Package ‘aroma.light’

October 31, 2025

Version 3.41.0
Depends R (>=2.15.2)

Imports stats, R.methodsS3 (>=1.7.1), R.oo (>= 1.23.0), R.utils (>=
2.9.0), matrixStats (>= 0.55.0)

Suggests princurve (>=2.1.4)

Title Light-Weight Methods for Normalization and Visualization of
Microarray Data using Only Basic R Data Types

Description Methods for microarray analysis that take basic data types such as matri-
ces and lists of vectors. These methods can be used standalone, be utilized in other pack-
ages, or be wrapped up in higher-level classes.

License GPL (>=2)

biocViews Infrastructure, Microarray, OneChannel, TwoChannel,
MultiChannel, Visualization, Preprocessing

URL https://github.com/HenrikBengtsson/aroma.light,

https://www.aroma-project.org

BugReports https://github.com/HenrikBengtsson/aroma.light/issues
LazyLoad TRUE

Encoding latinl

git_url https://git.bioconductor.org/packages/aroma.light

git_branch devel

git_last_commit 4e446ad

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-10-31

Author Henrik Bengtsson [aut, cre, cph],
Pierre Neuvial [ctb],
Aaron Lun [ctb]

Maintainer Henrik Bengtsson <henrikb@braju.com>

1

https://github.com/HenrikBengtsson/aroma.light
https://www.aroma-project.org
https://github.com/HenrikBengtsson/aroma.light/issues

2

Contents

Index

Contents

aroma.light-package e 3
1. Calibration and Normalization 5
averageQuantile oL L e 8
backtransformAffine L 9
backtransformPrincipalCurve oL oo 10
calibrateMultiscan L. 14
callNaiveGenotypes o v v vt e e e e e e 16
distanceBetweenLines 18
findPeaksAndValleys L 20
fitlTWPCA . . . e 22
fitNaiveGenotypes o e e e 24
fitPrincipalCurve e e e e 25
fitXYCurve e 27
IWPCA . v o e e e e e e e 29
likelihood.smooth.spline 31
medianPolish L 34
Non-documented objects 35
normalizeAffine 36
normaliz€Average e e 40
normalizeCurveFit 41
normalizeDifferencesToAverage L oo 45
normalizeFragmentLength L oo 46
normalizeQuantileRank 52
normalizeQuantileRank.matrix L L 54
normalizeQuantileSpline L L 56
normalizeTumorBoost L 58
pairedAlleleSpecificCopyNumbers 60
plotDensity L e 61
PIOtMVSA . . . e 62
plotMvsAPairs 63
plotMvsMPairs 64
plotXYCurve e 65
print.SmoothSplineLikelihood o 66
robustSmoothSpline L 66
sampleCorrelations e 68
sampleTuples e e 69
WPCA & o v v e 70
75

aroma.light-package 3

aroma.light-package Package aroma.light

Description
Methods for microarray analysis that take basic data types such as matrices and lists of vectors.
These methods can be used standalone, be utilized in other packages, or be wrapped up in higher-
level classes.

Installation
To install this package, see https://bioconductor.org/packages/release/bioc/html/aroma.
light.html.

To get started

For scanner calibration:

1. see calibrateMultiscan() - scan the same array two or more times to calibrate for scanner
effects and extended dynamical range.

To normalize multiple single-channel arrays all with the same number of probes/spots:

1. normalizeAffine() - normalizes, on the intensity scale, for differences in offset and scale
between channels.

2. normalizeQuantileRank(), normalizeQuantileSpline() - normalizes, on the intensity scale,
for differences in empirical distribution between channels.

To normalize multiple single-channel arrays with varying number probes/spots:

1. normalizeQuantileRank(), normalizeQuantileSpline() - normalizes, on the intensity scale,
for differences in empirical distribution between channels.

To normalize two-channel arrays:

1. normalizeAffine() - normalizes, on the intensity scale, for differences in offset and scale
between channels. This will also correct for intensity-dependent affects on the log scale.

2. normalizeCurveFit() - Classical intensity-dependent normalization, on the log scale, e.g.
lowess normalization.

To normalize three or more channels:

1. normalizeAffine() - normalizes, on the intensity scale, for differences in offset and scale be-
tween channels. This will minimize the curvature on the log scale between any two channels.

Further readings

Several of the normalization methods proposed in [1]-[7] are available in this package.

https://bioconductor.org/packages/release/bioc/html/aroma.light.html
https://bioconductor.org/packages/release/bioc/html/aroma.light.html

4 aroma.light-package

How to cite this package

Whenever using this package, please cite one or more of [1]-[7].

Wishlist

Here is a list of features that would be useful, but which I have too little time to add myself. Con-
tributions are appreciated.

* At the moment, nothing.

If you consider to contribute, make sure it is not already implemented by downloading the latest
"devel" version!

License

The releases of this package is licensed under GPL version 2 or newer.

NB: Except for the robustSmoothSpline () method, it is alright to distribute the rest of the package
under LGPL version 2.1 or newer.

The development code of the packages is under a private licence (where applicable) and patches sent
to the author fall under the latter license, but will be, if incorporated, released under the "release"
license above.

Author(s)

Henrik Bengtsson, Pierre Neuvial, Aaron Lun

References

Some of the reference below can be found at https://www.aroma-project.org/publications/.

[1] H. Bengtsson, Identification and normalization of plate effects in cDNA microarray data, Preprints
in Mathematical Sciences, 2002:28, Mathematical Statistics, Centre for Mathematical Sciences,
Lund University, 2002.

[2] H. Bengtsson, The R.oo package - Object-Oriented Programming with References Using Stan-
dard R Code, In Kurt Hornik, Friedrich Leisch and Achim Zeileis, editors, Proceedings of the 3rd
International Workshop on Distributed Statistical Computing (DSC 2003), March 20-22, Vienna,
Austria. http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/

[3] H. Bengtsson, aroma - An R Object-oriented Microarray Analysis environment, Preprints in
Mathematical Sciences (manuscript in preparation), Mathematical Statistics, Centre for Mathemat-
ical Sciences, Lund University, 2004.

[4] H. Bengtsson, J. Vallon-Christersson and G. Jonsson, Calibration and assessment of channel-
specific biases in microarray data with extended dynamical range, BMC Bioinformatics, 5:177,
2004.

https://www.aroma-project.org/publications/
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/

1. Calibration and Normalization 5

[5] Henrik Bengtsson and Ola Hossjer, Methodological Study of Affine Transformations of Gene
Expression Data, Methodological study of affine transformations of gene expression data with pro-
posed robust non-parametric multi-dimensional normalization method, BMC Bioinformatics, 2006,
7:100.

[6] H. Bengtsson, R. Irizarry, B. Carvalho, and T. Speed, Estimation and assessment of raw copy
numbers at the single locus level, Bioinformatics, 2008.

