cytoframe

the old archive path
the new archive path

tmp the path where the temporary files will be written to during the conversion.
By default it is system temp folder and sometime it is helpful to be able to
customize it to other location when system temp folder is fulll or not succicient
when converting big data sets.

Note that it is likely some of the keyword values (mainly offsets e.g. BEGINDATA) may change
slightly after the conversion due to the process of rewriting data to FCS files through write.FCS.

Examples

Not run:

convert_legacy_gs(old_gs_path, new_gs_path)

End(Not run)

cs_add_cytoframe

Add a cytoframe to a cytoset

Description

Add a cytoframe to a cytoset

Usage

cs_add_cytoframe(cs, sn, cf)

Arguments

Cs
sn

cf

cytoset
sample name to be added

cytoframe to be added

cs_get_uri 17

cs_get_uri Return the path of the underlying data files

Description

Return the path of the underlying data files

Usage

cs_get_uri(x)
cs_get_h5_file_path(x)

gs_get_uri(x)

See Also

Other cytoframe/cytoset IO functions: cf_get_uri(), cf_write_disk(), cf_write_h5(), load_cytoframe_from_fcs(),
load_cytoframe(), load_cytoset_from_fcs()

cs_set_cytoframe update a cytoframe in a cytoset

Description

update a cytoframe in a cytoset

Usage

cs_set_cytoframe(cs, sn, cf)

Arguments
cs cytoset
sn sample name

cf cytoframe

18 cytoframe

cytoframe cytoframe: A reference class for efficiently managing the data repre-
sentation of a f1owFrame

Description

This class serves the same purpose as the flowFrame class from the flowCore package: to store
quantitative data on cell populations from a single FCS run. The primary difference is in the un-
derlying representation of the data. While flowFrame objects store the underlying data matrix in
the exprs slot as an R object, cytoframe objects store the matrix (as well as the data from the
other slots) in a C data structure that is accessed through an external pointer. This allows for greater
optimization of data operations including I/O, parsing, transformation, and gating.

Details

From the user’s standpoint, interacting with a cytoframe is very similar to interacting with a
flowframe, with one important difference. While operations such as subsetting or copying a
flowFrame using the standard R assignment operator (<-) will perform a deep copy of the data
in its slots, the same operations on a cytoframe will produce a view to the same underlying data
as the original object. This means that changes made to the cytoframe resulting from subsetting
or copying will affect the original cytoframe. If a deep copy of the underyling data is desired, the
realize_view method will accomplish this.

Because the cytoframe class inherits from flowFrame, the flowFrame slots are present but not
utilized. Thus, attempting to access them directly will yield empty data structures. However, the
exprs, parameters, or description methods work in a manner similar to a f1owFrame by access-
ing the same information from the underlying data structure.

Methods

Many of the methods here have their own documentation pages or are more extensively explained
in the documentation for flowFrame, so those documentation pages may be consulted as well for
more details.

[Subsetting. Returns an object of class cytoframe. The syntax for subsetting is similar to that of
data.frames. In addition to the usual index vectors (integer and logical by position, character
by parameter names), cytoframes can be subset via filterResult and filter objects.

Usage:

cytoframeli,jJ
cytoframe[filter,]
cytoframe[filterResult,]

Note that the value of argument drop is ignored when subsetting cytoframes.

cytoframe 19

$ Subsetting by channel name. This is similar to subsetting of columns of data.frames, i.e.,
frame$FSC.H is equivalent to frame[, "FSC.H"]. Note that column names may have to be
quoted if they are not valid R symbols (e.g. frame$"FSC-H" or frame$~FSC-H™).

exprs, exprs<- exprs returns an object of class matrix containing the measured intensities. Rows
correspond to cells, columns to the different measurement channels. The colnames attribute
of the matrix should hold the names or identifiers for the channels. The rownames attribute
would usually not be set.
exprs<- replaces the raw data intensities. The replacement value must be a numeric ma-
trix with colnames matching the parameter definitions. Implicit subsetting is allowed (i.e.
less columns in the replacement value compared to the original cytoframe), but all columns
must be defined in the original cytoframe.
Usage:

exprs(cytoframe)

exprs(cytoframe) <- value

head, tail Show first/last elements of the raw data matrix
Usage:
head(cytoframe)

tail(cytoframe)

keyword, keyword<- Extract all entries or a single entry from the annotations by keyword or re-
place the entire list of key/value pairs with a new named list. See keyword for details.

Usage:
keyword(cytoframe)
keyword(cytoframe, character)

keyword(cytoframe) <- list(value)

parameters, parameters<- Extract parameters and return an object of class AnnotatedDataFrame
containing information about each column of the cytoframe, or replace such an object.

This information will generally be filled in by load_cytoframe_from_fcs or similar func-
tions using data from the FCS keywords describing the parameters. To access the actual pa-

cytoframe

rameter annotation, use pData(parameters(cytoframe)).

Replacement is only valid with AnnotatedDataFrames containing all varLabels name, desc,
range, minRange and maxRange, and matching entries in the name column to the colnames of
the exprs matrix. See parameters for more details.

Usage:

parameters(cytoframe)

parameters(cytoframe) <- value

show Display details about the cytoframe object.

summary Return descriptive statistical summary (min, max, mean and quantile) for each channel
Usage:

summary (cytoframe)

plot Basic plots for cytoframe objects. If the object has only a single parameter this produces a
histogram. For exactly two parameters we plot a bivariate density map (see smoothScatter)
and for more than two parameters we produce a simple splom plot. To select specific param-
eters from a flowFrame for plotting, either subset the object or specify the parameters as a
character vector in the second argument to plot. The smooth parameters lets you toggle be-
tween density-type smoothScatter plots and regular scatterplots. For far more sophisticated
plotting of flow cytometry data, see the ggcyto package.

Usage:
plot(cytoframe, ...)

plot(cytoframe, character, ...)

plot(cytoframe, smooth=FALSE, ...)

ncol, nrow, dim Extract the dimensions of the data matrix.
Usage:
ncol (cytoframe)

nrow(cytoframe)

cytoframe 21

dim(cytoframe)

featureNames, colnames, colnames<- colnames and featureNames are synonyms. They extract
parameter names (i.e., the colnames of the data matrix). For colnames there is also a replace-
ment method. This will update the name column in the parameters slot as well.
Usage:
featureNames(cytoframe)

colnames(cytoframe)

colnames(cytoframe) <- value

markernames, markernames<- Access or replace the marker names associated with the channels
of the cytoframe. For replacement, value should be a named list or character vector where
the names correspond to the channel names and the values correpond to the marker names.
Usage:

markernames(object)

markernames(object) <- value

names Extract pretty formatted names of the parameters including parameter descriptions.
Usage:

names (cytoframe)

identifier Extract GUID of a cytoframe. Returns the file name if no GUID is available. See
identifier for details.

Usage:

identifier(cytoframe)

range Get instrument or actual data range of the cytoframe. Note that instrument dynamic range
is not necessarily the same as the range of the actual data values, but the theoretical range of
values the measurement instrument was able to capture. The values of the dynamic range will
be transformed when using the transformation methods forcytoframe objects.

cytoframe
Parameters:
x: cytoframe object.
type: Range type. either "instrument" or "data". Default is "instrument"
Usage:
range(x, type = "data")

each_row, each_col Apply functions over rows or columns of the data matrix. These are conve-
nience methods. See each_col for details.

Usage:
each_row(cytoframe, function, ...)
each_col (cytoframe, function, ...)

transform Apply a transformation function on a cytoframe object. This uses R’s transform
function by treating the cytoframe like a regular data.frame. flowCore provides an addi-
tional inline mechanism for transformations (see %on%) which is strictly more limited than the
out-of-line transformation described here.

Usage:

transform(cytoframe, translist, ...)

filter Apply a filter object onacytoframe object. This returns an object of class filterResult,
which could then be used for subsetting of the data or to calculate summary statistics. See
filter for details.
Usage:

filter(cytoframe, filter)

split Split cytoframe object according to a filter, a filterResult or a factor. For most types
of filters, an optional flowSet=TRUE parameter will create a flowSet rather than a simple list.
See split for details.
Usage:

split(cytoframe, filter, flowSet=FALSE, ...)

cytoframe 23

split(cytoframe, filterResult, flowSet=FALSE, ...)

split(cytoframe, factor, flowSet=FALSE, ...)

Subset Subset a cytoframe according to a filter or alogical vector. The same can be done using
the standard subsetting operator with a filter, filterResult, or a logical vector as first
argument.

Usage:
Subset(cytoframe, filter)

Subset(cytoframe, logical)

cbind2 Not yet implemented.
Expand a cytoframe by the data in a numeric matrix of the same length. The matrix
must have column names different from those of the cytoframe. The additional method for
numerics only raises a useful error message.
Usage:

cbind2(cytoframe, matrix)

cbind2(cytoframe, numeric)

compensate Apply a compensation matrix (or a compensation object) on a cytoframe object.
This returns a compensated cytoframe.

Usage:
compensate(cytoframe, matrix)
compensate(cytoframe, data.frame)

compensate(cytoframe, compensation)

decompensate Not yet implemented.
Reverse the application of a compensation matrix (or a compensation object) on a cytoframe
object. This returns a decompensated cytoframe.

Usage:

decompensate(cytoframe, matrix)

24 cytoframe-labels

decompensate(cytoframe, data.frame)

spillover Extract spillover matrix from description slot if present. It is equivalent to keyword(x,
c("spillover”, "SPILL")) Thus will simply return a list of keyword values for "spillover"
and "SPILL".

Usage:

spillover(cytoframe)

realize_view Returns a new cytoframe with its own copy of the underlying data (a deep copy).
The optional filepath argument accepts a string to specify a full filename for storing the new
copy of the data in h5 format.
Usage:

realize_view(cytoframe, filepath)

See Also

flowSet, read.FCS

cytoframe-labels Methods to change channel and marker names for cytoframe and
cytoset objects

Description

The methods allow direct alteration of channel names or marker names of cytoframe and cytoset
objects. These objects are accessed by reference and changed in place, so there is no need to assign
the return value of these methods.

Usage
cf_swap_colnames(x, coll, col2)
cf_rename_channel(x, old, new)
cf_rename_marker(x, old, new)

cs_swap_colnames(x, coll, col2)

cytoset 25

Arguments
X a cytoframe
coll first channel name to swap
col2 second channel name to swap
old old channel or marker name to be changed
new new channel or marker name after change
cytoset cytoset: a reference class for efficiently managing the data represen-
tation of a flowSet
Description

This class is a container for a set of cytoframe objects, analagous to a flowSet.

Details

Similar to the distinction between the cytoframe and flowFrame classes, the primary difference
between the cytoset and flowSet classes is in the underlying representation of the data. Because
cytoset is a reference class, copying or subsetting a cytoset object will return a cytoset pointing
to the same underlying data. A deep copy of the data can be obtained via the realize_view method.

There is one notable exception to the typical behavior of most methods returning a cytoframe.
The standard extraction operator ([[]1]) will by default perform a deep copy of the subset being
extracted and return a flowFrame. This is for the sake of compatibility with existing user scripts.

Creating Objects

Objects can be created using cytoset() and then adding samples by providing a cytoframe and
sample name to cs_add_cytoframe:

cs <- cytoset()
cs_add_cytoframe(cs, "Sample Name", cytoframe)

The safest and easiest way to create cytosets directly from FCS files is via the load_cytoset_from_fcs
function, and there are alternative ways to specify the files to read. See the separate documentation
for details.

26 cytoset

Methods

[, [[Subsetting. x[i] where i is a scalar, returns a cytoset object, and x[[i]] a flowFrame ob-
ject. In this respect the semantics are similar to the behavior of the subsetting operators for
lists. x[i, j] returns a cytoset for which the parameters of each cytoframe have been sub-
set according to j, x[[i, j]] returns the subset of a single flowFrame for all parameters in j.

The reason for the default behavior of the extraction operator [[]] returning a flowFrame
rather than cytoframe is for backwards compatibility with existing user scripts. This behav-
ior can be overridden to instead return a cytoframe with the additional returnType argument.
Usage:

cytoset[i]

cytoset[i,j]

cytoset[[i]]

cytoset[[i, returnType = "cytoframe"]]

get_cytoframe_from_cs Extract a cytoframe from a cytoset by supplying either a sample name
or index and optionally supplying a subset of columns.

The cytoframe to be extracted (i argument) can be specified using its sample name (char-
acter) or index in the cytoset (int/numeric). Columns (j argument) can be specified using
channel name (character), index (int/numeric), or logical vector. If this argument is missing,
all columns will be selected.

Usage:

(Assuming csis a cytoset and cf is the extracted cytoframe) cf <- get_cytoframe_from_cs(cs,
i, j) cf <- get_cytoframe_from_cs(cs, i)

$ Subsetting by frame name. This will return a single cytoframe object. Note that names may
have to be quoted if they are not valid R symbols (e.g. cytoset$”sample 1").

colnames, colnames<- Extract or replace the character object with the (common) column names
of all the data matrices in the cytoframes.

Usage:
colnames(cytoset)

colnames(cytoset) <- value

identifier, identifier<- Extract or replace the name item from the environment.

cytoset 27

Usage:
identifier(cytoset)

identifier(cytoset) <- value

phenoData, phenoData<- Extract or replace the AnnotatedDataFrame containing the phenotypic
data for the whole data set. Each row corresponds to one of the cytoframes. The sampleNames
of phenoData (see below) must match the names of the cytoframes in the frames environ-
ment.
Usage:
phenoData(cytoset)

phenoData(cytoset) <- value

pData, pData<- Extract or replace the data frame (or columns thereof) containing actual pheno-
typic information from the phenoData of the underlying data.

Usage:
pData(cytoset)

pData(cytoset)$someColumn <- value

varLabels, varLabels<- Not yet implemented.
Extract and set varLabels in the AnnotatedDataFrame of the phenoData of the underyling
data.
Usage:

varLabels(cytoset)

varLabels(cytoset) <- value

sampleNames Extract and replace sample names from the phenoData. Sample names correspond
to frame identifiers, and replacing them will also replace the GUID for each cytoframe. Note
that each sample name needs to be unique.

Usage:

sampleNames(cytoset)

28

cytoset

sampleNames(cytoset) <- value

keyword Extract or replace keywords specified in a character vector or a list from the description
slot of each frame. See keyword for details.

Usage:
keyword(cytoset, list(keywords))
keyword(cytoset, keywords)

keyword(cytoset) <- list(foo="bar")

length The number of cytoframe objects in the set.
Usage:

length(cytoset)

show display object summary.

summary Return descriptive statistical summary (min, max, mean and quantile) for each channel
of each cytoframe.

Usage:

summary (cytoset)

fsApply Apply a function on all frames in a cytoset object. Similar to sapply, but with additional
parameters. See fsApply for details.

Usage:
fsApply(cytoset, function, ...)

fsApply(cytoset, function, use.exprs=TRUE, ...)

compensate Apply a compensation matrix on all frames in a cytoset object. See compensate for
details.

Usage:

cytoset 29

compensate(cytoset, matrix)

transform Apply a transformation function on all frames of a cytoset object. See transform for
details.

Usage:

transform(cytoset, ...)

filter Apply a filter on a cytoset object. There are methods for filter objects, and lists of filter
objects. The latter has to be a named list, where names of the list items are matching the
sampleNames of the cytoset. See filter for details.
Usage:

filter(cytoset, filter)

filter(cytoset, list(filters))

split Split all cytoframe objects according to a filter, filterResult or a list of such objects,
where the length of the list has to be the same as the length of the cytoset. This returns
a list of cytoframes or an object of class cytoset if the flowSet argument is set to TRUE.
Alternatively, a cytoset can be split into separate subsets according to a factor (or any vector
that can be coerced into a factor), similar to the behaviour of split for lists. This will return
a list of cytosets. See split for details.
Usage:
split(cytoset, filter)
split(cytoset, filterResult)
split(cytoset, list(filters))

split(cytoset, factor)

Subset Returns a cytoset of cytoframes that have been subset accordingtoa filter or filterResult,
or according to a list of such items of equal length as the cytoset. See Subset for details.
Usage:

Subset(cytoset, filter)

30 delete_gs

Subset(cytoset, filterResult)

Subset(cytoset, list(filters))

rbind2 Not yet implemented.
Combine two cytoset objects, or one cytoset and one cytoframe object.

Usage:
rbind2(cytoset, cytoset)

rbind2(cytoset, cytoframe)

spillover Compute spillover matrix from a compensation set. See spillover for details.

realize_view Returns a new cytoset with its own copy of the underlying data (a deep copy). The
optional filepath argument accepts a string to specify a full directory name for storing the
new copies of the data from the FCS files in h5 format.

Usage:

realize_view(cytoset, filepath)

cs_add_cytoframe Adds a cytoframe to the cytoset with sample name given by a string.
Usage:

cs_add_cytoframe(cytoset, "SampleName"”, cytoframe)

delete_gs delete the archive of GatingSet

Description

delete the archive of GatingSet

Usage
delete_gs(path)

Arguments

path either a local path or s3 path (e.g. "s3://bucketname/gs_path)

estimateLogicle 31

estimatelogicle Compute logicle transformation from the flowData associated with a
GatingHierarchy

Description

See details in estimateLogicle

Usage
S3 method for class 'GatingHierarchy'
estimateLogicle(x, channels, ...)
Arguments
X a GatingHierarchy
channels channels or markers for which the logicle transformation is to be estimated.

other arguments

Value

transformerList object

Examples

Not run:

gs is a GatingSet

trans.list <- estimateLogicle(gs[[1]], c("CD3", "CD4", "CD8"))

trans.list is a transformerList that can be directly applied to GatinigSet
gs <- transform(gs, trans.list)

End(Not run)

extract_cluster_pop_name_from_node
Extract the population name from the node path It strips the parent
path and cluster method name.

Description

Extract the population name from the node path It strips the parent path and cluster method name.

Usage

extract_cluster_pop_name_from_node(node, cluster_method_name)

32 flowjo_biexp

Arguments

node population node path

cluster_method_name
the name of the clustering method

Examples

extract_cluster_pop_name_from_node("cd3/flowClust_popl1"”, "flowClust")
#returns "popl1”

filter_to_list convert flowCore filter to a list It convert the flowCore gate to a list
whose structure can be understood by underlying c++ data structure.