[7] H. Bengtsson, A. Ray, P. Spellman and T.P. Speed, A single-sample method for normalizing and
combining full-resolutioncopy numbers from multiple platforms, labs and analysis methods, Bioin-
formatics, 2009.

[8] H. Bengtsson, P. Neuvial and T.P. Speed, TumorBoost: Normalization of allele-specific tumor
copy numbers from a single pair of tumor-normal genotyping microarrays, BMC Bioinformatics,
2010, 11:245. [PMID 20462408]

1. Calibration and Normalization
1. Calibration and Normalization

Description

In this section we give our recommendation on how spotted two-color (or multi-color) microarray
data is best calibrated and normalized.

Classical background subtraction

We do not recommend background subtraction in classical means where background is estimated
by various image analysis methods. This means that we will only consider foreground signals in
the analysis.

We estimate "background” by other means. In what is explain below, only a global background,
that is, a global bias, is estimated and removed.

Multiscan calibration

In Bengtsson et al (2004) we give evidence that microarray scanners can introduce a significant bias
in data. This bias, which is about 15-25 out of 65535, will introduce intensity dependency in the
log-ratios, as explained in Bengtsson & Hossjer (2006).

In Bengtsson et al (2004) we find that this bias is stable across arrays (and a couple of months), but
further research is needed in order to tell if this is true over a longer time period.

To calibrate signals for scanner biases, scan the same array at multiple PMT-settings at three or
more (K >= 3) different PMT settings (preferably in decreasing order). While doing this, do not
adjust the laser power settings. Also, do the multiscan without washing, cleaning or by other means
changing the array between subsequent scans. Although not necessary, it is preferred that the array

6 1. Calibration and Normalization

remains in the scanner between subsequent scans. This will simplify the image analysis since spot
identification can be made once if images aligns perfectly.

After image analysis, read all K scans for the same array into the two matrices, one for the red and
one for the green channel, where the K columns corresponds to scans and the N rows to the spots.
It is enough to use foreground signals.

In order to multiscan calibrate the data, for each channel separately call Xc <- calibrateMultiscan(X)
where X is the NxK matrix of signals for one channel across all scans. The calibrated signals are
returned in the Nx1 matrix Xc.

Multiscan calibration may sometimes be skipped, especially if affine normalization is applied im-
mediately after, but we do recommend that every lab check at least once if their scanner introduce
bias. If the offsets in a scanner is already estimated from earlier multiscan analyses, or known by
other means, they can readily be subtracted from the signals of each channel. If arrays are still mul-
tiscanned, it is possible to force the calibration method to fit the model with zero intercept (assuming
the scanner offsets have been subtracted) by adding argument center=FALSE.

Affine normalization

In Bengtsson & Hossjer (2006), we carry out a detailed study on how biases in each channel intro-
duce so called intensity-dependent log-ratios among other systematic artifacts. Data with (additive)
bias in each channel is said to be affinely transformed. Data without such bias, is said to be linearly
(proportionally) transform. Ideally, observed signals (data) is a linear (proportional) function of true
gene expression levels.

We do not assume proportional observations. The scanner bias is real evidence that assuming
linearity is not correct. Affine normalization corrects for affine transformation in data. Without
control spots it is not possible to estimate the bias in each of the channels but only the relative bias
such that after normalization the effective bias are the same in all channels. This is why we call it
normalization and not calibration.

In its simplest form, affine normalization is done by Xn <- normalizeAffine(X) where X is a Nx2
matrix with the first column holds the foreground signals from the red channel and the second holds
the signals from the green channel. If three- or four-channel data is used these are added the same
way. The normalized data is returned as a Nx2 matrix Xn.

To normalize all arrays and all channels at once, one may put all data into one big NxK matrix
where the K columns hold the all channels from the first array, then all channels from the second
array and so on. Then Xn <- normalizeAffine(X) will return the across-array and across-channel
normalized data in the NxK matrix Xn where the columns are stored in the same order as in matrix
X.

Equal effective bias in all channels is much better. First of all, any intensity-dependent bias in the
log-ratios is removed for all non-differentially expressed genes. There is still an intensity-dependent
bias in the log-ratios for differentially expressed genes, but this is now symmetric around log-ratio
Zero.

Affine normalization will (by default and recommended) normalize all arrays together and at once.
This will guarantee that all arrays are "on the same scale". Thus, it not recommended to apply a
classical between-array scale normalization afterward. Moreover, the average log-ratio will be zero
after an affine normalization.

Note that an affine normalization will only remove curvature in the log-ratios at lower intensities.
If a strong intensity-dependent bias at high intensities remains, this is most likely due to saturation

1. Calibration and Normalization 7

effects, such as too high PMT settings or quenching.

Note that for a perfect affine normalization you should expect much higher noise levels in the log-
ratios at lower intensities than at higher. It should also be approximately symmetric around zero
log-ratio. In other words, a strong fanning effect is a good sign.

Due to different noise levels in red and green channels, different PMT settings in different channels,
plus the fact that the minimum signal is zero, "odd shapes" may be seen in the log-ratio vs log-
intensity graphs at lower intensities. Typically, these show themselves as non-symmetric in positive
and negative log-ratios. Note that you should not see this at higher intensities.

If there is a strong intensity-dependent effect left after the affine normalization, we recommend, for
now, that a subsequent curve-fit or quantile normalization is done. Which one, we do not know.

Why negative signals? By default, 5% of the normalized signals will have a non-positive signal
in one or both channels. This is on purpose, although the exact number 5% is chosen by experi-
ence. The reason for introducing negative signals is that they are indeed expected. For instance,
when measure a zero gene expression level, there is a chance that the observed value is (should
be) negative due to measurement noise. (For this reason it is possible that the scanner manufac-
turers have introduced scanner bias on purpose to avoid negative signals, which then all would be
truncated to zero.) To adjust the ratio (or number) of negative signals allowed, use for example
normalizeAffine(X, constraint=0.01) for 1% negative signals. If set to zero (or "max") only
as much bias is removed such that no negative signals exist afterward. Note that this is also true if
there were negative signals on beforehand.

Why not lowess normalization? Curve-fit normalization methods such as lowess normalization are
basically designed based on linearity assumptions and will for this reason not correct for channel
biases. Curve-fit normalization methods can by definition only be applied to one pair of channels at
the time and do therefore require a subsequent between-array scale normalization, which is by the
way very ad hoc.

Why not quantile normalization? Affine normalization can be though of a special case of quantile
normalization that is more robust than the latter. See Bengtsson & Hossjer (2006) for details.
Quantile normalization is probably better to apply than curve-fit normalization methods, but less
robust than affine normalization, especially at extreme (low and high) intensities. For this reason, we
do recommend to use affine normalization first, and if this is not satisfactory, quantile normalization
may be applied.

Linear (proportional) normalization
If the channel offsets are zero, already corrected for, or estimated by other means, it is possible to
normalize the data robustly by fitting the above affine model without intercept, that is, fitting a truly
linear model. This is done adding argument center=FALSE when calling normalizeAffine().
Author(s)

Henrik Bengtsson

8 averageQuantile

averageQuantile Gets the average empirical distribution

Description

Gets the average empirical distribution for a set of samples.

Usage

S3 method for class 'list'
averageQuantile(X, ...)

S3 method for class 'matrix'
averageQuantile(X, ...)

Arguments

X A list with K numeric vectors, or a numeric NxK matrix. If a 1ist, the
vectors may be of different lengths.

Not used.

Value

Returns a numeric vector of length equal to the longest vector in argument X.

Missing values

Missing values are excluded.

Author(s)

Parts adopted from Gordon Smyth (http://www.statsci.org/) in 2002 & 2006. Original code
by Ben Bolstad at Statistics Department, University of California.

See Also

normalizeQuantileRank(). normalizeQuantileSpline(). quantile.

http://www.statsci.org/

backtransformAffine

backtransformAffine Reverse affine transformation

Description

Reverse affine transformation.

Usage

S3 method for class 'matrix’

backtransformAffine(X, a=NULL, b=NULL, project=FALSE, ...)
Arguments

X An NxK matrix containing data to be backtransformed.

a A scalar, vector,amatrix,oralist. First,ifa list, itis assumed to contained
the elements a and b, which are the used as if they were passed as separate
arguments. If a vector, a matrix of size NxK is created which is then filled
row by row with the values in the vector. Commonly, the vector is of length K,
which means that the matrix will consist of copies of this vector stacked on top
of each other. If a matrix, a matrix of size NxK is created which is then filled
column by column with the values in the matrix (collected column by column.
Commonly, the matrix is of size NxK, or NxL with L < K and then the resulting
matrix consists of copies sitting next to each other. The resulting NxK matrix is
subtracted from the NxK matrix X.

b A scalar, vector, amatrix. A NxK matrix is created from this argument. For
details see argument a. The NxK matrix X-a is divided by the resulting NxK
matrix.

project returned (K values per data point are returned). If TRUE, the backtransformed
values "(X-a)/b" are projected onto the line L(a,b) so that all columns will be
identical.

Not used.
Value

The "(X-a)/b" backtransformed NxK matrix is returned. If project is TRUE, an Nx1 matrix is
returned, because all columns are identical anyway.

Missing values

Missing values remain missing values. If projected, data points that contain missing values are
projected without these.

10 backtransformPrincipalCurve

Examples

X <- matrix(1:8, nrow=4, ncol=2)
X[2,2] <- NA

print(X)

Returns a 4x2 matrix
print(backtransformAffine(X, a=c(1,5)))

Returns a 4x2 matrix
print(backtransformAffine(X, b=c(1,1/2)))

Returns a 4x2 matrix
print(backtransformAffine(X, a=matrix(1:4,ncol=1)))

Returns a 4x2 matrix
print(backtransformAffine(X, a=matrix(1:3,ncol=1)))

Returns a 4x2 matrix
print(backtransformAffine(X, a=matrix(1:2,ncol=1), b=c(1,2)))

Returns a 4x1 matrix
print(backtransformAffine(X, b=c(1,1/2), project=TRUE))

If the columns of X are identical, and a identity
backtransformation is applied and projected, the

same matrix is returned.

X <- matrix(1:4, nrow=4, ncol=3)

Y <- backtransformAffine(X, b=c(1,1,1), project=TRUE)
print(X)

print(Y)

stopifnot(sum(X[,1]1-Y) <= .Machine$double.eps)

If the columns of X are identical, and a identity
backtransformation is applied and projected, the
same matrix is returned.

X <- matrix(1:4, nrow=4, ncol=3)

X[,2] <- X[,21*2; X[,3]1 <- X[,3]%3

print(X)

Y <- backtransformAffine(X, b=c(1,2,3))

print(Y)

Y <- backtransformAffine(X, b=c(1,2,3), project=TRUE)
print(Y)

stopifnot(sum(X[,1]1-Y) <= .Machine$double.eps)

backtransformPrincipalCurve
Reverse transformation of principal-curve fit

backtransformPrincipalCurve 11

Description

Reverse transformation of principal-curve fit.

Usage
S3 method for class 'matrix'
backtransformPrincipalCurve(X, fit, dimensions=NULL, targetDimension=NULL, ...)
S3 method for class 'numeric'
backtransformPrincipalCurve(X, ...)
Arguments
X An NxK matrix containing data to be backtransformed.
fit An MXxL principal-curve fit object of class principal_curve as returned by
fitPrincipalCurve(). Typically L = K, but not always.
dimensions An (optional) subset of of D dimensions all in [1,L] to be returned (and back-
transform).
targetDimension

An (optional) index specifying the dimension in [1,L] to be used as the target
dimension of the fit. More details below.

Passed internally to smooth.spline.

Details

Each column in X ("dimension") is backtransformed independently of the others.

Value

The backtransformed NxK (or NxD) matrix.

Target dimension

By default, the backtransform is such that afterward the signals are approximately proportional to
the (first) principal curve as fitted by fitPrincipalCurve(). This scale and origin of this principal
curve is not uniquely defined. If targetDimension is specified, then the backtransformed signals
are approximately proportional to the signals of the target dimension, and the signals in the target
dimension are unchanged.

Subsetting dimensions

Argument dimensions can be used to backtransform a subset of dimensions (K) based on a subset
of the fitted dimensions (L). If KX = L, then both X and fit is subsetted. If K <> L, then it is
assumed that X is already subsetted/expanded and only fit is subsetted.