Description

convert flowCore filter to a list

It convert the flowCore gate to a list whose structure can be understood by underlying c++ data
structure.

Usage

filter_to_list(x)

Arguments
X filter a flowCore gate. Currently supported gates are: "rectangleGate", "poly-
gonGate","ellipsoidGate" and "booleanFilter"
Value
alist
flowjo_biexp construct the flowJo-type biexponentioal transformation function
Description

Normally it was parsed from flowJo xml workspace. This function provides the alternate way to
construct the flowJo version of logicle transformation function within R.

flowjo_biexp_trans

Usage

flowjo_biexp(

33

channelRange = 4096,

maxValue =

pos = 4.5,
neg = 0,

widthBasis

262144,

-10,

inverse = FALSE

Arguments

channelRange
maxValue

pos

neg

widthBasis

inverse

Examples

numeric the maximum value of transformed data
numeric the maximum value of input data
numeric the full width of the transformed display in asymptotic decades

numeric Additional negative range to be included in the display in asymptotic
decades

numeric unkown.

logical whether to return the inverse transformation function.

trans <- flowjo_biexp()
data.raw <- c(-1, 1e3, 1e5)
data.trans <- trans(data.raw)

round(data. trans)

inv <- flowjo_biexp(inverse = TRUE)
round(inv(data.trans))

flowjo_biexp_trans

flowJo biexponential transformation.

Description

Used for constructing biexponential transformation object.

Usage

flowjo_biexp_trans(..., n =

6, equal.space = FALSE)

flowJo_biexp_trans(...)

Arguments

equal.space

parameters passed to flowJoTrans

desired number of breaks (the actual number will be different depending on the
data range)

whether breaks at equal-spaced intervals

34 flowjo_tasinh

Value

biexponential transformation object

Examples

library(flowCore)

data(GvHD)

fr <- GvHD[[11]]

data.raw <- exprs(fr)[, "FL1-H"]

trans.obj <- flowjo_biexp_trans(equal.space = TRUE)
brks.func <- trans.obj[["breaks"]]

brks <- brks.func(data.raw)

brks # biexp space displayed at raw data scale

#transform it to verify it is equal-spaced at transformed scale
trans.func <- trans.obj[["transform”]]

print(trans.func(brks))

flowjo_fasinh inverse hyperbolic sine transform function

Description

hyperbolic sine/inverse hyperbolic sine (flowJo-version) transform function constructor

Usage

flowjo_fasinh(m = 4, t = 12000, a = 0.7, length = 256)

flowjo_fsinh(m = 4, t = 12000, a = 0.7, length = 256)

Arguments
m numeric the full width of the transformed display in asymptotic decades
t numeric the maximum value of input data
a numeric Additional negative range to be included in the display in asymptotic
decades
length numeric the maximum value of transformed data
Value

fasinh/fsinh transform function

flowjo_tasinh_trans 35

Examples

trans <- flowjo_fasinh()
data.raw <- c(1,1e2,1e3)
data.trans <- trans(data.raw)
data.trans

inverse.trans <- flowjo_fsinh()
inverse.trans(data.trans)

flowjo_fasinh_trans flowJo inverse hyperbolic sine transformation.

Description

Used to construct the inverse hyperbolic sine transform object.

Usage

flowjo_fasinh_trans(..., n = 6, equal.space = FALSE)

flowJo_fasinh_trans(...)

Arguments
parameters passed to flowjo_fasinh
n desired number of breaks (the actual number will be different depending on the
data range)
equal.space whether breaks at equal-spaced intervals
Value

fasinh transformation object

Examples

trans.obj <- flowjo_fasinh_trans(equal.space = TRUE)
data <- 1:1e3

brks.func <- trans.obj[["breaks"]]

brks <- brks.func(data)

brks # fasinh space displayed at raw data scale

#transform it to verify it is equal-spaced at transformed scale
trans.func <- trans.obj[["transform”]]
round(trans. func(brks))

36

flowjo_log_trans

flowjo_log_trans flog transform function

Description

flog transform function constructor. It is different from flowCore version of logtGmlI2 in the way

that it reset negative input so that no NAN will be returned.

Usage
flowjo_log_trans(
decade = 4.5,
offset = 1,
scale = 1,
n==6,
equal.space = FALSE
)
Arguments
decade total number of decades (i.e. log(max)-log(min)
offset offset to the orignal input(i.e. min value)
scale the linear scale factor
n desired number of breaks (the actual number will be different depending on the
data range)
equal.space whether breaks at equal-spaced intervals
Value

flog(or its inverse) transform function

Examples

trans <- flowjo_log_trans()

data.raw <- c(1,1e2,1e3)

data.trans <- trans[["transform”]](data.raw)
data.trans

inverse.trans <- trans[["inverse"]]
inverse.trans(data.trans)

#negative input

data.raw <- c(-10,1e2,1e3)

data.trans <- trans[["transform”]](data.raw)
data.trans

inverse.trans(data.trans)#we lose the original value at lower end since flog can't restore negative value

flowWorkspace-deprecated

#different

trans <- flowjo_log_trans(decade = 3, offset = 30)
data.trans <- trans[["transform”]](data.raw)
data.trans

inverse.trans <- trans[["inverse"]]
inverse.trans(data.trans)

37

flowWorkspace-deprecated

Deprecated functions in package flowWorkspace.

Description

getStats —> gs(/gh)_pop_get_stats

getProp —> gh_pop_get_proportion

getTotal —> gh_pop_get_count

getPopStats —> gs(/gh)_pop_get_stats
getNodes —> gs_get_pop_paths

getParent —> gs_pop_get_parent

getChildren —> gs_pop_get_children

getGate —> gs(/gh)_get_gate

getIndices —> gh_pop_get_indices

isGated —> gh_pop_is_gated

isNegated —> gh_pop_is_negated

isHidden —> gh_pop_is_hidden

getData —> gs(/gh)_get_data
getTransformations —> gh_get_transformations
getCompensationMatrices —> gh_get_compensations
setNode —> gs(/gh)_set_node_name/gs(/gh)_set_node_visible
isNcdf —> gs_is_h5

flowData —> gs_cyto_data

flowData<- —> gs_cyto_data<-

getlLoglevel —>get_log_level

setLoglevel —> set_log_level

rbind2 —> gslist_to_gs

filterObject —> filter_to_list

add —> gs_pop_add

Rm —> gs_pop_remove

38 flow_breaks

copyNode —> gh_copy_gate

openWorkspace —> open_flowjo_xml

flowJo.flog —> flowjo_log_trans

flowJoTrans —> flowjo_biexp

flowJo_biexp_trans —> flowjo_biexp_trans
flowJo.fasinh —> flowjo_fasinh

flowJo.fsinh —> flowjo_fsinh

flowJo_fasinh_trans —> flowjo_fasinh_trans
getDescendants —> gh_pop_get_descendants
getSingleCellExpression —> gs_get_singlecell_expression
groupByTree —> gs_split_by_tree

groupByChannels —> gs_split_by_channels
checkRedundantNodes —> gs_check_redundant_nodes
dropRedundantNodes —> gs_remove_redundant_nodes
dropRedundantChannels —> gs_drop_redundant_channels
updateChannels —> gs_update_channels

setGate —> gs(/gh)_pop_set_gate

updateIndices —> gh_pop_set_indices

getMergedStats —> gs_pop_get_count_with_meta

set.count.xml —> gh_pop_set_xml_count

flow_breaks Generate the breaks that makes sense for flow data visualization

Description

It is mainly used as helper function to construct breaks function used by ’trans_new’.

Usage

flow_breaks(x, n = 6, equal.space = FALSE, trans.fun, inverse.fun)

Arguments
X the raw data values
n desired number of breaks (the actual number will be different depending on the
data range)
equal.space whether breaks at equal-spaced intervals
trans.fun the transform function (only needed when equal.space is TRUE)

inverse.fun the inverse function (only needed when equal.space is TRUE)

flow_trans 39

Value

either 10”n intervals or equal-spaced(after transformed) intervals in raw scale.

Examples

library(flowCore)

data(GvHD)

fr <- GvHD[L[1]]

data.raw <- exprs(fr)[, "FL1-H"]
flow_breaks(data.raw)

trans <- logicleTransform()
inv <- inverselogicleTransform(trans = trans)
myBrks <- flow_breaks(data.raw, equal.space = TRUE, trans = trans, inv = inv)

round(myBrks)
#to verify it is equally spaced at transformed scale
print(trans(myBrks))
flow_trans helper function to generate a trans objects Used by other specific trans
constructor
Description

helper function to generate a trans objects Used by other specific trans constructor

Usage

flow_trans(name, trans.fun, inverse.fun, equal.space = FALSE, n = 6)

Arguments
name transformation name
trans.fun the transform function (only needed when equal.space is TRUE)
inverse.fun the inverse function (only needed when equal.space is TRUE)
equal.space whether breaks at equal-spaced intervals
n desired number of breaks (the actual number will be different depending on the

data range)

40 GatingHierarchy-class

GatingHierarchy-class Class GatingHierarchy

Description

GatingHierarchy is a class for representing the gating hierarchy,which can be either imported from
a flowJo workspace or constructed in R.

Details

There is a one-to-one correspondence between GatingHierarchy objects and FCS files in the flowJo
workspace. Each sample (FCS file) is associated with it’s own GatingHierarchy. It is also more
space efficient by storing gating results as logical/bit vector instead of copying the raw data.

Given a GatingHierarchy, one can extract the data associated with any subpopulation, extract gates,
plot gates, and extract population proportions. This facilitates the comparison of manual gating
methods with automated gating algorithms.

See Also

GatingSet

Examples

Not run:

require(flowWorkspaceData)
d<-system.file("extdata",package="flowWorkspaceData")
wsfile<-list.files(d,pattern="A2004Analysis.xml"”,full=TRUE)
library(CytoML)

ws <- open_flowjo_xml(wsfile);
G<-try(flowjo_to_gatingset(ws,path=d,name=1));

gh <- G[[1]]

gh_pop_compare_stats(gh);

gh_plot_pop_count_cv(gh)

nodes <- gs_get_pop_paths(gh)

thisNode <- nodes[4]

require(ggcyto)

autoplot(gh, thisNode);

gh_pop_get_gate(gh, thisNode);

gh_pop_get_data(gh, thisNode)

End(Not run)

GatingSet-class 41

GatingSet-class Class "GatingSet”

Description

GatingSet holds a set of GatingHierarchy objects, representing a set of samples and the gating
scheme associated with each.

Details

Objects stores a collection of GatingHierarchies and represent a group in a flowJo workspace.
A GatingSet can have two “states”. After a call to flowjo_to_gatingset(...,execute=FALSE) , the
workspace is imported but the data is not. Setting execute to TRUE is needed in order to load,
transform, compensate, and gate the associated data. Whether or not a GatingHierarchy has been
applied to data is encoded in the flag slot. Some methods will warn the user, or may not function
correctly if the GatingHierarchy has not been executed. This mechanism is in place, largely for the
purpose of speed when working with larger workspaces. It allows the use to load a workspace and
subset desired samples before proceeding to load the data.

Slots

pointer: Object of class "externalptr”. points to the gating hierarchy stored in C data structure.

transformation: Object of class "list"”. alist of transformation objects used by GatingSet.

See Also

GatingHierarchy

Examples

Not run:
require(flowWorkspaceData)
d<-system.file("extdata",package="flowWorkspaceData")
wsfile<-list.files(d,pattern="A2004Analysis.xml"”,full=TRUE)
library(CytoML)
ws <- open_flowjo_xml(wsfile);
G<-try(flowjo_to_gatingset(ws,execute=TRUE, path=d,name=1));
gs_plot_pop_count_cv(G);

End(Not run)

42 GatingSetList-class

GatingSet-methods constructors for GatingSet

Description

construct a gatingset with empty trees (just root node)

Usage
S4 method for signature 'cytoset,ANY'
GatingSet(x)

Arguments

X a flowSet, ncdfFlowSet, or cytoset

arguments passed to flowSet_to_cytoset() when x is a flowSet

Examples

Not run:
#fdata could be a flowSet, ncdfFlowSet, or GatingSet
gs <- GatingSet(fdata)

End(Not run)

GatingSetlList-class Class "GatingSetList"

Description

A list of of GatingSet objects. This class exists for method dispatching.

use GatingSetlList constructor to create a GatingSetList from a list of GatingSet

Usage

GatingSetlList(x, samples = NULL)

Arguments
X alist of GatingSet
samples character vector specifying the order of samples. if not specified, the samples

are ordered as the underlying stored order.

GatingSetList-class 43

Details

Objects store a collection of GatingSets,which usually has the same gating trees and markers. Most
GatingSets methods can be applied to GatingSetList.

See Also

GatingSet GatingHierarchy

Examples

Not run:
#load several GatingSets from disk
gs_list<-lapply(list.files("../gs_toMerge”,full=T) ,function(this_folder){
load_gs(this_folder)
b))

#gs_list is a list
gs_groups <- merge(gs_list)
#returns a list of GatingSetList objects
gslist2 <- gs_groups[[2]]
#gslist2 is a GatingSetList that contains multiple GatingSets and they share the same gating and data structure
gslist?2
class(gslist2)
sampleNames(gslist2)

#reference a GatingSet by numeric index
gslist2[[1]1]

#reference a GatingSet by character index
gslist2[["30104.fcs"]]

#loop through all GatingSets within GatingSetlList
lapply(gslist2,sampleNames)

#subset a GatingSetList by [
sampleNames(gslist2[c(4,1)1)
sampleNames(gslist2[c(1,4)])
gslist2[c("30104.fcs")]

#get flow data from it

gs_pop_get_data(gslist2)

#get gated flow data from a particular popoulation
gs_pop_get_data(gslist2, "3+")

#extract the gates associated with one popoulation
gs_pop_get_gate(gslist2,"3+")
gs_pop_get_gate(gslist2,5)

#extract the pheno data
pData(gslist2[3:1])
#modify the pheno data
pd <- pData(gslist2)
pd$id <- 1:nrow(pd)

44 get_default_backend

pData(gslist2) <- pd
pData(gslist2[3:2])

#plot the gate
autoplot(gslist2[1:2],5)

#remove cerntain gates by loop through GatingSets
gs_get_pop_paths(gslist2[[1]1])
lapply(gslist2,function(gs)gs_pop_remove("Excl”,gs = gs))

#extract the stats

gs_pop_get_count_fast(gslist2)

#extract statistics by using getQAStats defined in QUALIFIER package
res<-getQAStats(gslist2[c(4,2)],isMFI=F,isSpike=F,nslaves=1)

#archive the GatingSetlList
save_gslist(gslist2, path ="~/rglab/workspace/flowIncubator/output/gslist"”,overwrite=T)
gslist2 <- load_gslist(path ="~/rglab/workspace/flowIncubator/output/gslist"”)

#convert GatingSetList into one GatingSet by merge_list_to_gs
gs_merged2 <- merge_list_to_gs(gslist2)
gs_merged?2

End(Not run)

Not run:

samleNames(gsA) # return A1, A2
samleNames(gsB) # return B1, B2

gs.list <- list(gsA, gsB)

gslist<- GatingSetList(gs.list)
sampleNames(gslist) #return A1,A2,B1,B2

#set different order when create the GatingSetlList
gslist<- GatingSetList(gs.list, samples = c("A1","B1", "A2", "B2"))
sampleNames(gslist) #return A1,B1,A2,B2

End(Not run)

get_default_backend get/set the default backend format of cytoframe

Description

get/set the default backend format of cytoframe

Usage
get_default_backend()

set_default_backend(backend = c("h5", "mem", "tile"))

get_log_level 45

Arguments
backend one of ¢("h5", "mem", "tile")
get_log_level get/set the log level
Description

It is helpful sometime to get more detailed print out for the purpose of trouble shooting

Usage
get_log_level()

set_log_level(level = "none")
Arguments
level a character that represents the log level , can be value of c("none", "Gat-

"non

ingSet", "GatingHierarchy", "Population”, "gate") default is "none" , which does

not print any information from C parser.
Value

a character that represents the internal log level

Examples

get_log_level()
set_log_level("Population”)
get_log_level()

gh_apply_to_cs Construct a GatingSet using a template

Description

This uses a GatingHierarchy as a template to apply to other loaded samples in the form of a
cytoset, resulting in a GatingSet. The transformations and gates from the template are ap-
plied to all samples. The compensation applied to each of the samples can be controlled via the
compensation_source argument.

Usage

gh_apply_to_cs(x, cs, swap_cols = FALSE, compensation_source = "sample”, ...)

46 gh_apply_to_new._fcs

Arguments
X GatingHierarchy
cs a cytoset
swap_cols for internal usage

compensation_source
One of the following options:

* "sample" — each cytoframe will be compensated with the spillover matrix
included in its own FCS

* "template" — all cytoframes will be compensatied with the spillover matrix
of the template GatingHierarchy

* "none" — no compensation will be applied

not currently used

Value

a GatingSet

gh_apply_to_new_fcs Construct a GatingSet using a template and FCS files

Description

This uses a GatingHierarchy as a template to apply to other loaded samples in the form of a list of
FCS files, resulting in a GatingSet. The transformations and gates from the template are applied
to all samples.

Usage

gh_apply_to_new_fcs(
X,
files,
swap_cols = FALSE,
backend = get_default_backend(),

compensation_source = "sample”,
)
Arguments
X GatingHierarchy
swap_cols for internal usage
backend the backend storage mode to use for load_cytoset_from_fcs

compensation_source
One of the following options:

gh_copy_gate 47

* "sample" — each cytoframe will be compensated with the spillover matrix
included in its own FCS

* "template" — all cytoframes will be compensatied with the spillover matrix
of the template GatingHierarchy

* "none" — no compensation will be applied

other arguments passed to load_cytoset_from_fcs

Details

This method is still included to support legacy scripts but will deprecated for the more modular
workflow of loading a cytoset via load_cytoset_from_fcs followed by gh_apply_to_cs.

gh_copy_gate Copy a node along with all of its descendant nodes to the given ances-
tor

Description

Copy a node along with all of its descendant nodes to the given ancestor

Usage

gh_copy_gate(gh, node, to)

Arguments

gh GatingHierarchy

node the node to be copied

to the new parent node under which the node will be copied
Examples

library(flowWorkspace)

dataDir <- system.file("extdata”,package="flowWorkspaceData")

suppressMessages(gs <- load_gs(list.files(dataDir, pattern = "gs_manual”,full = TRUE)))
gh <- gs[[1]]

old.parent <- gs_pop_get_parent(gh, "CD4")

new.parent <- "singlets”

gh_copy_gate(gh, "CD4", new.parent)

gs_get_pop_paths(gh)

48 gh_get_compensations

gh_get_cluster_labels Retrieve the cluster labels from the cluster nodes

Description

Clustering results are stored as individual gated nodes. This helper function collect all the gating
indices from the same clustering run (identified by *parent’ node and ’cluster_method_name" and
merge them as a single factor.