See Also

fitPrincipalCurve()

12 backtransformPrincipalCurve

Examples
Consider the case where K=4 measurements have been done
for the same underlying signals 'x'. The different measurements
have different systematic variation
#
y k = f(x_k) + eps_k; k =1,...,K.
#
In this example, we assume non-linear measurement functions
#
f(x) = a+ bxx + x*c + eps(b*x)
#
where 'a' is an offset, 'b' a scale factor, and 'c' an exponential.
We also assume heteroscedastic zero-mean noise with standard
deviation proportional to the rescaled underlying signal 'x'.
#
Furthermore, we assume that measurements k=2 and k=3 undergo the
same transformation, which may illustrate that the come from
the same batch. However, when xfitting* the model below we
will assume they are independent.
Transforms
a <- c(2, 15, 15, 3)
b <- c(2, 3, 3, 4)
c<-c(l, 2, 2, 1/2)
K <- length(a)
The true signal
N <- 1000
x <= rexp(N)

The noise
bX <- outer(b,x)
E <- apply(bX, MARGIN=2, FUN=function(x) rnorm(K, mean=0, sd=0.1xx))

The transformed signals with noise
Xc <- t(sapply(c, FUN=function(c) x*c))
Y <-a+bX+ Xc+E

Y <= t(Y)

Fit principal curve through Y = (y_1, y_2, ..., y_K)
fit <- fitPrincipalCurve(Y)

Flip direction of 'lambda'?
rho <- cor(fit$lambda, Y[,1], use="complete.obs")
flip <- (rho < 0)
if (flip) {
fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda

backtransformPrincipalCurve 13

L <- ncol(fit$s)

Backtransform toward the principal curve (the "common scale")
YN1 <- backtransformPrincipalCurve(Y, fit=fit)
stopifnot(ncol(YN1) == K)

Backtransform toward the first dimension
YN2 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=1)
stopifnot(ncol(YN2) == K)

Backtransform toward the last (fitted) dimension
YN3 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=L)
stopifnot(ncol(YN3) == K)

Backtransform toward the third dimension (dimension by dimension)

Note, this assumes that K ==

YN4 <-Y

for (cc in 1:L) {

YN4[,cc] <- backtransformPrincipalCurve(Y, fit=fit,

targetDimension=1, dimensions=cc)

3

stopifnot(identical (YN4, YN2))

Backtransform a subset toward the first dimension
Note, this assumes that K == L.
YN5 <- backtransformPrincipalCurve(Y, fit=fit,
targetDimension=1, dimensions=2:3)
stopifnot(identical (YN5, YN2[,2:31))
stopifnot(ncol(YN5) == 2)

Extract signals from measurement #2 and backtransform according

its model fit. Signals are standardized to target dimension 1.

y6 <- Y[,2,drop=FALSE]

yN6 <- backtransformPrincipalCurve(y6, fit=fit, dimensions=2,
targetDimension=1)

stopifnot(identical (yN6, YN2[,2,drop=FALSE]))

stopifnot(ncol(yN6) == 1)

Extract signals from measurement #2 and backtransform according
the the model fit of measurement #3 (because we believe these

two have undergone very similar transformations.

Signals are standardized to target dimension 1.

14 calibrateMultiscan
y7 <- Y[,2,drop=FALSE]
yN7 <- backtransformPrincipalCurve(y7, fit=fit, dimensions=3,
targetDimension=1)
stopifnot(ncol(yN7) == 1)
stopifnot(cor(yN7, yN6) > 0.9999)
calibrateMultiscan Weighted affine calibration of a multiple re-scanned channel

Description

Weighted affine calibration of a multiple re-scanned channel.

Usage

S3 method for class 'matrix'

calibrateMultiscan(X, weights=NULL, typeOfWeights=c("datapoint”), method="L1",
constraint="diagonal”, satSignal=2"16 - 1, ..., average=median, deviance=NULL,
project=FALSE, .fitOnly=FALSE)

Arguments

X

weights

typeOfWeights

method

constraint

satSignal

average
deviance

project

fitonly

Details

An NxK matrix (K>=2) where the columns represent the multiple scans of one
channel (a two-color array contains two channels) to be calibrated.

If NULL, non-weighted normalization is done. If data-point weights are used, this
should be a vector of length N of data point weights used when estimating the
normalization function.

A character string specifying the type of weights given in argument weights.

A character string specifying how the estimates are robustified. See iwpca()
for all accepted values.

Constraint making the bias parameters identifiable. See fitIWPCA() for more
details.

Signals equal to or above this threshold is considered saturated signals.

Other arguments passed to fitIWPCA() and in turn iwpca(), e.g. center (see
below).

A function to calculate the average signals between calibrated scans.
A function to calculate the deviance of the signals between calibrated scans.

If TRUE, the calibrated data points projected onto the diagonal line, otherwise
not. Moreover, if TRUE, argument average is ignored.

If TRUE, the data will not be back-transform.

Fitting is done by iterated re-weighted principal component analysis IWPCA).

calibrateMultiscan 15

Value

If average is specified or project is TRUE, an Nx1 matrix is returned, otherwise an NxK matrix
is returned. If deviance is specified, a deviance Nx1 matrix is returned as attribute deviance. In
addition, the fitted model is returned as attribute modelFit.

Negative, non-positive, and saturated values

Affine multiscan calibration applies also to negative values, which are therefor also calibrated, if
they exist.

Saturated signals in any scan are set to NA. Thus, they will not be used to estimate the calibration
function, nor will they affect an optional projection.

Missing values

Only observations (rows) in X that contain all finite values are used in the estimation of the calibra-
tion functions. Thus, observations can be excluded by setting them to NA.

Weighted normalization

Each data point/observation, that is, each row in X, which is a vector of length K, can be assigned a
weight in [0,1] specifying how much it should affect the fitting of the calibration function. Weights
are given by argument weights, which should be a numeric vector of length N. Regardless of
weights, all data points are calibrated based on the fitted calibration function.

Robustness

By default, the model fit of multiscan calibration is done in L; (method="L1"). This way, outliers
affect the parameter estimates less than ordinary least-square methods.

When calculating the average calibrated signal from multiple scans, by default the median is used,
which further robustify against outliers.

For further robustness, downweight outliers such as saturated signals, if possible.

Tukey’s biweight function is supported, but not used by default because then a "bandwidth" param-
eter has to selected. This can indeed be done automatically by estimating the standard deviation, for
instance using MAD. However, since scanner signals have heteroscedastic noise (standard deviation
is approximately proportional to the non-logged signal), Tukey’s bandwidth parameter has to be a
function of the signal too, cf. loess. We have experimented with this too, but found that it does not
significantly improve the robustness compared to L;. Moreover, using Tukey’s biweight as is, that
is, assuming homoscedastic noise, seems to introduce a (scale dependent) bias in the estimates of
the offset terms.

Using a known/previously estimated offset

If the scanner offsets can be assumed to be known, for instance, from prior multiscan analyses on
the scanner, then it is possible to fit the scanner model with no (zero) offset by specifying argument
center=FALSE. Note that you cannot specify the offset. Instead, subtract it from all signals before
calibrating, e.g. Xc <- calibrateMultiscan(X-e, center=FALSE) where e is the scanner offset
(a scalar). You can assert that the model is fitted without offset by stopifnot(all(attr(Xc,
"modelFit")$adiag == 0)).

16 callNaiveGenotypes

Author(s)

Henrik Bengtsson

References

[1] H. Bengtsson, J. Vallon-Christersson and G. Jonsson, Calibration and assessment of channel-
specific biases in microarray data with extended dynamical range, BMC Bioinformatics, 5:177,
2004.

See Also

1. Calibration and Normalization. normalizeAffine().

Examples

Not run: # For an example, see help(normalizeAffine).

callNaiveGenotypes Calls genotypes in a normal sample

Description

Calls genotypes in a normal sample.

Usage

S3 method for class 'numeric'

callNaiveGenotypes(y, cn=rep(2L, times = length(y)), ..., modelFit=NULL, verbose=FALSE)
Arguments

y A numeric vector of length J containing allele B fractions for a normal sample.

cn An optional numeric vector of length J specifying the true total copy number

in {0,1,2, N A} at each locus. This can be used to specify which loci are diploid
and which are not, e.g. autosomal and sex chromosome copy numbers.

Additional arguments passed to fitNaiveGenotypes().

modelFit A optional model fit as returned by fitNaiveGenotypes().
verbose A logical or a Verbose object.
Value

Returns a numeric vector of length J containing the genotype calls in allele B fraction space, that
is, in [0,1] where 1/2 corresponds to a heterozygous call, and 0 and 1 corresponds to homozygous
A and B, respectively. Non called genotypes have value NA.

callNaiveGenotypes 17

Missing and non-finite values

A missing value always gives a missing (NA) genotype call. Negative infinity (-Inf) always gives
genotype call 0. Positive infinity (+Inf) always gives genotype call 1.

Author(s)

Henrik Bengtsson

See Also

Internally fitNaiveGenotypes() is used to identify the thresholds.

Examples

layout(matrix(1:3, ncol=1))
par(mar=c(2,4,4,1)+0.1)

XAA <- rnorm(n=10000, mean=0, sd=0.1)

XBB <- rnorm(n=10000, mean=1, sd=0.1)

x <- c(xAA, xBB)

fit <- findPeaksAndValleys(x)

print(fit)

calls <- callNaiveGenotypes(x, cn=rep(1,length(x)), verbose=-20)
xc <- split(x, calls)

print(table(calls))

xx <- c(list(x),xc)

plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,BB)")
abline(v=fit$x)

XAB <- rnorm(n=10000, mean=1/2, sd=0.1)

x <- c(xAA,xAB,xBB)

x[sample(length(x), size=0.05xlength(x))] <- NA;
x[sample(length(x), size=0.01xlength(x))] <- -Inf,
x[sample(length(x), size=0.01xlength(x))] <- +Inf;
fit <- findPeaksAndValleys(x)

print(fit)

calls <- callNaiveGenotypes(x)

xc <- split(x, calls)

print(table(calls))

xx <- c(list(x),xc)

plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,AB,BB)")
abline(v=fit$x)

18 distanceBetweenLines

XAA <- rnorm(n=10000, mean=0, sd=0.02)
XAB <- rnorm(n=10000, mean=1/2, sd=0.02)
XBB <- rnorm(n=10000, mean=1, sd=0.02)

x <- c(xAA,xAB,xBB)

fit <- findPeaksAndValleys(x)

print(fit)

calls <- callNaiveGenotypes(x)

xc <- split(x, calls)
print(table(calls))

xx <= c(list(x),xc)

plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA',AB',BB')")
abline(v=fit$x)

distanceBetweenlLines Finds the shortest distance between two lines

Description

Finds the shortest distance between two lines.
Consider the two lines
x(s) = az + by xsand y(t) = ay + by *t

in an K-space where the offset and direction vectors are a,, and b, (in RX) that define the line z(s)
(s is a scalar). Similar for the line y(¢). This function finds the point (s, t) for which |z(s) — z(t)]

is minimal.
Usage
Default S3 method:
distanceBetweenLines(ax, bx, ay, by, ...)
Arguments
ax, bx Offset and direction vector of length K for line z,.
ay, by Offset and direction vector of length K for line z,.
Not used.
Value

Returns the a 1ist containing

ax, bx The given line z(s).

ay, by The given line y(t).

s, t The values of s and ¢ such that |z(s) — y(¢)| is minimal.
xs, yt The values of x(s) and y(t) at the optimal point (s, t).

distance The distance between the lines, i.e. |z(s) — y(¢)| at the optimal point (s, t).

distanceBetweenLines 19

Author(s)

Henrik Bengtsson

References

[1] M. Bard and D. Himel, The Minimum Distance Between Two Lines in n-Space, September 2001,
Advisor Dennis Merino.
[2] Dan Sunday, Distance between 3D Lines and Segments, Jan 2016, https://www.geomalgorithms.com/algorithms.ht

Examples

for (zzz in @) {

This example requires plot3d() in R.basic [http://www.braju.com/R/]
if (!require(pkgName <- "R.basic"”, character.only=TRUE)) break

layout(matrix(1:4, nrow=2, ncol=2, byrow=TRUE))

HHHEHHAEEEHE SRR AR AR
Lines in two-dimensions

HHHHHHHEHE AR A
x <= list(a=c(1,0), b=c(1,2))

y <- list(a=c(9,2), b=c(1,1))

fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)

xlim <- ylim <- c¢(-1,8)
plot(NA, xlab="", ylab="", xlim=ylim, ylim=ylim)

Highlight the offset coordinates for both lines
points(t(x$a), pch="+", col="red")

text(t(x$a), label=expression(al[x]), adj=c(-1,0.5))
points(t(y$a), pch="+", col="blue")

text(t(y$a), label=expression(alyl), adj=c(-1,0.5))

v <- c(-1,1)*10;
xv <= list(x=x$al1]1+x$b[1]Ixv, y=x$al[2]+x$b[2]*v)
yv <= list(x=y$al1]+y$b[1]*v, y=y$al[2]+y$b[2]*Vv)

lines(xv, col="red")
lines(yv, col="blue")

points(t(fit$xs), cex=2.0, col="red")

text(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
points(t(fit$yt), cex=1.5, col="blue")

text(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
print(fit)

S
Lines in three-dimensions
S

20 findPeaksAnd Valleys

x <- list(a=c(0,0,0), b=c(1,1,1)) # The 'diagonal'
y <- list(a=c(2,1,2), b=c(2,1,3)) # A 'fitted' line
fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)

xlim <- ylim <- zlim <- c(-1,3)
dummy <- t(c(1,1,1))*100;

Coordinates for the lines in 3d

v <- seq(-10,10, by=1);

xv <= list(x=x$a[1]1+x$b[1]xv, y=x$al[2]+x$b[2]*v, z=x$a[3]+x$b[3]*v)
yv <- list(x=y$al1]+y$b[1]*v, y=y$a[2]+y$b[2]*v, z=y$a[3]+y$b[3]*v)

for (theta in seq(30,140,length.out=3)) {
plot3d(dummy, theta=theta, phi=30, xlab="", ylab="", zlab="",
xlim=ylim, ylim=ylim, zlim=zlim)