Usage

gh_get_cluster_labels(gh, parent, cluster_method_name)

Arguments
gh GatingHierarchy
parent the parent population/node name or path

cluster_method_name
the name of the clustering method

gh_get_compensations Retrieve the compensation matrices from a GatingHierarchy or
GatingSet

Description

Retrieve the compensation matrices from a GatingHierarchy or GatingSet.

Usage

gh_get_compensations(x)

gs_get_compensations(x)

Arguments

X A GatingHierarchy or GatingSet object.

Details

Return all the compensation matrices in a GatingHierarchy or GatingSet

Value

A list of matrix representing the spillover matrix in GatingHierarchy or GatingSet

gh_get_transformations 49

Examples

Not run:

Assume gh is a GatingHierarchy and gs is a GatingSet
gh_get_compensations(gh)

gs_get_compensations(gs)

End(Not run)

gh_get_transformations
Return a list of transformations or a transformation in a GatingHier-
archy

Description

Return a list of all the transformations or a transformation in a GatingHierarchy

Usage

gh_get_transformations(
X,
channel = NULL,
inverse = FALSE,
only.function = TRUE,

)
Arguments
X A GatingHierarchy object
channel character channel name
inverse logical whether to return the inverse transformation function. Valid when

only.funtion is TRUE

only.function logical whether to return the function or the entire transformer object(see
scales package) that contains transform and inverse and breaks function.

other arguments equal.spaced logical passed to the breaks functio to determine
whether to break at 10”n or equally spaced intervals

Details

Returns a list of the transformations or a transformation in the flowJo workspace. The list is of
length L, where L is the number of distinct transformations applied to samples in the flowjo_workspace.
Each element of L is itself a 1ist of length M, where M is the number of parameters that were trans-
formed for a sample or group of samples in a flowjo_workspace. For example, if a sample has

10 parameters, and 5 are transformed during analysis, using two different sets of transformations,
then L will be of length 2, and each element of L will be of length 5. The elements of L repre-
sent channel- or parameter-specific transformation functions that map from raw intensity values to
channel-space used by flowJo.

50 gh_plot_pop_count_cv

Value

lists of functions(or transform objects when only.function is FALSE), with each element of the list
representing a transformation applied to a specific channel/parameter of a sample.

Examples

Not run:
#Assume gh is a GatingHierarchy

gh_get_transformations(gh); # return a list transformation functions

gh_get_transformations(gh, inverse = TRUE); # return a list inverse transformation functions
gh_get_transformations(gh, channel = "FL1-H") # only return the transfromation associated with given channel
gh_get_transformations(gh, channel = "FL1-H", only.function = FALSE) # return the entire transform object

End(Not run)

Plot the coefficient of variation between xml and openCyto population

gh_plot_pop_count_cv
statistics for each population in a gating hierarchy.

Description

This function plots the coefficient of variation calculated between the xml population statistics and
the openCyto population statistics for each population in a gating hierarchy extracted from a xml

Workspace.
Usage

gh_plot_pop_count_cv(x, path = "auto”, ...)

gs_plot_pop_count_cv(x, scales = list(x = list(rot = 90)), path = "auto”, ...)
Arguments

X A GatingHierarchy from or a GatingSet.

path character see gs_get_pop_paths

Additional arguments to the barplot methods.

scales list see barchart

Details

The CVs are plotted as barplots across panels on a grid of size m by n.

Value

Nothing is returned.

gh_pop_compare_stats 51
See Also

gs_pop_get_count_fast

Examples

Not run:
#G is a GatingHierarchy
gs_plot_pop_count_cv(G,4,4);

End(Not run)

gh_pop_compare_stats Compare the stats(count/freq) between the version parsed from xml

and the one recalculated/gated from R

Description

Compare the stats(count/freq) between the version parsed from xml and the one recalculated/gated

from R
Usage

gh_pop_compare_stats(x, path = "auto”, ...)
Arguments

X GatingHierarchy

path

see gs_get_pop_paths
not used

gh_pop_get_cluster_name

check if a node is clustering node

Description

check if a node is clustering node
Usage

gh_pop_get_cluster_name(gh, node)
Arguments

gh GatingHierarchy

node the population/node name or path

52 gh_pop_get_data

Value

the name of the clustering method. If it is not cluster node, returns NULL

gh_pop_get_data get gated flow data from a GatingHierarchy/GatingSet/GatingSetList

Description

get gated flow data from a GatingHierarchy/GatingSet/GatingSetList

Usage
gh_pop_get_data(obj, y = "root”, inverse.transform = FALSE, ...)
Arguments
obj A GatingHierarchy, GatingSet or GatingSetList object.
y character the node name or full(/partial) gating path. If not specified, will

return the complete flowFrame/flowSet at the root node.

inverse.transform
logical flag indicating whether to inverse transform the data

arguments passed to ncdfFlow::[[

Details

Returns a flowFrame/flowSet containing the events in the gate defined at node y. Subset mem-
bership can be obtained using gh_pop_get_indices. Population statistics can be obtained using
getPop and gh_pop_compare_stats. When calling gh_pop_get_data on a GatingSet,the trees
representing the GatingHierarchy for each sample in the GaingSet are presumed to have the same
structure. To update the data, use gs_cyto_data method.

Value
A flowFrame object if obj is a GatingHierarchy. A flowSet or ncdfFlowSet if a GatingSet. A
ncdfFlowList if a GatingSetList.

See Also

gs_cyto_data gh_pop_get_indices gh_pop_compare_stats

gh_pop_get_descendants 53

Examples

Not run:
#G is a GatingSet
geData(G,3) #get a flowSet constructed from the third node / population in the tree.
geData(G, "cd4")

#gh is a GatingHierarchy
gh_pop_get_data(gh)

End(Not run)

gh_pop_get_descendants
get all the descendant nodes for the given ancester

Description

get all the descendant nodes for the given ancester

Usage

gh_pop_get_descendants(gh, node, showHidden = TRUE, ...)
Arguments

gh GatingHierarchy

node the node path

showHidden whether show hidden nodes

passed to getNode call

Examples

library(flowWorkspace)

dataDir <- system.file("extdata”,package="flowWorkspaceData")

suppressMessages(gs <- load_gs(list.files(dataDir, pattern = "gs_manual”,full = TRUE)))
gh_pop_get_descendants(gs[[1]], "CD4")

gh_pop_get_descendants(gs[[1]], "CD8", path = "auto")

54

gh_pop_get_indices

gh_pop_get_full_path convert the partial gating path to the full path

Description

convert the partial gating path to the full path

Usage
gh_pop_get_full_path(gh, path)

Arguments

gh GatingHierarchy object

path the partial gating path
Value

the full gating path

gh_pop_get_indices Get the membership indices for each event with respect to a particular
gate in a GatingHierarchy

Description

Returns a logical vector that describes whether each event in a sample is included or excluded by

this gate.

Usage

gh_pop_get_indices(obj, y)

Arguments
obj A GatingHierarchy representing a sample.
y A character giving the name or full(/partial) gating path of the population /
node of interest.
Details

Returns a logical vector that describes whether each event in the data file is included in the given gate
of this GatingHierarchy. The indices are for all events in the file, and do not reflect the population
counts relative to the parent but relative to the root. To get population frequencies relative to the

parent one cross-tabulate the indices of y with the indices of its parent.

gh_pop_get_indices_mat 55

Value

A logical vector of length equal to the number of events in the FCS file that determines whether
each event is or is not included in the current gate.

Note

Generally you should not need to use gh_pop_get_indices but the more convenient methods
gh_pop_get_proportion and gh_pop_compare_stats which return population frequencies rel-
ative to the parent node. The indices returned reference all events in the file and are not directly
suitable for computing population statistics, unless subsets are taken with respect to the parent pop-
ulations.

See Also

gh_pop_compare_stats

Examples

Not run:
#G is a gating hierarchy
#Return the indices for population 5 (topological sort)
gh_pop_get_indices(G,gs_get_pop_paths(G, tsort=TRUE)[5]);

End(Not run)

gh_pop_get_indices_mat
Return the single-cell matrix of 1/0 dichotomized expression

Description

Return the single-cell matrix of 1/0 dichotomized expression

Usage

gh_pop_get_indices_mat(gh, y)

Arguments

gh GatingHierarchy object

y character vector containing the node names

56

gh_pop_move

gh_pop_get_proportion Get count or proportion from populations

Description

Get count or proportion from populations

Usage

gh_pop_get_proportion(x, y, xml = FALSE)

gh_pop_get_count(x, y, xml = FALSE)

Arguments
X GatingHierarchy
y character node name or path
xml whether to extract xml stats or openCyto stats
gh_pop_move move a node along with all of its descendant nodes to the given ances-
ter
Description

move a node along with all of its descendant nodes to the given ancester

Usage

gh_pop_move(gh, node, to, recompute = TRUE)

Arguments
gh
node
to

recompute

GatingHierarchy
the node to be moved
the new parent node under which the node will be moved to

whether to recompute the gates after the node is moved. Default is TRUE.

gh_pop_set_indices 57

Examples

library(flowWorkspace)

dataDir <- system.file("extdata”,package="flowWorkspaceData")

suppressMessages(gs <- load_gs(list.files(dataDir, pattern = "gs_manual”,6full = TRUE)))
gh <- gs[[11]

old.parent <- gs_pop_get_parent(gh, "CD4")

new.parent <- "singlets”

gh_pop_move(gh, "CD4", new.parent)

gs_pop_get_parent(gh, "CD4")

gh_pop_set_indices directly update event indices without changing gates

Description
It is useful when we want to alter the popluation at events level yet without removing or adding the
existing gates.

Usage

gh_pop_set_indices(obj, vy, z)

Arguments

obj GatingHierarchy object

y character node name or path

z logical vector as local event indices relative to node y
Examples

library(flowWorkspace)

dataDir <- system.file("extdata”,package="flowWorkspaceData")

suppressMessages(gs <- load_gs(list.files(dataDir, pattern = "gs_manual”,full = TRUE)))
gh <- gs[[1]1]

#get pop counts

pop.stats <- gh_pop_get_stats(gh, nodes = c("CD3+", "CD4", "CD8"))

pop.stats

subsample 30% cell events at CD3+ node

total <- gh_pop_get_count(gh, "root")

gInd <- seg_len(total) #create integer index for cd3

gInd <- sample.int(total, size = total * 0.3) #randomly select 30%
#convert it to logicle index

gInd.logical <- rep(FALSE, total)

gInd.logicallgInd] <- TRUE

#replace the original index stored at GatingHierarchy
gh_pop_set_indices(gh, "CD3+", gInd.logical)

#check the updated pop counts

58 gslist_to_gs

gh_pop_get_stats(gs[[1]], nodes = c("CD3+", "CD4", "CD8")) #note that CD4, CD8 are not updated
#update all the descendants of CD3+

nodes <- gh_pop_get_descendants(gh, "CD3+")

for (node in nodes) suppressMessages(recompute(gh, node))

gh_pop_get_stats(gs[[1]], nodes = c("CD3+", "CD4", "CD8")) #now all are update to date

gh_pop_set_xml_count save the event counts parsed from xml into c++ tree structure

Description

It is for internal use by the diva parser

Usage

gh_pop_set_xml_count(gh, node, count)

Arguments
gh GatingHierarchy
node the unique gating path that uniquely identifies a population node
count integer number that is events count for the respective gating node directly parsed
from xml file
Examples
Not run:

gh_pop_set_xml_count(gh, "CD3", 10000)

End(Not run)

gslist_to_gs Merge a GatingSetList into a single GatingSet

Description

Merge a GatingSetList into a single GatingSet

Usage

gslist_to_gs(x, ...)
Arguments

X GatingSetList

other arguments passed to gslist_to_gs method for ncdfFlowList

gs_check_redundant_nodes 59

gs_check_redundant_nodes

try to determine the redundant terminal(or leaf) nodes that can be re-
moved

Description

These leaf nodes make the gating trees to be different from one another and can be removed by the
subsequent convevient call gs_remove_redundant_nodes.

Usage
gs_check_redundant_nodes(x, path = "auto”, ...)
Arguments
X GatingSet or list of groups(each group is a list of *GatingSet‘). When it is a
list, it is usually the outcome from gs_split_by_tree.
path argumented passed to gs_get_pop_paths. The default value is "auto".
other arguments passed to gs_get_pop_paths.
Value

a list of the character vectors inicating the nodes that are considered to be redundant for each group
of GatingSets.

Examples

Not run:

gslist <- list(gs1, gs2, gs3, gs4, gsb)
gs_groups <- gs_split_by_tree(gslist)

toRm <- gs_check_redundant_nodes(gs_groups)

End(Not run)

gs_cyto_data Fetch or replace the flowData object associated with a GatingSet .

Description

Accessor method that gets or replaces the cytoset/flowSet/ncdfFlowSet object in a GatingSet or
GatingHierarchy

60 gs_get_compensation_internal

Usage

gs_cyto_data(x, ...)

S4 method for signature 'GatingSet'
gs_cyto_data(x, inverse.transform = FALSE)

gs_cyto_data(x) <- value

Arguments

X A GatingSet

other arugments

inverse.transform
logical flag indicating whether to inverse transform the data

value The replacement flowSet or ncdfFlowSet object

Details

Accessor method that sets or replaces the ncdfFlowSet object in the GatingSet or GatingHierarchy.

Value

the object with the new flowSet in place.

gs_get_compensation_internal
extract compensation object from GatingSet

Description

extract compensation object from GatingSet

Usage

gs_get_compensation_internal(gs, sampleName)

Arguments

gs GatingSet

sampleName sample name

gs_get_leaf _nodes 61

gs_get_leaf_nodes get all the leaf nodes
Description
get all the leaf nodes
Usage
gs_get_leaf_nodes(x, ancestor = "root”, ...)
gh_get_leaf_nodes(x, ancestor = "root", ...)
Arguments
X GatingHierarchy/GatingSet object
ancestor ancestor node where the leaf nodes descend from. Default is ’root’.

arguments passed to *gs_get_pop_paths" method

Value

the leaf nodes

gs_get_pop_paths Get the names of all nodes from a gating hierarchy.

Description

gs_get_pop_paths returns a character vector of names of the nodes (populations) in the GatingSet.

Usage

gs_get_pop_paths(
X,
y = NULL,
order = "regular”,
path = "full",
showHidden = FALSE,

)

gh_get_pop_paths(
X’
y = NULL,
order = "regular”,

62 gs_get_singlecell_expression

path = "full”,
showHidden = FALSE,

)
Arguments
X A GatingSet Assuming the gating hierarchy are identical within the GatingSet,
the Gating tree of the first sample is used to query the node information.
y A character not used.
order order=c("regular”,"tsort”,"bfs") returns the nodes in regular, topological
or breadth-first sort order. "regular” is default.
path A character or numeric scalar. when numeric, it specifies the fixed length
of gating path (length 1 displays terminal name). When character, it can be
either ’full’ (full path, which is default) or ’auto’ (display the shortest unique
gating path from the bottom of gating tree).
showHidden logical whether to include the hidden nodes
Additional arguments.
Details

integer indices of nodes are based on regular order,so whenver need to map from character node
name to integer node ID,make sure to use default order which is regular.

Value

gs_get_pop_paths returns a character vector of node/population names, ordered appropriately.

Examples

Not run:
G is a gating hierarchy
gs_get_pop_paths(G, path = 1)#return node names (without prefix)
gs_get_pop_paths(G, path = "full”)#return the full path
gs_get_pop_paths(G, path = 2)#return the path as length of two
gs_get_pop_paths(G, path = "auto")#automatically determine the length of path
gs_pop_set_name(G, "L", "lymph")

End(Not run)

gs_get_singlecell_expression

Return the cell events data that express in any of the single populations
defined in 'y

gs_get_singlecell_expression 63

Description

Returns a list of matrix containing the events that expressed in any one of the populations defined

iny

Usage

gs_get_singlecell_expression(

X’
nodes,

other.markers = NULL,

swap = FALSE,

threshold = TRUE,
marginal = TRUE,

mc.cores =

getOption(”mc.cores”, 1L),

inverse.transform = FALSE,

)

gs_get_singlecell_expression_by_gate(...)

Arguments

X
nodes

other.markers

swap

threshold

marginal

mc.cores

A GatingSet or GatingSetList object .
character vector specifying different cell populations

character vector specifying the extra markers/channels to be returned besides
the ones derived from "nodes" and "map" argument.It is only valid when thresh-
old is set to FALSE.

logical indicates whether channels and markers of flow data are swapped.

logical indicates whether to threshold the flow data by setting intensity value
to zero when it is below the gate threshold.

logical indicates whether to the gate is treaded as 1d marginal gate. Default is
TRUE, which means markers are determined either by node name or by *map’
argument explained below. When FALSE, the markers are determined by the
gate dimensions. and node name and map’ argument are ignored.

passed to mclapply. Default is 1, which means the process runs in serial mode.
When it is larger than 1, parallel mode is enabled.

inverse.transform

logical flag indicating whether to inverse transform the data

other arguments map a named list providing the mapping between node names
(as specified in the gating hierarchy of the gating set) and channel names (as
specified in either the desc or name columns of the parameters of the associated
flowFrames in the GatingSet). see examples.

ignore.case whether to ignore case when match the marker names. Default is
FALSE.