Highlight the offset coordinates for both lines
points3d(t(x$a), pch="+", col="red")

text3d(t(x$a), label=expression(al[x]), adj=c(-1,0.5))
points3d(t(y$a), pch="+", col="blue")

text3d(t(y$a), label=expression(alyl), adj=c(-1,0.5))

Draw the lines
lines3d(xv, col="red")
lines3d(yv, col="blue")

Draw the two points that are closest to each other
points3d(t(fit$xs), cex=2.0, col="red")
text3d(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
points3d(t(fit$yt), cex=1.5, col="blue")
text3d(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))

Draw the distance between the two points
lines3d(rbind(fitxs,fityt), col="purple”, lwd=2)
3
print(fit)

} # for (zzz in @)
rm(zzz)

findPeaksAndValleys Finds extreme points in the empirical density estimated from data

Description

Finds extreme points in the empirical density estimated from data.

findPeaksAnd Valleys 21

Usage
S3 method for class 'density'
findPeaksAndValleys(x, tol=0, ...)
S3 method for class 'numeric'
findPeaksAndValleys(x, ..., tol=0, na.rm=TRUE)
Arguments
X A numeric vector containing data points or a density object.

Arguments passed to density. Ignored if x is a density object.

tol A non-negative numeric threshold specifying the minimum density at the ex-
treme point in order to accept it.
na.rm If TRUE, missing values are dropped, otherwise not.
Value

Returns a data. frame (of class "PeaksAndValleys’) containing of "peaks" and "valleys" filtered by
tol.

Author(s)

Henrik Bengtsson

See Also

This function is used by callNaiveGenotypes().

Examples

layout(matrix(1:3, ncol=1))
par(mar=c(2,4,4,1)+0.1)

A unimodal distribution

x1 <= rnorm(n=10000, mean=0, sd=1)

x <- x1

fit <- findPeaksAndValleys(x)

print(fit)

plot(density(x), lwd=2, main="x1")
abline(v=fit$x)

X2 <= rnorm(n=10000, mean=4, sd=1)
x3 <= rnorm(n=10000, mean=8, sd=1)
x <= c(x1,x2,x3)

fit <- findPeaksAndValleys(x)
print(fit)

22

plot(density(x),

abline(v=fit$x)

fitt WPCA

lwd=2, main="c(x1,x2,x3)")

x1b <= rnorm(n=10000, mean=0, sd=0.1)
x2b <= rnorm(n=10000, mean=4, sd=0.1)
x3b <= rnorm(n=10000, mean=8, sd=0.1)
X <= c(x1b,x2b,x3b)

Illustrating explicit usage of density()

d <- density(x)

fit <- findPeaksAndValleys(d, tol=0)

print(fit)

plot(d, lwd=2, main="c(x1b,x2b,x3b)")

abline(v=fit$x)

fitIWPCA

Robust fit of linear subspace through multidimensional data

Description

Robust fit of linear subspace through multidimensional data.

Usage

S3 method for class 'matrix'
fitIWPCA(X, constraint=c("diagonal”, "baseline”, "max"), baselineChannel=NULL, ..
aShift=rep(@, times = ncol(X)), Xmin=NULL)

Arguments

X

constraint

NxK matrix where N is the number of observations and K is the number of
dimensions (channels).

A character string or a numeric value. If character it specifies which ad-
ditional constraint to be used to specify the offset parameters along the fitted
line;

If "diagonal”, the offset vector will be a point on the line that is closest to the
diagonal line (1,...,1). With this constraint, all bias parameters are identifiable.
If "baseline” (requires argument baselineChannel), the estimates are such
that of the bias and scale parameters of the baseline channel is 0 and 1, respec-
tively. With this constraint, all bias parameters are identifiable.

If "max”, the offset vector will the point on the line that is as "great" as possible,
but still such that each of its components is less than the corresponding minimal
signal. This will guarantee that no negative signals are created in the backward
transformation. If numeric value, the offset vector will the point on the line

<

fitt WPCA 23

such that after applying the backward transformation there are constraint=N.
Note that constraint==0 corresponds approximately to constraint=="max".
With the latter two constraints, the bias parameters are only identifiable modulo
the fitted line.
baselineChannel

Index of channel toward which all other channels are conform. This argu-
ment is required if constraint=="baseline”. This argument is optional if
constraint=="diagonal” and then the scale factor of the baseline channel will
be one. The estimate of the bias parameters is not affected in this case. Defaults
to one, if missing.

Additional arguments accepted by iwpca(). For instance, a N vector of weights
for each observation may be given, otherwise they get the same weight.

aShift, Xmin For internal use only.

Details

This method uses re-weighted principal component analysis IWPCA) to fit a the model y,, =
a + bz, + eps, where y,, a, b, and eps,, are vector of the K and z,, is a scalar.

The algorithm is: For iteration i: 1) Fit a line L through the data close using weighted PCA with
weights {wy, }. Let 7, = {ry.1,..., 7o i } be the K principal components. 2) Update the weights as
wy, < —1/ Zf (rn.k +€-) where we have used the residuals of all but the first principal component.
3) Find the point a on L that is closest to the line D = (1, 1, ..., 1). Similarly, denote the point on D
thatis closestto Lby t = a x (1,1,...,1).

Value

Returns a 1ist that contains estimated parameters and algorithm details;

a A double vector (a[l],...,a[K])with offset parameter estimates. It is made
identifiable according to argument constraint.

b A double vector (b[1],...,b[K])with scale parameter estimates. It is made
identifiable by constraining b[baselineChannel] == 1. These estimates are in-
dependent of argument constraint.

adiag If identifiability constraint "diagonal”, a double vector (adiag[l], ..., adiag[K]),
where adiag[1l] = adiag(2] = ...adiag[K], specifying the point on the diagonal
line that is closest to the fitted line, otherwise the zero vector.

eigen A KxK matrix with columns of eigenvectors.

converged TRUE if the algorithm converged, otherwise FALSE.

nbrofIterations
The number of iterations for the algorithm to converge, or zero if it did not
converge.

to Internal parameter estimates, which contains no more information than the above

listed elements.

t Always NULL.

24 fitNaiveGenotypes

Author(s)

Henrik Bengtsson

See Also

This is an internal method used by the calibrateMultiscan() and normalizeAffine() meth-
ods. Internally the function iwpca() is used to fit a line through the data cloud and the function
distanceBetweenLines() to find the closest point to the diagonal (1,1,...,1).

fitNaiveGenotypes Fit naive genotype model from a normal sample

Description

Fit naive genotype model from a normal sample.

Usage

S3 method for class 'numeric'
fitNaiveGenotypes(y, cn=rep(2L, times = length(y)), subsetToFit=NULL,

flavor=c("density", "fixed"), adjust=1.5, ..., censorAt=c(-0.1, 1.1), verbose=FALSE)
Arguments
y A numeric vector of length J containing allele B fractions for a normal sample.
cn An optional numeric vector of length J specifying the true total copy number

in {0, 1,2, N A} at each locus. This can be used to specify which loci are diploid
and which are not, e.g. autosomal and sex chromosome copy numbers.

subsetToFit An optional integer or logical vector specifying which loci should be used
for estimating the model. If NULL, all loci are used.

flavor A character string specifying the type of algorithm used.

adjust A positive double specifying the amount smoothing for the empirical density
estimator.

Additional arguments passed to findPeaksAndValleys().

censorAt A double vector of length two specifying the range for which values are con-
sidered finite. Values below (above) this range are treated as -Inf (+Inf).
verbose A logical or a Verbose object.
Value

Returns a 1ist of 1ists.

Author(s)

Henrik Bengtsson

fitPrincipalCurve 25

See Also

To call genotypes see callNaiveGenotypes(). Internally findPeaksAndValleys() is used to iden-
tify the thresholds.

fitPrincipalCurve Fit a principal curve in K dimensions

Description

Fit a principal curve in K dimensions.

Usage
S3 method for class 'matrix'
fitPrincipalCurve(X, ..., verbose=FALSE)
Arguments
X An NxK matrix (K>=2) where the columns represent the dimension.

Other arguments passed to principal_curve.

verbose A logical or a Verbose object.

Value

Returns a principal_curve object (which is a 1ist). See principal_curve for more details.

Missing values
The estimation of the normalization function will only be made based on complete observations,
i.e. observations that contains no NA values in any of the channels.

Author(s)

Henrik Bengtsson

References

[1] Hastie, T. and Stuetzle, W, Principal Curves, JASA, 1989.

[2] H. Bengtsson, A. Ray, P. Spellman and T.P. Speed, A single-sample method for normalizing and
combining full-resolutioncopy numbers from multiple platforms, labs and analysis methods, Bioin-
formatics, 2009.

See Also

backtransformPrincipalCurve(). principal_curve.

26 fitPrincipalCurve

Examples
Simulate data from the model y <- a + bx + x*c + eps(bx)
J <- 1000
x <= rexp(J)
a <- ¢(2,15,3)
b <- ¢(2,3,4)
c <-¢c(1,2,1/2)

bx <- outer(b,x)

xc <- t(sapply(c, FUN=function(c) x*c))

eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(b), mean=0, sd=0.1*x))
y <- a + bx + xc + eps

y <= t(y)

Fit principal curve through (y_1, y_2, y_3)
fit <- fitPrincipalCurve(y, verbose=TRUE)

Flip direction of 'lambda'?
rho <- cor(fit$lambda, y[,1], use="complete.obs")
flip <- (rho < @)
if (flip) {
fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
3

Backtransform (y_1, y_2, y_3) to be proportional to each other
yN <- backtransformPrincipalCurve(y, fit=fit)

Same backtransformation dimension by dimension
yN2 <-y
for (cc in 1:ncol(y)) {
yN2[,cc] <- backtransformPrincipalCurve(y, fit=fit, dimensions=cc)

3
stopifnot(identical(yN2, yN))

xlim <- c(@, 1.04*max(x))
ylim <- range(c(y,yN), na.rm=TRUE)

Pairwise signals vs x before and after transform
layout(matrix(1:4, nrow=2, byrow=TRUE))
par(mar=c(4,4,3,2)+0.1)
for (cc in 1:3) {
ylab <- substitute(y[c], env=list(c=cc))
plot(NA, xlim=x1lim, ylim=ylim, xlab="x", ylab=ylab)
abline(h=alcc], 1ty=3)
mtext(side=4, at=alcc], sprintf("a=%g", alccl),
cex=0.8, las=2, line=0, adj=1.1, padj=-0.2)
points(x, y[,ccl)
points(x, yN[,cc], col="tomato")
legend("topleft”, col=c("black”, "tomato"), pch=19,
c("orignal”, "transformed”), bty="n")

fitXYCurve 27

}

title(main="Pairwise signals vs x before and after transform”, outer=TRUE, line=-2)

Pairwise signals before and after transform
layout(matrix(1:4, nrow=2, byrow=TRUE))
par(mar=c(4,4,3,2)+0.1)
for (rr in 3:2) {
ylab <- substitute(y[c], env=list(c=rr))
for (cc in 1:2) {
if (cc ==rr) {
plot.new()
next
}
xlab <- substitute(y[c], env=list(c=cc))
plot(NA, xlim=ylim, ylim=ylim, xlab=xlab, ylab=ylab)
abline(a=0, b=1, 1lty=2)
points(y[,c(cc,rr)])
points(yN[,c(cc,rr)], col="tomato")
legend("topleft”, col=c("black”, "tomato"), pch=19,
c("orignal”, "transformed"), bty="n")
}
3

title(main="Pairwise signals before and after transform”, outer=TRUE, line=-2)

fitXYCurve Fitting a smooth curve through paired (x,y) data

Description

Fitting a smooth curve through paired (x,y) data.

Usage

S3 method for class 'matrix'
fitXYCurve(X, weights=NULL, typeOfWeights=c("datapoint”), method=c("loess"”, "lowess”,

"spline”, "robustSpline”), bandwidth=NULL, satSignal=2*16 - 1, ...)
Arguments
X An Nx2 matrix where the columns represent the two channels to be normalized.
weights If NULL, non-weighted normalization is done. If data-point weights are used, this

should be a vector of length N of data point weights used when estimating the
normalization function.

typeOfWeights A character string specifying the type of weights given in argument weights.

method character string specifying which method to use when fitting the intensity-
dependent function. Supported methods: "loess” (better than lowess), "lowess”
(classic; supports only zero-one weights), "spline” (more robust than lowess at

28 fitXYCurve

lower and upper intensities; supports only zero-one weights), "robustSpline”
(better than spline).

bandwidth A double value specifying the bandwidth of the estimator used.
satSignal Signals equal to or above this threshold will not be used in the fitting.
Not used.
Value

A named list structure of class XYCurve.

Missing values

The estimation of the function will only be made based on complete non-saturated observations, i.e.
observations that contains no NA values nor saturated values as defined by satSignal.

Weighted normalization

Each data point, that is, each row in X, which is a vector of length 2, can be assigned a weight in
[0,1] specifying how much it should affect the fitting of the normalization function. Weights are
given by argument weights, which should be a numeric vector of length N.

Note that the lowess and the spline method only support zero-one {0,1} weights. For such methods,
all weights that are less than a half are set to zero.

Details on loess

For loess, the arguments family="symmetric”, degree=1, span=3/4, control=loess.control (trace.hat="approxima
iterations=5, surface="direct") are used.