64 gs_is_persistent

Value

A list of numerci matrices

Author(s)

Mike Jiang <wjiang2@fhcrc.org>

See Also

gh_pop_get_indices gs_pop_get_count_fast

Examples

Not run:

#G is a GatingSet

nodes <- c("4+/TNFa+", "4+/IL2+")

res <- gs_get_singlecell_expression(gs, nodes)

res[[1]]

if it fails to match the given nodes to the markers, then try to provide the mapping between node and marker explic
res <- gs_get_singlecell_expression(gs, nodes , map = list("4+/TNFa+" = "TNFa", "4+/IL2+" = "IL2"))

It can also operate on the 2d gates by setting marginal to FALSE

The markers are no longer deduced from node names or supplied by map
Instead, it retrieves the markers that are associated with the gates
nodes <- c("4+/TNFa+IFNg+", "4+/IL2+IL3+")

res <- gs_get_singlecell_expression(gs, nodes, marginal = FALSE)

#or simply call convenient wrapper
gs_get_singlecell_expression_by_gate(gs, nodes)

End(Not run)

gs_is_persistent determine whether the flow data associated with a GatingSet is
persistent(on-disk) or in-memory

Description

determine whether the flow data associated with a GatingSet is persistent(on-disk) or in-memory
Usage

gs_is_persistent(x)

gs_is_h5(x)

isNcdf (x)

gs_plot_diff _tree 65

Arguments

X GatingSet object

Value

logical

gs_plot_diff_tree visualize the tree structure differnece among the GatingSets

Description

visualize the tree structure differnece among the GatingSets

Usage
gs_plot_diff_tree(x, path = "auto”, ...)
Arguments
X list of groups(each group is a list of *GatingSet®). it is usually the outcome
from gs_split_by_tree.
path passed to getNodes
passed to getNodes
Examples
Not run:

gslist <- list(gsl, gs2, gs3, gs4, gsb5)
gs_groups <- gs_split_by_tree(gslist)
gs_plot_diff_tree(gs_groups)

End(Not run)

gs_pop_add Create a GatingSet and add/remove the flowCore gate(or population)
to/from a GatingHierarchy/GatingSet.

Description

GatingSet method creates a gatingset from a flowSet with the ungated data as the root node. add
method add the flowCore gate to a GatingHierarchy/GatingSet. gs_pop_set_gate method update
the gate of one population node in GatingHierarchy/GatingSet. Rm method Remove the population
node from a GatingHierarchy/GatingSet. They are equivalent to the workFlow,add and Rm meth-
ods in flowCore package. recompute method does the actual gating after the gate is added,i.e.
calculating the event indices according to the gate definition.

66

Usage

gs_pop_add

gs_pop_add(gs, gate, validityCheck = TRUE, ...)

gs_pop_remove(gs, node, ...)

Arguments

gs
gate

validityCheck

node

Value

A GatingSet

A flowCore::filter or a list of flowCore::filters or logical vectors to
be added to the GatingSet. when logical vectors, they represent the indices
of events to be included in the populations. It can be global that represents
the index to the original full events or local index that is relative to the parent
population cell events. See examples for more details.

logical whether to check the consistency of tree structure across samples. de-
fault is TRUE. Can be turned off when speed is prefered to the robustness.

some other arguments to specify how the gates are added to the gating tree.

* names a character vector of length four,which specifies the population
names resulted by adding a quadGate.The order of the names is clock-wise
starting from the top left quadrant population.

* parent a character scalar to specify the parent node name where the new
gate to be added to, by default it is NULL,which indicates the root node

* name a character scalar to specify the node name of population that is
generated by the gate to be added.

* recompute a logical flag

* negated: a logical scalar to specify whether the gate is negated,which
means the the population outside of the gate will be kept as the result pop-
ulation. It is FALSE by default.

A character identifies the population node in a GatingHierrarchy or GatingSet
to remove

GatingSet method returns a GatingSet object with just root node. add method returns a popu-
lation node ID (or four population node IDs when adding a quadGate) that uniquely identify the
population node within a GatingHierarchy.

See Also

GatingSet-class

Examples

Not run:

library(flowCore)

data(GvHD)

#tselect raw flow data

fs<-GvHD[1:3]

gs_pop_add 67

#transform the raw data
tf <- transformList(colnames(fs[[1]])[3:6], asinh, transformationId="asinh")
fs_trans<-transform(fs,tf)

#add transformed data to a gatingset
gs <- GatingSet(fs_trans)
gs
gs_get_pop_paths(gs[[1]1]) #only contains root node

#add one gate
rg <- rectangleGate("FSC-H"=c(200,400), "SSC-H"=c(250, 400),
filterId="rectangle")

nodelID<-gs_pop_add(gs, rg)#it is added to root node by default if parent is not specified
nodelID
gs_get_pop_paths(gs[[1]1]) #the second population is named after filterId of the gate

#add a quadGate
gg <- quadGate("FL1-H"=2, "FL2-H"=4)
nodeIDs<-gs_pop_add(gs,qg,parent="rectangle")
nodeIDs #quadGate produces four population nodes
gs_get_pop_paths(gs[[1]1]) #population names are named after dimensions of gate if not specified

#add a boolean Gate
bg<-booleanFilter(~CD15 FITC-CD45 PE+|CD15 FITC+CD45 PE-")
bg
nodeID2<-gs_pop_add(gs,bg,parent="rectangle")
nodeID2
gs_get_pop_paths(gs[[1]1])
#do the actual gating
recompute(gs)

#plot one gate for one sample
autoplot(gs[[1]1], "rectangle”)
autoplot(gs[[1]1,nodelIDs) #may be smoothed automatically if there are not enough events after gating

#plot gates across samples
autoplot(gs,nodelD)

#plot all gates for one sample
autoplot(gs[[1]]1)#boolean gate is skipped by default
autoplot(gs[[1]1],bool=TRUE)

#plot the gating hierarchy
plot(gs[[111)

#remove one node causing the removal of all the descendants
gs_pop_remove('rectangle', gs = gs)
gs_get_pop_paths(gs[[1]1])

#add logical vectors as gate
lg <- sapply(sampleNames(gs), function(sn){
gh <- gs[[snl]
dat <- exprs(gh_pop_get_data(gh, "cd3+"))#get events data matrix for this sample at cd3+ nc

68 gs_pop_get_count_fast

vec <- dat[, "FSC-A"] > 1e4 & data[, "SSC-A"] > 1e5
vec

»
gs_pop_add(gs, lg, name = "new_bool"”, parent = "cd3+")

End(Not run)

gs_pop_get_count_fast Return a table of population statistics for all populations in a Gat-
ingHierarchy/GatingSet or the population proportions or the total
number of events of a node (population) in a GatingHierarchy

Description

gs_pop_get_count_fast is more useful than getPop. Returns a table of population statistics for all
populations in a GatingHierarchy/GatingSet. Includes the xml counts, openCyto counts and
frequencies.

Usage

gs_pop_get_count_fast(
X,
statistic = c("count”, "freq"),
xml = FALSE,
subpopulations = NULL,
format = c("long”, "wide"),

path = "full"”,
)
gs_pop_get_count_with_meta(x, ...)
Arguments
X a GatingSet or GatingSetlList
statistic character specifies the type of population statistics to extract.(only valid when
format is "wide"). Either "freq" or "count" is currently supported.
xml logical indicating whether the statistics come from xml (if parsed from xml

workspace) or from openCyto.

subpopulations character vector to specify a subset of populations to return. (only valid when
format is "long")

format character value of c("wide", "long") specifing whether to origanize the output
in long or wide format

path character see gs_get_pop_paths

additional arguments passed to gs_pop_get_count_fast

gs_pop_get_gate 69

Details

gs_pop_get_count_fast returns a table population statistics for all populations in the gating hierar-
chy. The output is useful for verifying that the import was successful, if the xml and openCyto
derived counts don’t differ much (i.e. if they have a small coefficient of variation.) for a GatingSet,
returns a matrix of proportions for all populations and all samples

Value

gs_pop_get_count_fast returns a data. frame with columns for the population name, xml derived
counts, openCyto derived counts, and the population proportions (relative to their parent poupla-
tion).

a data. table of merged population statistics with sample metadata.

See Also

gs_get_pop_paths

Examples

Not run:

#gh is a GatingHierarchy

gs_pop_get_count_fast(gh);
gh_pop_get_stats(gh,gs_get_pop_paths(gh, tsort=T)[5])

#gs is a GatingSet
gs_pop_get_count_fast(gs)
#optionally output in long format as a data.table
gs_pop_get_count_fast(gs, format = "long”, path = "auto"”)
#only get stats for a subset of populations
gs_pop_get_count_fast(gs, format = "long", subpopulations = gs_get_pop_paths(gs)[4:6])

End(Not run)
Not run:
#G is a GatingSetlist
stats = gs_pop_get_count_with_meta(G)

End(Not run)

gs_pop_get_gate Return the flowCore gate definition associated with a node in a Gat-
ingHierarchy/GatingSet.

Description

Return the flowCore gate definition object associated with a node in a GatingHierarchy or GatingSet
object.

70 gSs_pop_get_gs

Usage

gh_pop_get_gate(obj, y)

gs_pop_get_gate(obj, y)

Arguments

obj A GatingHierrarchy or GatingSet

y A character the name or full(/partial) gating path of the node of interest.
Value

A gate object from flowCore. Usually a polygonGate, but may be a rectangleGate. Boolean
gates are represented by a "BooleanGate” S3 class. This is a list boolean gate definition that
references populations in the GatingHierarchy and how they are to be combined logically. If obj
is a GatingSet, assuming the trees associated with each GatingHierarchy are identical, then this
method will return a list of gates, one for each sample in the GatingSet corresponding to the same
population indexed by y.

See Also

gh_pop_get_data gs_get_pop_paths

Examples

Not run: #gh is a GatingHierarchy

gh_pop_get_gate(gh, "CD3") #return the gate for the fifth node in the tree, but fetch it by name.
#G is a GatingSet
gs_pop_get_gate(G, "CD3") #return a list of gates for the fifth node in each tree

End(Not run)

gs_pop_get_gs subset gs by population node

Description

Basically it returns a new GatingSet with only the substree of the given population node

Usage

gs_pop_get_gs(gs, pop)

Arguments

gs GatingSet

pop the population node that will become the new root node

gs_pop_get_parent 71

Value

a new GatingSet that share the underlying events data

gs_pop_get_parent Return the name of the parent population or a list of child populations
of the current population in the GatingHierarchy

Description

Returns the name of the parent population or a character/numeric vector of all the children of the
current population in the given GatingHierarchy

Usage

gs_pop_get_parent(obj, vy, ...)

gh_pop_get_parent(obj, vy, ...)
gs_pop_get_children(obj, y, showHidden = TRUE, ...)
gh_pop_get_children(obj, y, showHidden = TRUE, ...)
Arguments
obj A GatingHierarchy
y a character/numeric the name or full(/partial) gating path or node indices of
the node / population.
other arguments passed to gs_get_pop_paths methods
showHidden logical whether to include the hidden children nodes.
Value

gs_pop_get_parent returns a character vector, the name of the parent population. gs_pop_get_children
returns a character or numeric vector of the node names or node indices of the child nodes of the
current node. An empty vector if the node has no children.

See Also

gs_get_pop_paths

72 gs_pop_get_stats

Examples

Not run:
G is a GatingHierarchy
return the name of the parent of the fifth node in the hierarchy.
gs_pop_get_parent(G,gs_get_pop_paths(GL[111)[51)
n<-gs_get_pop_paths(G, tsort=T)[4]
#Get the names of the child nodes of the 4th node in this gating hierarchy.
gs_pop_get_children(G,n)
#Get the ids of the child nodes
gs_pop_get_children(G,4)

End(Not run)

gs_pop_get_stats Extract stats from populations(or nodes)

Description

Extract stats from populations(or nodes)

Usage

gs_pop_get_stats(x, ...)

gh_pop_get_stats(

X’

nodes = NULL,
type = "count”,
xml = FALSE,

inverse.transform = FALSE,
stats.fun.arg = list(),

)
Arguments
X a GatingSet or GatingHierarchy
arguments passed to gs_get_pop_paths method.
nodes the character vector specifies the populations of interest. default is all available
nodes
type the character vector specifies the type of pop stats or a function used to compute

population stats. when character, it is expected to be either "count" or "percent".
Default is "count" (total number of events in the populations). when a function,
it takes a flowFrame object through *fr’ argument and return the stats as a named
vector.

xml whether to extract xml stats or openCyto stats

gs_pop_get_stats_tfilter 73

inverse.transform
logical flag . Whether inverse transform the data before computing the stats.

stats.fun.arg alist of arguments passed to ‘type‘ when ’type’ is a function.

Value

a data.table that contains stats values (if MFI, for each marker per column) along with *pop’ column
and ’sample’ column (when used on a ’GatingSet’)

Examples

Not run:
dataDir <- system.file("extdata”,package="flowWorkspaceData")
suppressMessages(gs <- load_gs(list.files(dataDir, pattern = "gs_manual”,full = TRUE)))

get stats all nodes
dt <- gs_pop_get_stats(gs) #default is "count”

nodes <- c("CD4", "CD8")
gs_pop_get_stats(gs, nodes, "percent")

pass a build-in function
gs_pop_get_stats(gs, nodes, type = pop.MFI)

compute the stats based on the raw data scale
gs_pop_get_stats(gs, nodes, type = pop.MFI, inverse.transform = TRUE)

supply user-defined stats fun
pop.quantiles <- function(fr){
chnls <- colnames(fr)
res <- matrixStats::colQuantiles(exprs(fr), probs = 0.75)
names(res) <- chnls
res
3
gs_pop_get_stats(gs, nodes, type = pop.quantiles)

End(Not run)

gs_pop_get_stats_tfilter
Extract stats from populations(or nodes) within a restricted time win-
dow

Description

Extract stats from populations(or nodes) within a restricted time window

74

Usage

8s_pop_set_gate

gs_pop_get_stats_tfilter(x, ...)

gh_pop_get_stats_tfilter(

X,
nodes = NULL,

type = c("Count”, "Frequency"),
inverse.transform = FALSE,
stats.fun.arg = list(),
tfilter = NULL,

path = c("full”, "auto"),

Arguments

X
nodes

type

GatingSet or GatingHierarchy

the character vector specifies the populations of interest. default is all available
nodes

the character vector specifies the type of pop stats or a function used to compute
population stats. When it is a character, it is expected to be either "Count" or
"Frequency". Default is "Count" (total number of events in the populations).
When it is a function, it takes a flowFrame object through the *fr’ argument and
returns the stats as a named vector.

inverse.transform

stats.fun.arg
tfilter

path, ...

logical flag . Whether to inverse transform the data before computing the stats.
a list of arguments passed to ‘type‘ when ’type’ is a function.

Either a list (tmin, tmax) specifying the minimum and maximum of a the time
window filter or a GatingHierarchy, whose minimum and maximum time will
be used to determine the window. For both x and the reference GatingHierarchy
in tfilter, the only channels that will match this filter are "Time" or "time" and
the filter will be applied to each event such that only events with time value t
where tmin <= t <= tmax will be evaluated.

arguments passed to "gh_get_pop_paths()’

gs_pop_set_gate

update the gate

Description

update the population node with a flowCore-compatible gate object

Usage

gh_pop_set_gate(obj, y, value, negated = FALSE, ...)

gs_pop_set_gate(obj, y, value, ...)

gs_pop_set_name 75

Arguments
obj GatingHierarchy or GatingSet
y character node name or path
value filter or filterList or list of filter objects
negated logical see add
other aguments
Details

Usually recompute is followed by this call since updating a gate doesn’t re-calculating the cell
events within the gate automatically. see filterObject for the gate types that are currently supported.

Examples

Not run:

rgl <- rectangleGate("FSC-H"=c(200,400), "SSC-H"=c(250, 400), filterId="rectangle")
rg2 <- rectangleGate("FSC-H"=c(200,400), "SSC-H"=c(250, 400), filterId="rectangle")
flist <- list(rgl,rg2)

names(flist) <- sampleNames(gs[1:2])

gs_pop_set_gate(gs[1:2], "lymph"”, flist)

recompute(gs[1:2], "lymph")

End(Not run)

gs_pop_set_name Update the name of one node in a gating hierarchy/GatingSet.

Description

gh_pop_set_name/gs_pop_set_name update the name of one node in a gating hierarchy/GatingSet.

Usage

gh_pop_set_name(x, y, value)

gs_pop_set_name(x, y, value)

Arguments
X GatingHierarchy
y pop name/path

value A character the name of the node

76 gs_remove_redundant_channels

Examples

Not run:
G is a GatingHierarchy
gs_get_pop_paths(GL[1]1])#return node names
gh_pop_set_name(G,"L","lymph")

End(Not run)

gs_pop_set_visibility hide/unhide a node

Description

hide/unhide a node

Usage

gh_pop_set_visibility(x, y, value)

gs_pop_set_visibility(x, y, value)

Arguments

X GatingHierarchy object

y character node name or path

value TRUE/FALSE to indicate whether to hide a node
Examples

Not run:

gh_pop_set_visibility(gh, 4, FALSE) # hide a node
gh_pop_set_visibility(gh, 4, TRUE) # unhide a node

End(Not run)

gs_remove_redundant_channels
Remove the channels from flow data that are not used by gates

Description

Removing these redundant channels can help standardize the channels across different GatingSet
objects and make them mergable.

gs_remove_redundant_nodes 77

Usage
gs_remove_redundant_channels(gs, ...)
Arguments
gs a GatingSet
other arugments passed to gs_get_pop_paths method
Value

a new GatingSet object that has redundant channels removed. Please note that this new object
shares the same reference (or external pointers) with the original GatingSets.

Examples

Not run:
gs_new <- gs_remove_redundant_channels(gs)

End(Not run)

gs_remove_redundant_nodes
Remove the terminal leaf nodes that make the gating trees to be differ-
ent from one another.

Description

It is usually called after gs_split_by_tree and gs_check_redundant_nodes. The operation is done in
place through external pointers which means all the orginal GatingSets are modified.

Usage

gs_remove_redundant_nodes(x, toRemove)

Arguments
X GatingSet or list of groups(each group is a list of *GatingSet‘). When it is a
list, it is usually the outcome from gs_split_by_tree.
toRemove list of the node sets to be removed. its length must equals to the length of "x’.

When x is a list, toRemove is usually the outcome from gs_check_redundant_nodes.

78 gs_split_by_channels

Examples

Not run:

gslist <- list(gs1, gs2, gs3, gs4, gsb)
gs_groups <- gs_split_by_tree(gslist)

toRm <- gs_check_redundant_nodes(gs_groups)
gs_remove_redundant_nodes(gs_groups, toRm)

#Now they can be merged into a single GatingSetList.
#Note that the original gs objects are all modified in place.

GatingSetList(gslist)

End(Not run)

gs_split_by_channels split GatingSets into groups based on their flow channels

Description

Sometime it is gates are defined on the different dimensions across different GatingSets, (e.g. ‘FSC-
W¢or ‘SSC-H* may be used for Y axis for cytokines) These difference in dimensions may not be
critical since they are usually just used for visualization(istead of thresholding events) But this
prevents the gs from merging because they may not be collected across batces Thus we have to
separate them if we want to visualize the gates.

Usage

gs_split_by_channels(x)

Arguments

X a list of GatingSets

Examples
Not run:
gslist <- list(gsl, gs2, gs3, gs4, gs5)
gs_groups <- gs_split_by_channels(gslist)

End(Not run)

gs_split_by_tree 79

gs_split_by_tree split GatingSets into groups based on their gating schemes Be careful
that the splitted resluts still points to the original data set!!

Description

It allows isomorphism in Gating tree and ignore difference in hidden nodes i.e. tree is considered to
be the same as long as gs_get_pop_paths(gh, path = "auto", showHidden = F) returns the same set

Usage

gs_split_by_tree(x)

Arguments

X a list of GatingSets or one GatingSet

Value

when x is a GatingSet, this function returns a list of sub-GatingSets When x is a list of GatingSets,
it returns a list of list, each list itself is a list of GatingSets, which share the same gating tree.

Examples

Not run:
gslist <- list(gsl, gs2, gs3, gs4, gs5)
gs_groups <- gs_split_by_tree(gslist)

End(Not run)

gs_update_channels Update the channel information of a GatingSet (c++ part)

Description

It updates the channels stored in gates,compensations and transformations based on given mapping
between the old and new channel names.

Usage

gs_update_channels(gs, map, all = TRUE)

80

Arguments

gs
map

all

Value

identifier-methods

a GatingSet object

data.frame contains the mapping from old (case insensitive) to new channel
names Note: Make sure to remove the <’ or ’>’ characters from ’old‘ name
because the API tries to only look at the raw channel name so that the gates with
both prefixed and non-prefixed names could be updated.

logical whether to update the flow data as well

when ’all’ is set to TRUE, it returns a new GatingSet but it still shares the same underling c++ tree
structure with the original GatingSet otherwise it returns nothing (less overhead.)

Examples

Not run:

##this will update both "Qdot 655-A" and "<Qdot 655-A>"
gs <- gs_update_channels(gs, map = data.frame(old = c("Qdot 655-A")

End(Not run)

, new = c("QDot 655-A")
)

identifier-methods Retrieve/replace the GUID of a GatingSet or GatingSetList

Description

Retrieve or replace the GUID (globally unique identifier) for a GatingSet or GatingSetList

Usage

identifier(object)

S4 replacement method for signature 'GatingSet,ANY'
identifier(object) <- value

S4 replacement method for signature 'GatingSetlList,character’
identifier(object) <- value

Arguments

object

value

aGatingSet or GatingSetlList

string

keyword 81

keyword Retrieve a specific keyword for a specific sample in a
GatingHierarchy or or set of samples in a GatingSet or
GatingSetList
Description

Retrieve a specific keyword for a specific sample in a GatingHierarchy or or set of samples in a
GatingSet or GatingSetList

Usage

S4 method for signature 'GatingHierarchy,character'’
keyword(object, keyword)

S4 method for signature 'GatingHierarchy,missing'

keyword(object, keyword = "missing”, ...)
Arguments
object GatingHierarchy or GatingSet or GatingSetList
keyword character specifying keyword name. When missing, extract all keywords.

other arguments passed to keyword-methods

Details

See keyword in Package ‘flowCore’

See Also

keyword-methods

Examples

Not run:
get all the keywords from all samples
keyword(G)
get all the keywords from one sample
keyword(GL[111)
filter the instrument setting
keyword(GL[1]], compact = TRUE)
get single keyword from all samples
keyword(G, "FILENAME")
get single keyword from one sample
keyword(GLL111, "FILENAME")

End(Not run)

82 keyword-mutators

keyword-mutators Methods to alter keywords in cytoframe, cytoset,
GatingHierarchy, or GatingSet objects

Description

These methods allow for direct insertion, deletion, or renaming of keywords in cytoframe, cytoset,
GatingHierarchy, or GatingSet objects.

Usage

cf_keyword_insert(cf, keys, values)
cf_keyword_delete(cf, keys)
cf_keyword_rename(cf, old_keys, new_keys)
cf_keyword_set(cf, keys, values)
cs_keyword_insert(cs, keys, values)
cs_keyword_delete(cs, keys)
cs_keyword_rename(cs, old_keys, new_keys)
cs_keyword_set(cs, keys, values)
gh_keyword_insert(gh, keys, values)
gh_keyword_delete(gh, keys)
gh_keyword_rename(gh, old_keys, new_keys)
gh_keyword_set(gh, keys, values)
gs_keyword_insert(gs, keys, values)
gs_keyword_delete(gs, keys)
gs_keyword_rename(gs, old_keys, new_keys)

gs_keyword_set(gs, keys, values)

Arguments

cf a cytoframe

keys the keyword names to insert/delete/replace — single value or vector

keyword-mutators 83

values the values to associate with the supplied keywords — single value or vector of
sample length as keys
old_keys the old keyword name (for renaming)
new_keys the new keyword name (for renaming)
cs acytoset
gh a GatingHierarchy
gs a GatingSet
Details

Each of the methods taking two character vectors (keys/values or old_keys/new_keys) will also
accept a single named vector for flexibility in usage.

For the functions that take a vector of keys and a vector of values (the keyword_insert and
keyword_set functions), the names of this vector should be the keys to which the values of the
vector will be assigned.

For the keyword_rename functions, the names of this vector should be the existing keyword names
(old_keys) while the values should be the replacement keyword names (new_keys).

See examples for details

Examples

library(flowCore)
data(GvHD)
cs <- flowSet_to_cytoset(GvHD[1:2])

keys <- c("CYTNUM", "CREATOR")

Values before changes
keyword(cs, keys)

Set two keyword values using separate key and values vectors
values <- c("E3598", "CELLQuest 3.4")
cs_keyword_set(cs, keys, values)

Values after changes
keyword(cs, keys)

Change the values again using a single named vector
values <- c("E3599", "CELLQuest 3.5")

names(values) <- keys

cs_keyword_set(cs, values)

Values after changes
keyword(cs, keys)

84 length

lapply-methods apply FUN to each sample (i.e. GatingHierarchy or cytoframe) in a
GatingSet or cytoset

Description

sample names are used for names of the returned list

Usage

lapply(X, FUN, ...)
Arguments

X GatingSet or cytoset

FUN function to be applied to each sample in ’GatingSet’ or ’cytoset’

other arguments to be passed to 'FUN’
length Methods to get the length of a GatingSet

Description

Return the length of a GatingSet or GatingSetList object (number of samples).

Usage

S4 method for signature 'GatingSet'
length(x)

S4 method for signature 'GatingSet'

show(object)

Arguments

X GatingSet

object object

load_cytoframe 85

load_cytoframe Load the cytoframe from disk

Description

Load the cytoframe from disk

Usage

load_cytoframe(uri, on_disk = TRUE, readonly = on_disk)

Arguments
uri path to the cytoframe file
on_disk logical flag indicating whether to keep the data on disk and load it on demand.
Default is TRUE.
readonly logical flag indicating whether to open h5 data as readonly. Default is TRUE.
And it is valid when on_disk is set to true.
See Also

Other cytoframe/cytoset IO functions: cf_get_uri(), cf_write_disk(), cf_write_h5(),cs_get_uri(),
load_cytoframe_from_fcs(), load_cytoset_from_fcs()

load_cytoframe_from_fcs
Read a single FCS file in to a cytoframe

Description

Similar to read. FCS, this takes a filename for a single FCS file and returns a cytoframe.

Usage
load_cytoframe_from_fcs(
filename,
transformation = "linearize”,

which.lines = NULL,

decades = 0,

is_h5 = NULL,

backend = get_default_backend(),
uri = NULL,

h5_filename = NULL,

min.limit = NULL,
truncate_max_range = TRUE,

86 load_cytoframe_from_fcs

dataset = NULL,

emptyValue = TRUE,
num_threads = 1,
ignore.text.offset = FALSE,
text.only = FALSE

Arguments

filename The filename of the single FCS file to be read

transformation A character string that defines the type of transformation. Valid values are
linearize (default), linearize-with-PnG-scaling, or scale. The linearize
transformation applies the appropriate power transform to the data. The linearize-with-PnG-scaling
transformation applies the appropriate power transform for parameters stored
on log scale, and also a linear scaling transformation based on the "gain" (FCS
$PnG keywords) for parameters stored on a linear scale. The scale transfor-
mation scales all columns to [0, 10%¢¢e4¢s], defaulting to decades = 0 as in the
FCS4 specification. A logical can also be used: TRUE is equal to 1inearize and
FALSE(or NULL) corresponds to no transformation. Also, when the transforma-
tion keyword of the FCS header is set to "custom" or "applied”, no transforma-
tion will be used.

which.lines Numeric vector to specify the indices of the lines to be read. If it is NULL, all
the records are read. If it is of length 1, a random sample of the size indicated
by which.lines is read in.

decades When scaling is activated, the number of decades to use for the output.
is_h5 Logical indicating whether the data should be stored in h5 format
h5_filename String specifying a name for the h5 file if is_h5 is TRUE

min.limit The minimum value in the data range that is allowed. Some instruments produce
extreme artifactual values. The positive data range for each parameter is com-
pletely defined by the measurement range of the instrument and all larger values
are set to this threshold. The lower data boundary is not that well defined, since
compensation might shift some values below the original measurement range of
the instrument. This can be set to an arbitrary number or to NULL (the default
value), in which case the original values are kept.

truncate_max_range
Logical. Default is TRUE. can be optionally turned off to avoid truncating the
extreme positive value to the instrument measurement range, i.e. "$PnR’.

dataset The FCS file specification allows for multiple data segments in a single file.
Since the output of load_cytoframe_from_cytoset is a single cytoframe we
can’t automatically read in all available sets. This parameter allows the user to
choose one of the subsets for import. Its value should be an integer in the range
of available data sets. This argument is ignored if there is only a single data
segment in the FCS file.

emptyValue Logical indicating whether or not to allow empty values for keywords in TEXT
segment. It affects how double delimiters are treated. If TRUE, double delim-
iters are parsed as a pair of start and end single delimiters for an empty value.

load_cytoset_from_fcs 87

Otherwise, double delimiters are parsed as one part of the string of the keyword
value. The default is TRUE.

num_threads Integer allowing for parallelization of the parsing operation by specifiying a
number of threads

ignore.text.offset
Logical indicating whether to ignore the keyword values in TEXT segment when
they don’t agree with the HEADER. Default is FALSE, which throws the error
when such a discrepancy is found. Users can turn it on to ignore the TEXT
segment when they are sure of the accuracy of the HEADER segment so that the
file still can be read.

text.only whether to only parse text section of FCS (default is FALSE), it is sometime
useful to skip loading data section for the faster loading meta data from FCS
read.AnnotatedDataFrame, see details

Details

The function load_cytoframe_from_fcs works with the output of the FACS machine software
from a number of vendors (FCS 2.0, FCS 3.0 and List Mode Data LMD). However, the FCS 3.0
standard includes some options that are not yet implemented in this function. If you need extensions,
please let us know. The output of the function is an object of class cytoframe.

For specifications of FCS 3.0 see http://www.isac-net.org and the file . ./doc/fcs3.html in
the doc directory of the package.

The which.lines arguments allow you to read a subset of the record as you might not want to
read the thousands of events recorded in the FCS file. It is mainly used when there is not enough
memory to read one single FCS (which probably will not happen). It will probably take more time
than reading the entire FCS (due to the multiple disk 10).

Value
An object of class cytoframe that contains the data, the parameters monitored, and the keywords
and values saved in the header of the FCS file.

See Also

Other cytoframe/cytoset IO functions: cf_get_uri(), cf_write_disk(), cf_write_h5(),cs_get_uri(),
load_cytoframe(), load_cytoset_from_fcs()

load_cytoset_from_fcs Read one or several FCS files in to a cytoset

Description

Similar to read. flowSet, this takes a list of FCS filenames and returns a cytoset.

http://www.isac-net.org
../doc/fcs3.html

88 load_cytoset_from_fcs
Usage
load_cytoset_from_fcs(
files = NULL,
path = n n ,
pattern = NULL,
phenoData = NULL,
descriptions,
name. keyword,
transformation = "linearize”,
which.lines = NULL,
decades = 0,
is_h5 = NULL,
h5_dir = NULL,
backend = get_default_backend(),
backend_dir = tempdir(),
min.limit = NULL,
truncate_max_range = TRUE,
dataset = NULL,
emptyValue = TRUE,
num_threads = 1,
ignore.text.offset = FALSE,
Sep - ”\t” ,
as.is = TRUE,
name,
file_col_name = NULL,
)
Arguments
files Optional character vector with filenames.
path Directory where to look for the files.
pattern This argument is passed on to dir, see details.
phenoData An object of class AnnotatedDataFrame, character or a list of values to be
extracted from the cytoframe object, see details.
descriptions Character vector to annotate the object of class cytoset.

name. keyword

transformation
which.lines
decades

is_h5

h5_dir

min.limit

An optional character vector that specifies which FCS keyword to use as the
sample names. If this is not set, the GUID of the FCS file is used for sample-
Names, and if that is not present (or not unique), then the file names are used.

see load_cytoframe_from_fcs for details.

see load_cytoframe_from_fcs for details.

see load_cytoframe_from_fcs for details.

logical indicating whether the data should be stored in h5 format

String specifying a name for the h5 directory for the h5 files if is_h5 is TRUE

see load_cytoframe_from_fcs for details.

load_cytoset_from_fcs 89

truncate_max_range
see load_cytoframe_from_fcs for details.

dataset see load_cytoframe_from_fcs for details.
emptyValue see load_cytoframe_from_fcs for details.
num_threads Integer allowing for parallelization of the parsing operation by specifiying a

number of threads
ignore.text.offset
see load_cytoframe_from_fcs for details.

sep Separator character that gets passed on to read.AnnotatedDataFrame.

as.is logical that gets passed on to read.AnnotatedDataFrame. This controls the
automatic coercion of characters to factors in the phenoData.

name An optional character scalar used as name of the object.

file_col_name optionally specify the column name that stores the fcs filename when phenoData
is supplied read.AnnotatedDataFrame, see details.

Further arguments that get passed on to

Details

There are four different ways to specify the file from which data is to be imported:

First, if the argument phenoData is present and is of class AnnotatedDataFrame, then the file
names are obtained from its sample names (i.e. row names of the underlying data.frame). Also
column name will be generated based on sample names if it is not there. This column is mainly
used by visualization methods in flowViz. Alternatively, the argument phenoData can be of class
character, in which case this function tries to read a AnnotatedDataFrame object from the file
with that name by calling read.AnnotatedDataFrame(file.path(path,phenoData),...{}).

In some cases the file names are not a reasonable selection criterion and the user might want to
import files based on some keywords within the file. One or several keyword value pairs can be
given as the phenoData argument in form of a named list.

Third, if the argument phenoData is not present and the argument files is not NULL, then files is
expected to be a character vector with the file names.

Fourth, if neither the argument phenoData is present nor files is not NULL, then the file names are
obtained by calling dir(path, pattern).
Value

An object of class cytoset.

See Also

Other cytoframe/cytoset IO functions: cf_get_uri(), cf_write_disk(), cf_write_h5(), cs_get_uri(),
load_cytoframe_from_fcs(), load_cytoframe()

90 lock

load_meta Flush/load meta data (keywords, pData, channels/markers) to/from
disk (only valid for on-disk cytoset/cytoframe)

Description

Flush/load meta data (keywords, pData, channels/markers) to/from disk (only valid for on-disk
cytoset/cytoframe)

Usage
cf_flush_meta(cf)

cf_load_meta(cf)
cs_flush_meta(cs)

cs_load_meta(cs)

Arguments
cf cytoframe object
cs cytoset object
lock Lock/Unlock the cytoset/cytoframe by turning on/off its read-only flag
Description

Lock/Unlock the cytoset/cytoframe by turning on/off its read-only flag

Usage
cf_lock(cf)

cf_unlock(cf)
cs_lock(cs)

cs_unlock(cs)

Arguments

cf cytoframe object

cs cytoset object

logicleGmI2_trans 91

logicleGml2_trans GatingML?2 version of logicle transformation.

Description

The only difference from logicle_trans is it is scaled to c(0,1) range.

Usage
logicleGml2_trans(
T = 262144,
M= 4.5,
W=20.5,
A =0,
n==6,
equal.space = FALSE
)
Arguments
T,M WA see logicletGml2
n desired number of breaks (the actual number will be different depending on the
data range)
equal.space whether breaks at equal-spaced intervals
Value

a logicleGmI2 transformation object

Examples

trans.obj <- logicleGml2_trans(equal.space = TRUE)

data <- 1:1e3

brks.func <- trans.obj[["breaks"]]

brks <- brks.func(data)

brks # logicle space displayed at raw data scale

#transform it to verify the equal-spaced breaks at transformed scale
print(trans.obj[["transform”]](brks))

92 logtGmI2_trans

logicle_trans logicle transformation.

Description

Used for construct logicle transform object.

Usage
logicle_trans(..., n = 6, equal.space = FALSE)
Arguments
arguments passed to logicleTransform.
n desired number of breaks (the actual number will be different depending on the
data range)
equal.space whether breaks at equal-spaced intervals
Value

a logicle transformation object

Examples

trans.obj <- logicle_trans(equal.space = TRUE)

data <- 1:7e3

brks.func <- trans.obj[["breaks"]]

brks <- brks.func(data)

brks # logicle space displayed at raw data scale

#transform it to verify the equal-spaced breaks at transformed scale
print(trans.obj[["transform”]](brks))

logtGml2_trans Gating-ML 2.0 Log transformation.

Description

Used to construct GML 2.0 flog transformer object.

Usage

logtGml2_trans(t = 262144, m = 4.5, n = 6, equal.space = FALSE)

markernames 93

Arguments
t top scale value
m number of decades
n desired number of breaks (the actual number will be different depending on the
data range)
equal.space whether breaks at equal-spaced intervals
Details

GML 2.0 standard log transform function constructor. The definition is as in the GML 2.0 stan-
dard section 6.2 "parametrized logarithmic transformation — flog" This deviates from standard only
in the following way. Before applying the logarithmic transformation, non-positive values are as-
signed the smallest positive value from the input rather than having undefined values (NA) under
the transformation.

Value

logtGmlI2 transformation object

Examples

trans.obj <- logtGml2_trans(t = 1e3, m = 1, equal.space = TRUE)
data <- 1:1e3

brks.func <- trans.obj[["breaks"]]

brks <- brks.func(data)

brks # fasinh space displayed at raw data scale

#transform it to verify it is equal-spaced at transformed scale
trans.func <- trans.obj[["transform”]]

brks.trans <- trans.func(brks)

brks.trans

markernames Get/set the column(channel) or marker names

Description

It simply calls the methods for the underlying flow data (flowSet/ncdfFlowSet/ncdfFlowList).

Usage

S4 method for signature 'GatingHierarchy'
markernames(object)

S4 replacement method for signature 'GatingHierarchy'
markernames(object) <- value

94 merge_list_to_gs

S4 method for signature 'GatingHierarchy'
colnames(x, do.NULL = "missing”, prefix = "missing”)

S4 replacement method for signature 'GatingHierarchy'
colnames(x) <- value

Arguments
value named character vector for markernames<-, regular character vector for colnames<-
X, object GatingHierarchy/GatingSet/GatingSetList

do.NULL, prefix not used.

Examples

Not run:

markers.new <- c("CD4", "CD8")
chnls <- c("<B710-A>", "<R780-A>")
names(markers.new) <- chnls
markernames(gs) <- markers.new

chnls <- colnames(gs)

chnls.new <- chnls
chnls.new[c(1,4)] <- c("fsc”, "ssc")
colnames(gs) <- chnls.new

End(Not run)

merge_list_to_gs Merge a list of GatingSets into a single GatingSet

Description

It also checks the consistency of the cyto data and gates.

Usage

merge_list_to_gs(x, ...)
Arguments

X a list of GatingSets

other arguments (not used)

ncFlowSet 95

ncFlowSet Fetch the flowData object associated with a GatingSet .

Description

Deprecated by flowData method
Deprecated by flowData method

nodeflags The flags of gate nodes

Description

gh_pop_is_gated checks if a node is already gated. gh_pop_is_negated checks if a node is negated.
gh_pop_is_hidden checks if a node is hidden.

Usage
gh_pop_is_gated(obj, y)

gh_pop_is_negated(obj, y)
gh_pop_is_hidden(obj, y)

gh_pop_is_bool_gate(obj, y)

Arguments
obj GatingHierarchy
y node/gating path
openWorkspace It is now moved along with entire flowJo parser to CytoML package
Description

It is now moved along with entire flowJo parser to CytoML package

Usage

openWorkspace(file, ...)
Arguments

file xml file

other arguments

96 plot-methods

pData-methods read/set pData of flow data associated with GatingHierarchy,
GatingSet, or GatingSetList

Description

Accessor method that gets or replaces the pData of the flowset/ncdfFlowSet object in a GatingHier-
archy, GatingSet, or GatingSetList

Usage

pData(object)

pData(object) <- value

Arguments

object GatingSet or GatingSetlList

value data. frame The replacement of pData for flowSet or ncdfFlowSet object
Value

a data.frame

plot-methods plot a gating tree

Description

Plot a tree/graph representing the GatingHierarchy

Usage
plot(x,y, ...)
Arguments
X GatingHierarchy or GatingSet. If GatingSet, the first sample will be used to
extract gating tree.
y missing or character specifies.

other arguments:

* boolean: TRUE | FALSE logical specifying whether to plot boolean gate nodes.
Defaults to FALSE.

» showHidden: TRUE | FALSE logical whether to show hidden nodes

pop_add

¢ layout: See layoutGraph in package Rgraphviz

» width: See layoutGraph in package Rgraphviz

* height: See layoutGraph in package Rgraphviz

* fontsize: See layoutGraph in package Rgraphviz

* labelfontsize: See layoutGraph in package Rgraphviz
* fixedsize: See layoutGraph in package Rgraphviz

Examples

Not run:

#gs is a GatingSet

plot(gs) # the same as plot(gs[[111)
#plot a substree rooted from 'CD4'
plot(gs, "CD4")

End(Not run)

pop_add Add populations to a GatingHierarchy

Description

Add populations to a GatingHierarchy
Usage
pop_add(gate, gh, ...)

S3 method for class 'filter'
pop_add(gate, gh, ...)

S3 method for class 'filters'
pop_add(gate, gh, names = NULL, ...)

S3 method for class 'quadGate'
pop_add(gate, gh, names = NULL, ...)

S3 method for class 'logical'
pop_add(gate, gh, parent, name, recompute, cluster_method_name = NULL,

S3 method for class 'factor'
pop_add(gate, gh, name = NULL, ...)

S3 method for class 'logicalFilterResult'
pop_add(gate, gh, ...)

98 prettyAxis

S3 method for class 'multipleFilterResult'

pop_add(gate, gh, name = NULL, ...)
gh_pop_remove(gh, node, ...)
Arguments
gate a gate object that extends flowCore: :filter or flowCore::filters
gh GatingHierarchy

other arguments

names a character vector of length four,which specifies the population names resulted
by adding a quadGate.The order of the names is clock-wise starting from the top
left quadrant population.

parent a character scalar to specify the parent node name where the new gate to be
added to, by default it is NULL,which indicates the root node

name the population name

recompute whether to recompute the gates

cluster_method_name
when adding the logical vectors as the gates, the name of the cluster method can
be used to tag the populations as the extra meta information associated with the
gates.

node population name/path

prettyAxis Determine tick mark locations and labels for a given channel axis

Description

Determine tick mark locations and labels for a given channel axis

Usage

prettyAxis(gh, channel)

Arguments
gh GatingHiearchy
channel character channel name
Value

when there is transformation function associated with the given channel, it returns a list of that
contains positions and labels to draw on the axis other wise returns NULL

recompute

Examples

Not run:

99

prettyAxis(gh, "<B710-A>")

End(Not run)

recompute

Compute the cell events by the gates stored within the gating tree.

Description

Compute each cell
result as cell count.

Usage
recompute(
X’
y = "root”,

event to see if it falls into the gate stored within the gating tree and store the

alwaysLoadData = FALSE,
verbose = FALSE,
leaf.bool = TRUE

S3 method for class 'GatingSet'

)
recompute(
X,
y = "root”,

alwayslLoadData = FALSE,
verbose = FALSE,
leaf.bool = TRUE

)

S3 method for class 'GatingSetlList'

recompute(x,

Arguments

X

y
alwayslLoadData

)

GatingSet or GatingSetlList
character node name or node path. Default "root". Optional.

logical. Specifies whether to load the flow raw data for gating boolean gates.
Default "FALSE’. Optional. Sometime it is more efficient to skip loading the
raw data if all the reference nodes and parent are already gated. "FALSE’ will
check the parent node and reference to determine whether to load the data. This
check may not be sufficient since the further upstream ancestor nodes may not be
gated yet. In that case, we allow the gating to fail and prompt user to recompute
those nodes explictily. When TRUE, then it forces data to be loaded to guarantee
the gating process to be uninterrupted at the cost of unnecessary data IO.

100 rotate_gate

verbose default is FALSE
leaf.bool whether to compute the leaf boolean gate, default is TRUE
arguments
Details

It is usually used immediately after add or gs_pop_set_gate calls.

rotate_gate Simplified geometric rotation of gates associated with nodes

Description

Rotate a gate associated with a node of a GatingHierarchy or GatingSet. This method is a wrap-
per for rotate_gate that enables updating of the gate associated with a node of a GatingHierarchy
or GatingSet.

rotate_gate calls gs_pop_set_gate to modify the provided GatingHierarchy or GatingSet
directly so there is no need to re-assign its output. The arguments will be essentially identical to
the flowCore method, except for the specification of the target gate. Rather than being called on
an object of type flowCore:filter, here it is called on a GatingHierarchy or GatingSet object
with an additional character argument for specifying the node whose gate should be transformed.
The rest of the details below are taken from the flowCore documentation.

Usage
S3 method for class 'GatingHierarchy'
rotate_gate(obj, y, deg = NULL, rot_center = NULL, ...)
Arguments
obj A GatingHierarchy or GatingSet object
y A character specifying the node whose gate should be modified
deg An angle in degrees by which the gate should be rotated in the counter-clockwise
direction
rot_center A separate 2-dimensional center of rotation for the gate, if desired. By de-

fault, this will be the center for ellipsoidGate objects or the centroid for
polygonGate objects. The rot_center argument is currently only supported
for polygonGate objects.

not used

sampleNames 101

Details

This method allows for geometric rotation of filter types defined by simple geometric gates (ellipsoidGate,
and polygonGate). The method is not defined for rectangleGate or quadGate objects, due to their
definition as having 1-dimensional boundaries.

The angle provided in the deg argument should be in degrees rather than radians. By default,
the rotation will be performed around the center of an ellipsoidGate or the centroid of the area
encompassed by a polygonGate. The rot_center argument allows for specification of a different
center of rotation for polygonGate objects (it is not yet implemented for ellipsoidGate objects)
but it is usually simpler to perform a rotation and a translation individually than to manually specify
the composition as a rotation around a shifted center.

See Also

transform_gate flowCore: :rotate_gate

Examples

Not run:

#' # Rotates the original gate 15 degrees counter-clockwise
rotate_gate(gs, node, deg = 15)

Rotates the original gate 270 degrees counter-clockwise
rotate_gate(gs, node, 270)

End(Not run)

sampleNames Get/update sample names in a GatingSet

Description

Return a sample names contained in a GatingSet

Usage

sampleNames(object)

sampleNames(object) <- value

Arguments

object aGatingSet

value character new sample names
Details

The sample names comes from pdata of fs.

102 save_cytoset

Value

A character vector of sample names

Examples

Not run:
#G 1is a GatingSet
sampleNames(G)

End(Not run)

save_cytoset save/load a cytoset to/from disk.

Description

load_cytoset() can load a cytoset from either the archive previously saved by save_cytoset() call or
from a folder that contains a collection of inidivudal cytoframe files (either in h5 format or tiledb

format)
Usage
save_cytoset(cs, path, ...)
load_cytoset(path, verbose = FALSE, ...)
Arguments
cs A cytoset
path A character scalar giving the path to save/load the cytoset to/from.
other arguments passed to save_gs/load_gs
verbose whether to print details. Default is FALSE.
Value

load_cytoset returns a cytoset object

Examples

Not run:

#cs is a cytoset
save_cytoset(cs, outdir)
cs <-load_cytoset(outdir)

#or from cytoframe on-disk files
e.g. h5_dir contains the cytoframes in h5 format
cs <- load_cytoset(h5_dir)

save_gs 103

#it

End(Not run)

save_gs save/load a GatingSet/GatingSetList to/from disk.

Description

Save/load a GatingSet/GatingSetList which is the gated flow data including gates and populations
to/from the disk. The GatingSet object The internal C data structure (gating tree),ncdfFlowSet
object(if applicable)

Retrieve sample names by scanning h5 files from a GatingSet folder

Usage
save_gs(
gs,
path,
cdf = NULL,
backend_opt = c("copy”, "move”, "skip"”, "symlink"”, "link"),
)
load_gs(
path,
h5_readonly = NULL,
backend_readonly = TRUE,
select = character(),
verbose = FALSE
)
S4 method for signature 'character'
sampleNames(object)
save_gslist(gslist, path, ...)
load_gslist(path)
Arguments
gs A GatingSet
path A character scalar giving the path to save/load the GatingSet to/from.
backend_opt a character scalar. The valid options are :"copy","move","skip","symlink" spec-

ifying what to do with the backend data file. Sometimes it is more efficient to
move or create a symlink of the existing backend file to the archived folder. It is
useful to "skip" archiving backend file if raw data has not been changed.

104

h5_readonly
select

verbose

object
gslist

See Also

GatingSet-class,

Examples

Not run:

scale_gate

other arguments: not used.
whether to open h5 data as read-only. Default is TRUE
an integer or character vector to select a subset of samples to load

logical flag to optionally print the versions of the libraries that were used to
archive the GatingSet for troubleshooting purpose.

a GatingSet folder
A GatingSetList

GatingSetlList-class

#G is a GatingSet
save_gs(G,path="tempFolder")
G1<-load_gs(path="tempFolder")

#G 1s a GatingSet

save_gslist(gslistl,path="tempFolder")
gslist2<-load_gslist(path="tempFolder")

End(Not run)
Not run:

sampleNames(gsdir)

End(Not run)

scale_gate

Simplified geometric scaling of gates associated with nodes

Description

Scale a gate associated with a node of a GatingHierarchy or GatingSet. This method is a wrapper
for scale_gate that enables updating of the gate associated with a node of a GatingHierarchy or

GatingSet.

scale_gate calls gs_pop_set_gate to modify the provided GatingHierarchy or GatingSet di-
rectly so there is no need to re-assign its output. The arguments will be essentially identical to the

flowCore method,

except for the specification of the target gate. Rather than being called on an

object of type filter, here it is called on a GatingHierarchy or GatingSet object with an addi-
tional character argument for specifying the node whose gate should be transformed. The rest of
the details below are taken from the flowCore documentation.

scale_gate 105

Usage
S3 method for class 'GatingHierarchy'
scale_gate(obj, y, scale = NULL, ...)
Arguments
obj A GatingHierarchy or GatingSet object
y A character specifying the node whose gate should be modified
scale Either a numeric scalar (for uniform scaling in all dimensions) or numeric vector

specifying the factor by which each dimension of the gate should be expanded
(absolute value > 1) or contracted (absolute value < 1). Negative values will
result in a reflection in that dimension.

not used

Details

This method allows uniform or non-uniform geometric scaling of filter types defined by simple
geometric gates (quadGate, rectangleGate, ellipsoidGate, and polygonGate) Note that these
methods are for manually altering the geometric definition of a gate. To easily transform the def-
inition of a gate with an accompanyging scale transformation applied to its underlying data, see
7ggcyto::rescale_gate.

The scale argument passed to scale_gate should be either a scalar or a vector of the same length
as the number of dimensions of the gate. If it is scalar, all dimensions will be multiplicatively
scaled uniformly by the scalar factor provided. If it is a vector, each dimension will be scaled by its
corresponding entry in the vector.

The scaling behavior of scale_gate depends on the type of gate passed to it. For rectangleGate
and quadGate objects, this amounts to simply scaling the values of the 1-dimensional boundaries.
For polygonGate objects, the values of scale will be used to determine scale factors in the direction
of each of the 2 dimensions of the gate (scale_gate is not yet defined for higher-dimensional
polytopeGate objects). Important: For ellipsoidGate objects, scale determines scale factors
for the major and minor axes of the ellipse, in that order. Scaling by a negative factor will result in
a reflection in the corresponding dimension.

See Also

transform_gate flowCore: :scale_gate

Examples

Not run:
Scales both dimensions by a factor of 5
scale_gate(gs, node, 5)

Shrinks the gate in the first dimension by factor of 1/2
and expands it in the other dimension by factor of 3

scale_gate(gs, node, c(0.5,3))

End(Not run)

106 shift_gate

shift_gate Simplified geometric translation of gates associated with nodes

Description

Shift the location of a gate associated with a node of a GatingHierarchy or GatingSet. This
method is a wrapper for shift_gate that enables updating of the gate associated with a node of a
GatingHierarchy or GatingSet.

shift_gate calls gs_pop_set_gate to modify the provided GatingHierarchy or GatingSet di-
rectly so there is no need to re-assign its output. The arguments will be essentially identical to the
flowCore method, except for the specification of the target gate. Rather than being called on an
object of type flowCore::filter, here it is called on a GatingHierarchy or GatingSet object
with an additional character argument for specifying the node whose gate should be transformed.
The rest of the details below are taken from the flowCore documentation.

Usage
S3 method for class 'GatingHierarchy'
shift_gate(obj, y, dx = NULL, dy = NULL, center = NULL, ...)
Arguments
obj A GatingHierarchy or GatingSet object
y A character specifying the node whose gate should be modified
dx Either a numeric scalar or numeric vector. If it is scalar, this is just the desired

shift of the gate in its first dimension. If it is a vector, it specifies both dx and
dy as (dx,dy). This provides an alternate syntax for shifting gates, as well as
allowing shifts of ellipsoidGate objects in more than 2 dimensions.

dy A numeric scalar specifying the desired shift of the gate in its second dimension.

center A numeric vector specifying where the center or centroid should be moved
(rather than specifiying dx and/or dy)

not used

Details

This method allows for geometric translation of filter types defined by simple geometric gates
(rectangleGate, quadGate, ellipsoidGate, or polygonGate). The method provides two ap-
proaches to specify a translation. For rectangleGate objects, this will shift the min and max
bounds by the same amount in each specified dimension. For quadGate objects, this will simply
shift the divinding boundary in each dimension. For ellipsoidGate objects, this will shift the
center (and therefore all points of the ellipse). For polgonGate objects, this will simply shift all of
the points defining the polygon.

The method allows two different approaches to shifting a gate. Through the dx and/or dy arguments,
a direct shift in each dimension can be provided. Alternatively, through the center argument, the
gate can be directly moved to a new location in relation to the old center of the gate. For quadGate

standardize-GatingSet 107

objects, this center is the intersection of the two dividing boundaries (so the value of the boundary
slot). For rectangleGate objects, this is the center of the rectangle defined by the intersections
of the centers of each interval. For ellipsoidGate objects, it is the center of the ellipsoid, given
by the mean slot. For polygonGate objects, the centroid of the old polygon will be calculated and
shifted to the new location provided by center and all other points on the polygon will be shifted
by relation to the centroid.

See Also

transform_gate flowCore: :shift_gate

Examples

Not run:
Moves the entire gate +500 in its first dimension and @ in its second dimension
shift_gate(gs, node, dx = 500)

#Moves the entire gate +250 in its first dimension and +700 in its second dimension
shift_gate(gs, node, dx = 500, dy = 700)

Same as previous
shift_gate(gs, node, c(500,700))

Move the gate based on shifting its center to (700, 1000)
shift_gate(gs, node, center = c(700, 1000))

End(Not run)

standardize-GatingSet The tools to standardize the tree structures and channel names.

Description

gs_split_by_tree(x)
gs_split_by_channels(x)
gs_check_redundant_nodes(x)
gs_remove_redundant_nodes(x, toRemove)
gs_remove_redundant_channels(gs)
gs_update_channels(gs, map, all = TRUE)
gh_pop_move(gh, node, to)
gs_pop_set_visibility(x, y, FALSE)

108 stats.fun

Details

In order to merge multiple GatingSets into single GatingSetList, the gating trees and channel names
must be consistent. These functions help removing the discrepancies and standardize the GatingSets
so that they are mergable.

gs_split_by_tree splits the GatingSets into groups based on the gating tree structures.
gs_split_by_channels split GatingSets into groups based on their flow channels.

gs_check_redundant_nodes returns the terminal(or leaf) nodes that makes the gating trees to be
different among GatingSets and thus can be considered to remove as redundant nodes.

gs_remove_redundant_nodes removes the terminal(or leaf) nodes that are detected as redundant by
gs_check_redundant_nodes.

gs_remove_redundant_channels remove the redundant channels that are not used by any gate de-
fined in the GatingSet.

gs_update_channels modifies the channel names in place. (Usually used to standardize the channels
among GatingSets due to the letter case discrepancies or typo).

gh_pop_move inserts a dummy gate to the GatingSet. Is is useful trick to deal with the extra non-
leaf node in some GatingSets that can not be simply removed by gs_remove_redundant_nodes

gs_pop_set_visibility hide a node/gate in a GatingSet. It is useful to deal with the non-leaf node
that causes the tree structure discrepancy.

stats.fun built-in stats functions.

Description

pop-MFI computes and returns the median fluorescence intensity for each marker. They are typ-
ically used as the arguments passed to gh_pop_get_stats method to perform the sample-wise
population stats calculations.

Usage

pop.MFI(fr)

Arguments

fr a flowFrame represents a gated population

Value

a named numeric vector

subset 109

subset subset the GatingSet/GatingSetList based on 'pData’

Description

subset the GatingSet/GatingSetList based on ’pData’

Usage
S3 method for class 'GatingSet'
subset(x, subset, ...)
Arguments
X GatingSet or GatingSetlList
subset logical expression(within the context of pData) indicating samples to keep. see
subset

other arguments. (not used)

Value

a codeGatingSet or GatingSetList object

swap_data_cols Swap the colnames Perform some validity checks before returning the
updated colnames

Description

Swap the colnames Perform some validity checks before returning the updated colnames

Usage

swap_data_cols(cols, swap_cols)

Arguments

cols the original colname vector

swap_cols a named list specifying the pairs to be swapped
Value

the new colname vector that has some colnames swapped

110 transform

Examples

library(flowCore)

data(GvHD)

fr <- GvHD[[11]]

colnames(fr)

new <- swap_data_cols(colnames(fr), list("FSC-H™ = "SSC-H", “FL2-H > = "FL2-A"))
colnames(fr) <- new

transform tranform the flow data asssociated with the GatingSet

Description

The transformation functions are saved in the GatingSet and can be retrieved by gh_get_transformations.
Currently only flowJo-type biexponential transformation(either returned by gh_get_transformations
or constructed by flowJoTrans) is supported.

Usage
S4 method for signature 'GatingSet'
transform(" _data™, translist, ...)
Arguments
_data GatingSet or GatingSetlList
translist expect a transformList object or a list of transformList objects(with names

matched to sample names)

other arguments passed to ’transform’ method for ncdfFlowSet’.(e.g. ’ncdf-
File’)

Value

a GatingSet or GatingSetList object with the underling flow data transformed.

Examples

Not run:
library(flowCore)
data(GvHD)

fs <- GvHD[1:2]

gs <- GatingSet(fs)

#construct biexponential transformation function
biexpTrans <- flowjo_biexp_trans(channelRange=4096, maxValue=262144, pos=4.5,neg=0, widthBasis=-10)

#make a transformList object
chnls <- c("FL1-H", "FL2-H")
transList <- transformerList(chnls, biexpTrans)

transformerList 111

#add it to GatingSet
gs_trans <- transform(gs, transList)

End(Not run)

transformerList Constructor for transformerList object

Description

Similar to transformList function, it constructs a list of transformer objects generated by trans_new
method from scales so that the inverse and breaks functions are also included.

Usage

transformerList(from, trans)

Arguments

from channel names

trans a trans object or a list of trans objects constructed by trans_new method.

Examples

library(flowCore)

library(scales)

#create tranformer object from scratch

trans <- logicleTransform(w = 0.5, t = 262144, m
inv <- inverselogicleTransform(trans = trans)
trans.obj <- flow_trans("logicle”, trans, inv, n

4.5, a=0)

5, equal.space = FALSE)

#or simply use convenient constructor
#trans.obj <- logicle_trans(n = 5, equal.space = FALSE, w = 0.5, t = 262144, m= 4.5, a = 0)

transformerList(c("FL1-H", "FL2-H"), trans.obj)
#use different transformer for each channel

trans.obj2 <- asinhtGml2_trans()
transformerList(c("FL1-H", "FL2-H"), list(trans.obj, trans.obj2))

112 transform_gate

transform_gate Simplified geometric transformations of gates associated with nodes

Description

Perform geometric transformations of a gate associated with a node of a GatingHierarchy or
GatingSet. This method is a wrapper for transform_gate that enables updating of the gate asso-
ciated with a node of a GatingHierarchy or GatingSet.

transform_gate calls gs_pop_set_gate to modify the provided GatingHierarchy or GatingSet
directly so there is no need to re-assign its output. The arguments will be essentially identical to
the flowCore method, except for the specification of the target gate. Rather than being called on
an object of type flowCore: : filter, here it is called on a GatingHierarchy or GatingSet object
with an additional character argument for specifying the node whose gate should be transformed.
The rest of the details below are taken from the flowCore documentation.

Usage

S3 method for class 'GatingHierarchy'
transform_gate(

obj,

Y,

scale = NULL,

deg = NULL,
rot_center = NULL,
dx = NULL,

dy = NULL,

center = NULL,

)
Arguments

obj A GatingHierarchy or GatingSet object

y A character specifying the node whose gate should be modified

scale Either a numeric scalar (for uniform scaling in all dimensions) or numeric vector
specifying the factor by which each dimension of the gate should be expanded
(absolute value > 1) or contracted (absolute value < 1). Negative values will
result in a reflection in that dimension.
For rectangleGate and quadGate objects, this amounts to simply scaling the
values of the 1-dimensional boundaries. For polygonGate objects, the values
of scale will be used to determine scale factors in the direction of each of the
2 dimensions of the gate (scale_gate is not yet defined for higher-dimensional
polytopeGate objects). Important: For ellipsoidGate objects, scale de-
termines scale factors for the major and minor axes of the ellipse, in that order.

deg An angle in degrees by which the gate should be rotated in the counter-clockwise

direction.

transform_gate 113

rot_center A separate 2-dimensional center of rotation for the gate, if desired. By de-
fault, this will be the center for ellipsoidGate objects or the centroid for
polygonGate objects. The rot_center argument is currently only supported
for polygonGate objects. It is also usually simpler to perform a rotation and a
translation individually than to manually specify the composition as a rotation
around a shifted center.

dx Either a numeric scalar or numeric vector. If it is scalar, this is just the desired
shift of the gate in its first dimension. If it is a vector, it specifies both dx and
dy as (dx,dy). This provides an alternate syntax for shifting gates, as well as
allowing shifts of ellipsoidGate objects in more than 2 dimensions.

dy A numeric scalar specifying the desired shift of the gate in its second dimension.

center A numeric vector specifying where the center or centroid should be moved
(rather than specifiying dx and/or dy)

Assignments made to the slots of the particular Gate-type filter object in the
form "<slot_name> = <value>"

Details

This method allows changes to the four filter types defined by simple geometric gates (quadGate,
rectangleGate, ellipsoidGate, and polygonGate) using equally simple geometric transforma-
tions (shifting/translation, scaling/dilation, and rotation). The method also allows for directly re-
setting the slots of each Gate-type object. Note that these methods are for manually altering the
geometric definition of a gate. To easily transform the definition of a gate with an accompanyging
scale transformation applied to its underlying data, see ?ggcyto::rescale_gate.

First, transform_gate will apply any direct alterations to the slots of the supplied Gate-type filter
object. For example, if "mean = c(1,3)" is present in the argument list when transform_gate is
called on a ellipsoidGate object, the first change applied will be to shift the mean slot to (1, 3).
The method will carry over the dimension names from the gate, so there is no need to provide
column or row names with arguments such as mean or cov for ellipsoidGate or boundaries for
polygonGate.

transform_gate then passes the geometric arguments (dx, dy, deg, rot_center, scale, and
center) to the methods which perform each respective type of transformation: shift_gate, scale_gate,
or rotate_gate. The order of operations is to first scale, then rotate, then shift. The default behav-

ior of each operation follows that of its corresponding method but for the most part these are what

the user would expect. A few quick notes:

* rotate_gate is not defined for rectangleGate or quadGate objects, due to their definition
as having 1-dimensional boundaries.

» The default center for both rotation and scaling of a polygonGate is the centroid of the poly-
gon. This results in the sort of scaling most users expect, with a uniform scale factor not
distorting the shape of the original polygon.

See Also

flowCore: :transform_gate

114 [,GatingSet, ANY,ANY,ANY-method

Examples

Not run:
Scale the original gate non-uniformly, rotate it 15 degrees, and shift it
transform_gate(gs, node, scale = c(2,3), deg = 15, dx = 500, dy = -700)

Scale the original gate (in this case an ellipsoidGate) after moving its center to (1500, 2000)
transform_gate(gs, node, scale = c(2,3), mean = c(1500, 2000))

End(Not run)

[,GatingSet,ANY,ANY, ANY-method
Bracket operators on GatingSet and GatingSetList objects

Description

[subsets a GatingSet or GatingSetList using the familiar bracket notation

[[extracts a GatingHierarchy object from a GatingSet.

Usage

S4 method for signature 'GatingSet,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'GatingSet,numeric'

xC[i, j, ...]1]
Arguments
X a GatingSet or GatingSetList
i numeric or logical or character used as sample indices
j, ..., drop unused
Value

The [operator returns an object of the same type as x corresponding to the subset of indices in i,
while the [[operator returns a single GatingHierarchy

Index

* classes
cytoframe, 18
* cytoframe/cytoset 10 functions
cf_get_uri, 9
cf_write_disk, 10
cf_write_h5, 11
cs_get_uri, 17
load_cytoframe, 85
load_cytoframe_from_fcs, 85
load_cytoset_from_fcs, 87
+ methods
convert, 13
[([,GatingSet,ANY,ANY,ANY-method), 114
[,GatingSet,ANY,ANY,ANY-method, 114
[,GatingSet,ANY-method
(L,GatingSet,ANY,ANY,ANY-method),
114
[,GatingSetList,ANY-method
([,GatingSet,ANY,ANY, ANY-method),
114
[,cytoframe, ANY-method (cytoframe), 18
[,cytoset,ANY-method (cytoset), 25
[[([,GatingSet,ANY,ANY, ANY-method), 114
[[,GatingSet,character-method
([,GatingSet,ANY,ANY, ANY-method),
114
[[,GatingSet,logical-method
([,GatingSet,ANY,ANY,ANY-method),
114
[[,GatingSet,numeric-method
([,GatingSet,ANY,ANY,ANY-method),
114
[[,cytoset,ANY-method (cytoset), 25

add, 7, 75, 100

add (gs_pop_add), 65

add, default-method (gs_pop_add), 65
AnnotatedDataFrame, /9, 27, 89
AnnotatedDataFrames, 20
asinh_Gml2, 6

asinhtGml2_trans, 5

barchart, 50

booleanFilter (booleanFilter-class), 7

booleanFilter-class, 7

brackets
([,GatingSet,ANY,ANY,ANY-method),
114

cf_append_cols, 8

cf_backend_type, 8

cf_cleanup (cleanup), 11

cf_cleanup_temp (cleanup_temp), 12
cf_flush_meta (load_meta), 90
cf_get_h5_file_path (cf_get_uri), 9
cf_get_uri, 9,10, 11,17,85,87,89
cf_is_subsetted, 10

cf_keyword_delete (keyword-mutators), 82
cf_keyword_insert (keyword-mutators), 82
cf_keyword_rename (keyword-mutators), 82
cf_keyword_set (keyword-mutators), 82
cf_load_meta (load_meta), 90

cf_lock (lock), 90

cf_rename_channel (cytoframe-labels), 24
cf_rename_marker (cytoframe-labels), 24
cf_swap_colnames (cytoframe-labels), 24
cf_unlock (lock), 90
cf_write_disk, 9,10, 11, 17,85, 87, 89

[[<-,GatingSet,ANY,ANY,GatingHierarchy-methodcf_write_h5, 9, 10, 11, 17,85, 87, 89

([,GatingSet,ANY,ANY,ANY-method),
114

[[<-,cytoset,ANY,ANY, flowFrame-method
(cytoset), 25

%on%, 22

char2booleanFilter
(booleanFilter-class), 7
checkRedundantNodes
(gs_check_redundant_nodes), 59
cleanup, 11

116

cleanup_temp, 12
colnames, cytoframe-method
(markernames), 93
colnames, cytoset-method (markernames),
93
colnames,GatingHierarchy-method
(markernames), 93
colnames,GatingSet-method
(markernames), 93
colnames<-,cytoframe-method
(markernames), 93
colnames<-,cytoset-method
(markernames), 93
colnames<-,GatingHierarchy-method
(markernames), 93
colnames<-,GatingSet,ANY-method
(markernames), 93
colnames<-,GatingSet-method
(markernames), 93
compensate, 12, 28
compensate,cytoframe,matrix-method
(compensate), 12
compensate,cytoset,ANY-method
(compensate), 12
compensate,cytoset,list-method
(compensate), 12
compensate,cytoset,matrix-method
(compensate), 12
compensate,GatingSet,ANY-method
(compensate), 12
compensate,GatingSetList,ANY-method
(compensate), 12
compensation, 23
convert, 13
convert_backend, 15
convert_legacy_gs, 15
convert_legacy_gslist
(convert_legacy_gs), 15
copyNode (gh_copy_gate), 47
cs_add_cytoframe, 16
cs_cleanup (cleanup), 11
cs_cleanup_temp (cleanup_temp), 12
cs_flush_meta (load_meta), 90
cs_get_cytoframe (cytoset), 25
cs_get_h5_file_path (cs_get_uri), 17
cs_get_uri, 9-11,17, 85, 87,89
cs_is_subsetted (cf_is_subsetted), 10
cs_keyword_delete (keyword-mutators), 82

INDEX

cs_keyword_insert (keyword-mutators), 82

cs_keyword_rename (keyword-mutators), 82

cs_keyword_set (keyword-mutators), 82

cs_load_meta (load_meta), 90

cs_lock (lock), 90

cs_set_cytoframe, 17

cs_swap_colnames (cytoframe-labels), 24

cs_unlock (lock), 90

cytoframe, 11-13, 18, 24-30, 82, 87, 88

cytoframe-class (cytoframe), 18

cytoframe-labels, 24

cytoframe_to_flowFrame (convert), 13

cytoset, 11-14, 24,25, 45,47, 59, 82, 83, 88,
89

cytoset-class (cytoset), 25

cytoset_to_flowSet (convert), 13

cytoset_to_list (convert), 13

data.frames, I8, 19

delete_gs, 30

description, 18

dir, 88

dropRedundantChannels
(gs_remove_redundant_channels),
76

dropRedundantNodes
(gs_remove_redundant_nodes), 77

each_col, 22
ellipsoidGate, 101, 105, 106, 113
estimatelogicle, 31, 31
estimatelogicle,GatingHierarchy-method
(estimatelLogicle), 31
estimatelLogicle,GatingSet-method
(estimatelogicle), 31
estimatelogicle.GatingHierarchy
(estimatelogicle), 31
expressionFilter, 7
exprs, 18
extract_cluster_pop_name_from_node, 31

filter, 18, 22,29, 104
filter_to_list, 32
filter_to_list,booleanFilter-method
(filter_to_list), 32
filter_to_list,ellipsoidGate-method
(filter_to_list), 32
filter_to_list,logical-method
(filter_to_list), 32

INDEX

filter_to_list,polygonGate-method
(filter_to_list), 32
filter_to_list,quadGate-method
(filter_to_list), 32
filter_to_list,rectangleGate-method
(filter_to_list), 32
filterObject, 75
filterObject (filter_to_list), 32
filterObject,default-method
(filter_to_list), 32
filterResult, I8, 22, 29
flow_breaks, 38
flow_trans, 39
flowCore::rotate_gate, 101
flowCore: :scale_gate, 105
flowCore: :shift_gate, 107
flowCore: :transform_gate, /13
flowData (gs_cyto_data), 59
flowData,GatingSet-method
(gs_cyto_data), 59
flowData<- (gs_cyto_data), 59
flowData<-,GatingSet-method
(gs_cyto_data), 59
flowFrame, 13, 18, 26
flowFrame_to_cytoframe (convert), 13
flowJo.fasinh (flowjo_fasinh), 34
flowJo.flog (flowjo_log_trans), 36
flowJo. fsinh (flowjo_fasinh), 34
flowjo_biexp, 32
flowJo_biexp_trans
(flowjo_biexp_trans), 33
flowjo_biexp_trans, 33
flowjo_fasinh, 34
flowJo_fasinh_trans
(flowjo_fasinh_trans), 35
flowjo_fasinh_trans, 35
flowjo_flog (flowjo_log_trans), 36
flowjo_fsinh (flowjo_fasinh), 34
flowjo_log_trans, 36
flowJoTrans, 33, 110
flowJoTrans (flowjo_biexp), 32
flowSet, 13, 14, 22, 24, 25, 59
flowSet_to_cytoset (convert), 13
flowSet_to_list (convert), 13
flowWorkspace (flowWorkspace-package), 5
flowWorkspace-deprecated, 37
flowWorkspace-package, 5
flush_meta (load_meta), 90

117

fsApply, 28

GatingHierarchy, 7, 11, 12,41, 43, 45, 46,
82,83,112

GatingHierarchy
(GatingHierarchy-class), 40

GatingHierarchy-class, 40

GatingSet, 11, 12, 40, 43, 45, 46, 80, 82, 83,
104,112

GatingSet (GatingSet-class), 41

GatingSet,cytoset,ANY-method
(GatingSet-methods), 42

GatingSet,flowSet,ANY-method
(GatingSet-methods), 42

GatingSet, flowSet-method
(GatingSet-methods), 42

GatingSet,GatingHierarchy, character-method

(gh_apply_to_cs), 45
GatingSet-class, 41
GatingSet-methods, 42
GatingSetlList, 80, 108
GatingSetlList (GatingSetList-class), 42
GatingSetlList-class, 42
get_cytoframe_from_cs (cytoset), 25
get_default_backend, 44
get_leaf_nodes (gs_get_leaf_nodes), 61
get_log_level, 45
getChildren (gs_pop_get_parent), 71
getChildren,GatingSet,character-method

(gs_pop_get_parent), 71
getCompensationMatrices

(gh_get_compensations), 48

getCompensationMatrices,GatingHierachy-method

(gh_get_compensations), 48
getData (gh_pop_get_data), 52
getData,GatingHierarchy-method
(gh_pop_get_data), 52
getData,GatingSet-method
(gh_pop_get_data), 52
getData,GatingSetList-method
(gh_pop_get_data), 52
getDescendants
(gh_pop_get_descendants), 53
getDescendants,GatingHierarchy-method
(gh_pop_get_descendants), 53
getGate (gs_pop_get_gate), 69

getGate,GatingHierarchy, character-method

(gs_pop_get_gate), 69

118

getGate,GatingSet, character-method
(gs_pop_get_gate), 69

getGate,GatingSetlList,character-method
(gs_pop_get_gate), 69

getIndices (gh_pop_get_indices), 54

getIndices,GatingHierarchy, character-method

(gh_pop_get_indices), 54
getNodes (gs_get_pop_paths), 61
getNodes,GatingSet-method

(gs_get_pop_paths), 61
getParent (gs_pop_get_parent), 71
getParent,GatingSet, character-method

(gs_pop_get_parent), 71
getPopStats (gh_pop_compare_stats), 51
getPopStats,GatingHierarchy-method

(gh_pop_compare_stats), 51
getPopStats,GatingSet-method

(gs_pop_get_count_fast), 68
getProp (gh_pop_get_proportion), 56
getSingleCellExpression

(gs_get_singlecell_expression),

62
getSingleCellExpressionByGate

(gs_get_singlecell_expression),

62
getStats (gs_pop_get_stats), 72
getStats,GatingHierarchy-method

(gs_pop_get_stats), 72
getStats,GatingSet-method

(gs_pop_get_stats), 72
getStats,GatingSetList-method

(gs_pop_get_stats), 72
getTotal (gh_pop_get_proportion), 56
getTransformations

(gh_get_transformations), 49
getTransformations,GatingHierarchy-method

(gh_get_transformations), 49
gh_apply_to_cs, 45,47
gh_apply_to_new_fcs, 46
gh_cleanup (cleanup), 11
gh_cleanup_temp (cleanup_temp), 12
gh_copy_gate, 47
gh_get_cluster_labels, 48
gh_get_compensations, 12, 48
gh_get_leaf_nodes (gs_get_leaf_nodes),

61
gh_get_pop_paths (gs_get_pop_paths), 61
gh_get_transformations, 49, 110

INDEX

gh_keyword_delete (keyword-mutators), 82
gh_keyword_insert (keyword-mutators), 82
gh_keyword_rename (keyword-mutators), 82
gh_keyword_set (keyword-mutators), 82
gh_plot_pop_count_cv, 50
gh_pop_compare_stats, 51, 52, 55
gh_pop_get_children
(gs_pop_get_parent), 71
gh_pop_get_cluster_name, 51
gh_pop_get_count
(gh_pop_get_proportion), 56
gh_pop_get_data, 52, 70
gh_pop_get_descendants, 53
gh_pop_get_full_path, 54
gh_pop_get_gate (gs_pop_get_gate), 69
gh_pop_get_indices, 52, 54, 64
gh_pop_get_indices_mat, 55
gh_pop_get_parent (gs_pop_get_parent),
71
gh_pop_get_proportion, 56
gh_pop_get_stats (gs_pop_get_stats), 72
gh_pop_get_stats_tfilter
(gs_pop_get_stats_tfilter), 73
gh_pop_is_bool_gate (nodeflags), 95
gh_pop_is_gated (nodeflags), 95
gh_pop_is_hidden (nodeflags), 95
gh_pop_is_negated (nodeflags), 95
gh_pop_move, 56, 108
gh_pop_remove (pop_add), 97
gh_pop_set_gate (gs_pop_set_gate), 74
gh_pop_set_indices, 57
gh_pop_set_name (gs_pop_set_name), 75
gh_pop_set_visibility
(gs_pop_set_visibility), 76
gh_pop_set_xml_count, 58
groupByChannels (gs_split_by_channels),
78
groupByTree (gs_split_by_tree), 79
gs_check_redundant_nodes, 59, 77, 108
gs_cleanup (cleanup), 11
gs_cleanup_temp (cleanup_temp), 12
gs_cyto_data, 52, 59
gs_cyto_data,GatingSet-method
(gs_cyto_data), 59
gs_cyto_data<- (gs_cyto_data), 59
gs_cyto_data<-,GatingSet-method
(gs_cyto_data), 59
gs_get_compensation_internal, 60

INDEX

gs_get_compensations
(gh_get_compensations), 48
gs_get_cytoframe (cytoset), 25
gs_get_leaf_nodes, 61
gs_get_pop_paths, 50, 51, 59, 61, 68-72
gs_get_singlecell_expression, 62
gs_get_singlecell_expression_by_gate
(gs_get_singlecell_expression),
62
gs_get_uri (cs_get_uri), 17
gs_is_h5 (gs_is_persistent), 64
gs_is_persistent, 64
gs_keyword_delete (keyword-mutators), 82
gs_keyword_insert (keyword-mutators), 82
gs_keyword_rename (keyword-mutators), 82
gs_keyword_set (keyword-mutators), 82
gs_plot_diff_tree, 65
gs_plot_pop_count_cv
(gh_plot_pop_count_cv), 50
gs_pop_add, 65
gs_pop_get_children
(gs_pop_get_parent), 71
gs_pop_get_count_fast, 51/, 64, 68
gs_pop_get_count_with_meta
(gs_pop_get_count_fast), 68
gs_pop_get_data (gh_pop_get_data), 52
gs_pop_get_gate, 69
gs_pop_get_gs, 70
gs_pop_get_parent, 71
gs_pop_get_stats, 72
gs_pop_get_stats_tfilter, 73
gs_pop_remove (gs_pop_add), 65
gs_pop_set_gate, 74, 100, 104, 106, 112
gs_pop_set_name, 75
gs_pop_set_visibility, 76, 108
gs_remove_redundant_channels, 76, 108
gs_remove_redundant_nodes, 59, 77, 108
gs_split_by_channels, 78, 108
gs_split_by_tree, 59, 65, 77,79, 108
gs_update_channels, 79, 108
gslist_to_gs, 58

histogram, 20

identifier, 21

identifier (identifier-methods), 80

identifier,cytoset-method (cytoset), 25

identifier,GatingSet-method
(identifier-methods), 80

119

identifier,GatingSetList-method
(identifier-methods), 80
identifier-methods, 80
identifier<-,cytoset, ANY-method
(cytoset), 25
identifier<-,GatingSet, ANY-method
(identifier-methods), 80
identifier<-,GatingSet,character-method
(identifier-methods), 80
identifier<-,GatingSet-method
(identifier-methods), 80
identifier<-,GatingSetList,ANY-method
(identifier-methods), 80

identifier<-,GatingSetList,character-method

(identifier-methods), 80
isGated (nodeflags), 95
isHidden (nodeflags), 95
isNcdf (gs_is_persistent), 64
isNegated (nodeflags), 95

keyword, 719, 28, 81

keyword, cytoframe,missing-method
(cytoframe), 18

keyword,GatingHierarchy,character-method
(keyword), 81

keyword,GatingHierarchy,missing-method
(keyword), 81

keyword,GatingSet, character-method
(keyword), 81

keyword,GatingSet,missing-method
(keyword), 81

keyword,GatingSetList,character-method
(keyword), 81

keyword,GatingSetList,missing-method
(keyword), 81

keyword-mutators, 82

lapply (lapply-methods), 84

lapply, cytoset-method (lapply-methods),
84

lapply,GatingSet-method
(lapply-methods), 84

lapply-methods, 84

layoutGraph, 97

length, 84

length,GatingSet-method (length), 84

load_cytoframe, 9-11, 17, 85, 87, 89

load_cytoframe_from_fcs, 9-11, 14, 17, 85,
85, 88, 89

120

load_cytoset (save_cytoset), 102

load_cytoset_from_fcs, 9-11, 14, 17, 25,
46, 47, 85, 87, 87

load_gs (save_gs), 103

load_gslist (save_gs), 103

load_meta, 90

lock, 90

logicle_trans, 91,92

logicleGml2_trans, 91

logicletGml2, 91

logtGml2, 36

logtGml2_trans, 92

markernames, 93
markernames, cytoframe-method
(cytoframe), 18
markernames, cytoset-method
(markernames), 93
markernames,GatingHierarchy-method
(markernames), 93
markernames,GatingSet-method
(markernames), 93
markernames<-,cytoframe-method
(cytoframe), 18
markernames<-,cytoset-method
(markernames), 93
markernames<-,GatingHierarchy-method
(markernames), 93
markernames<-,GatingSet, ANY-method
(markernames), 93
markernames<-,GatingSet-method
(markernames), 93
markernmaes<-, cytoframe-method
(markernames), 93
merge-GatingSet
(standardize-GatingSet), 107
merge_list_to_gs, 15,94
moveNode (gh_pop_move), 56

ncdfFlowSet, 59
ncFlowSet, 95

ncFlowSet,GatingSet-method (ncFlowSet),

95
ncFlowSet<- (ncFlowSet), 95
ncFlowSet<-,GatingSet-method
(ncFlowSet), 95
nodeflags, 95

openWorkspace, 95

INDEX

parameters, 18, 20

pData (pData-methods), 96

pData,cytoset-method (cytoset), 25

pData,GatingHierarchy-method
(pData-methods), 96

pData,GatingSet-method (pData-methods),
96

pData-methods, 96

pData<- (pData-methods), 96

pData<-,cytoset,data.frame-method
(cytoset), 25

pData<-,GatingSet,data.frame-method
(pData-methods), 96

pData<-,GatingSetlList,data.frame-method
(pData-methods), 96

phenoData,cytoset-method (cytoset), 25

phenoData<-,cytoset,ANY-method
(cytoset), 25

plot (plot-methods), 96

plot,GatingSet,character-method
(plot-methods), 96

plot,GatingSet,missing-method
(plot-methods), 96

plot-methods, 96

polygonGate, 101, 105, 106, 113

pop.MFI (stats.fun), 108

pop_add, 97

prettyAxis, 98

quadGate, 105, 113

rbind2,GatingSetList,missing-method
(gslist_to_gs), 58

read.AnnotatedDataFrame, 87, 89

read.FCS, 24, 85

read. flowSet, 87

realize_view (cytoframe), 18

realize_view,cytoframe-method
(cytoframe), 18

realize_view,cytoset-method (cytoset),
25

recompute, 75, 99

rectangleGate, 105, 113

Rm (gs_pop_add), 65

rotate_gate, 100, 100, 113

rotate_gate,GatingHierarchy-method
(rotate_gate), 100

rotate_gate,GatingSet-method
(rotate_gate), 100

INDEX

rotate_gate.GatingHierarchy
(rotate_gate), 100

sampleNames, 101
sampleNames, character-method (save_gs),
103
sampleNames, cytoset, (sampleNames), 101
sampleNames, cytoset-method
(sampleNames), 101
sampleNames,GatingSet-method
(sampleNames), 101
sampleNames<- (sampleNames), 101
sampleNames<-,cytoset, ANY-method
(cytoset), 25
sampleNames<-,GatingSet,ANY-method
(sampleNames), 101
sampleNames<-,GatingSet-method
(sampleNames), 101
sapply, 28
save_cytoset, 102
save_gs, 103
save_gslist (save_gs), 103
scale_gate, 104,104, 113
scale_gate,GatingHierarchy-method
(scale_gate), 104
scale_gate,GatingSet-method
(scale_gate), 104
scale_gate.GatingHierarchy
(scale_gate), 104
set_default_backend
(get_default_backend), 44
set_log_level (get_log_level), 45
setGate (gs_pop_set_gate), 74

121

shift_gate,GatingSet-method
(shift_gate), 106

shift_gate.GatingHierarchy
(shift_gate), 106

show, booleanFilter-method
(booleanFilter-class), 7

show, cytoset-method (cytoset), 25

show,GatingHierarchy-method
(GatingHierarchy-class), 40

show,GatingSet-method (length), 84

smoothScatter, 20

spillover, 30

split, 22, 29

standardize-GatingSet, 107

stats. fun, 108

Subset, 29

subset, 109, 109

swap_data_cols, 109

transform, 22, 29, 110
transform,cytoset-method (cytoset), 25
transform,GatingSet-method (transform),
110
transform,GatingSetList-method
(transform), 110
transform_gate, 112, 112
transform_gate,GatingHierarchy-method
(transform_gate), 112
transform_gate,GatingSet-method
(transform_gate), 112
transform_gate.GatingHierarchy
(transform_gate), 112
transformerList, 111

setGate,GatingHierarchy,character,filter-method

(gs_pop_set_gate), 74
setGate,GatingSet,character,ANY-method
(gs_pop_set_gate), 74
setNode (gs_pop_set_name), 75

setNode,GatingHierarchy, character,ANY-method

(gs_pop_set_name), 75

updateChannels (gs_update_channels), 79
updateIndices (gh_pop_set_indices), 57

updatelndices,GatingHierarchy,character,logical-method

(gh_pop_set_indices), 57

setNode,GatingHierarchy,character,character-method

(gs_pop_set_name), 75

setNode,GatingHierarchy, character,logical-method

(gs_pop_set_visibility), 76
setNode,GatingSet,character,ANY-method

(gs_pop_set_name), 75
shift_gate, 106, 106, 113
shift_gate,GatingHierarchy-method

(shift_gate), 106

	flowWorkspace-package
	asinhtGml2_trans
	asinh_Gml2
	booleanFilter-class
	cf_append_cols
	cf_backend_type
	cf_get_uri
	cf_is_subsetted
	cf_write_disk
	cf_write_h5
	cleanup
	cleanup_temp
	compensate
	convert
	convert_backend
	convert_legacy_gs
	cs_add_cytoframe
	cs_get_uri
	cs_set_cytoframe
	cytoframe
	cytoframe-labels
	cytoset
	delete_gs
	estimateLogicle
	extract_cluster_pop_name_from_node
	filter_to_list
	flowjo_biexp
	flowjo_biexp_trans
	flowjo_fasinh
	flowjo_fasinh_trans
	flowjo_log_trans
	flowWorkspace-deprecated
	flow_breaks
	flow_trans
	GatingHierarchy-class
	GatingSet-class
	GatingSet-methods
	GatingSetList-class
	get_default_backend
	get_log_level
	gh_apply_to_cs
	gh_apply_to_new_fcs
	gh_copy_gate
	gh_get_cluster_labels
	gh_get_compensations
	gh_get_transformations
	gh_plot_pop_count_cv
	gh_pop_compare_stats
	gh_pop_get_cluster_name
	gh_pop_get_data
	gh_pop_get_descendants
	gh_pop_get_full_path
	gh_pop_get_indices
	gh_pop_get_indices_mat
	gh_pop_get_proportion
	gh_pop_move
	gh_pop_set_indices
	gh_pop_set_xml_count
	gslist_to_gs
	gs_check_redundant_nodes
	gs_cyto_data
	gs_get_compensation_internal
	gs_get_leaf_nodes
	gs_get_pop_paths
	gs_get_singlecell_expression
	gs_is_persistent
	gs_plot_diff_tree
	gs_pop_add
	gs_pop_get_count_fast
	gs_pop_get_gate
	gs_pop_get_gs
	gs_pop_get_parent
	gs_pop_get_stats
	gs_pop_get_stats_tfilter
	gs_pop_set_gate
	gs_pop_set_name
	gs_pop_set_visibility
	gs_remove_redundant_channels
	gs_remove_redundant_nodes
	gs_split_by_channels
	gs_split_by_tree
	gs_update_channels
	identifier-methods
	keyword
	keyword-mutators
	lapply-methods
	length
	load_cytoframe
	load_cytoframe_from_fcs
	load_cytoset_from_fcs
	load_meta
	lock
	logicleGml2_trans
	logicle_trans
	logtGml2_trans
	markernames
	merge_list_to_gs
	ncFlowSet
	nodeflags
	openWorkspace
	pData-methods
	plot-methods
	pop_add
	prettyAxis
	recompute
	rotate_gate
	sampleNames
	save_cytoset
	save_gs
	scale_gate
	shift_gate
	standardize-GatingSet
	stats.fun
	subset
	swap_data_cols
	transform
	transformerList
	transform_gate
	[,GatingSet,ANY,ANY,ANY-method
	Index