Author(s)

Henrik Bengtsson

Examples

Simulate data from the model y <- a + bx + x*c + eps(bx)

x <- rexp(1000)

a <- c(2,15)

b <- c(2,1)

c <-c(1,2)

bx <- outer(b,x)

xc <- t(sapply(c, FUN=function(c) x*c))

eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
Y <- a + bx + xc + eps

Y <= t(Y)

lim <- c(0,70)
plot(Y, xlim=lim, ylim=lim)

Fit principal curve through a subset of (y_1, y_2)
subset <- sample(nrow(Y), size=0.3*nrow(Y))

iwpca 29

fit <- fitXYCurve(Y[subset,], bandwidth=0.2)
lines(fit, col="red", 1lwd=2)

Backtransform (y_1, y_2) keeping y_1 unchanged
YN <- backtransformXYCurve(Y, fit=fit)
points(YN, col="blue")

abline(a=0, b=1, col="red"”, 1lwd=2)

iwpca Fits an R-dimensional hyperplane using iterative re-weighted PCA

Description

Fits an R-dimensional hyperplane using iterative re-weighted PCA.

Usage

S3 method for class 'matrix'
iwpca(X, w=NULL, R=1, method=c("symmetric"”, "bisquare”, "tricube”, "L1"), maxIter=30,
acc=1e-04, reps=0.02, fit@=NULL, ...)

Arguments

X N-times-K matrix where N is the number of observations and K is the number
of dimensions.

w An N vector of weights for each row (observation) in the data matrix. If NULL,
all observations get the same weight.

R Number of principal components to fit. By default a line is fitted.

method If "symmetric” (or "bisquare"), Tukey’s biweight is used. If "tricube”, the
tricube weight is used. If "L1", the model is fitted in L;. If a function, it is used
to calculate weights for next iteration based on the current iteration’s residuals.

maxIter Maximum number of iterations.

acc The (Euclidean) distance between two subsequent parameters fit for which the
algorithm is considered to have converged.

reps Small value to be added to the residuals before the the weights are calculated
based on their inverse. This is to avoid infinite weights.

fito A list containing elements vt and pc specifying an initial fit. If NULL, the
initial guess will be equal to the (weighted) PCA fit.

Additional arguments accepted by wpca().

30 iwpca

Details

This method uses weighted principal component analysis (WPCA) to fit a R-dimensional hyper-
plane through the data with initial internal weights all equal. At each iteration the internal weights
are recalculated based on the "residuals”. If method=="L1", the internal weights are 1 / sum(abs(r)
+ reps). This is the same as method=function(r) 1/sum(abs(r)+reps). The "residuals" are or-
thogonal Euclidean distance of the principal components R,R+1,...,K. In each iteration before doing
WPCA, the internal weighted are multiplied by the weights given by argument w, if specified.

Value

Returns the fit (a 1ist) from the last call to wpca() with the additional elements nbrOfIterations
and converged.

Author(s)

Henrik Bengtsson

See Also

Internally wpca() is used for calculating the weighted PCA.

Examples

for (zzz in @) {

This example requires plot3d() in R.basic [http://www.braju.com/R/]
if (!require(pkgName <- "R.basic"”, character.only=TRUE)) break

Simulate data from the model y <- a + bx + eps(bx)

x <= rexp(1000)

a <- ¢(2,15,3)

b <- ¢(2,3,4)

bx <- outer(b,x)

eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
y <- a + bx + eps

y <= t(y)

Add some outliers by permuting the dimensions for 1/10 of the observations
idx <- sample(1:nrow(y), size=1/10*nrow(y))
ylidx,] <= y[idx,c(2,3,1)]

Plot the data with fitted lines at four different view points
opar <- par(mar=c(1,1,1,1)+0.1)
N <-4
layout(matrix(1:N, nrow=2, byrow=TRUE))
theta <- seq(@,270,length.out=N)
phi <- rep(20, length.out=N)
xlim <- ylim <- zlim <- ¢(0,45);
persp <- list();
for (kk in seg_along(theta)) {
Plot the data

likelihood.smooth.spline 31

persp[[kk]] <- plot3d(y, theta=thetalkk], phi=phi[kk], xlim=x1lim, ylim=ylim, zlim=zlim)

Weights on the observations

Example a: Equal weights

w <- NULL

Example b: More weight on the outliers (uncomment to test)
w <- rep(1, length(x)); wlidx] <- 0.8

...and show all iterations too with different colors.
maxIter <- c(seq(1,20,length.out=10),Inf)
col <- topo.colors(length(maxIter))
Show the fitted value for every iteration
for (ii in seg_along(maxIter)) {
Fit a line using IWPCA through data
fit <- iwpca(y, w=w, maxIter=maxIter[ii], swapDirections=TRUE)

ymid <- fit$xMean

do <- apply(y, MARGIN=2, FUN=min) - ymid

d1 <- apply(y, MARGIN=2, FUN=max) - ymid

b <- fit$vt[1,]

y0 <- -b * max(abs(de))

y1 <= b * max(abs(d1))

yline <- matrix(c(y@,y1), nrow=length(b), ncol=2)
yline <- yline + ymid

for (kk in seq_along(theta)) {
Set pane to draw in
par(mfg=c((kk-1) %/% 2, (kk-1) %% 2) + 1);
Set the viewpoint of the pane
options(persp.matrix=persp[[kk]11);

Get the first principal component
points3d(t(ymid), col=col[iil)
lines3d(t(yline), col=col[iil])

Highlight the last one
if (ii == length(maxIter))
lines3d(t(yline), col="red", lwd=3)
}
3

par(opar)

} # for (zzz in @)
rm(zzz)

likelihood. smooth.spline
Calculate the log likelihood of a smoothing spline given the data

32 likelihood.smooth.spline

Description

Calculate the (log) likelihood of a spline given the data used to fit the spline, g. The likelihood
consists of two main parts: 1) (weighted) residuals sum of squares, and 2) a penalty term. The
penalty term consists of a smoothing parameter lambda and a roughness measure of the spline
J(g) = [¢"(t)dt. Hence, the overall log likelihood is

log L(g|z) = (y — g(x))'W(y — g(2)) + AJ(g)

In addition to the overall likelihood, all its separate components are also returned.

Note: when fitting a smooth spline with (z, y) values where the 2’s are not unique, smooth.spline
will replace such (x,y)’s with a new pair (z,y’) where y’ is a reweighted average on the original
y’s. It is important to be aware of this. In such cases, the resulting smooth.spline object does
not contain all (z,y)’s and therefore this function will not calculate the weighted residuals sum of
square on the original data set, but on the data set with unique z’s. See examples below how to
calculate the likelihood for the spline with the original data.

Usage

S3 method for class 'smooth.spline'
likelihood(object, x=NULL, y=NULL, w=NULL, base=exp(1),

rel.tol=.Machine$double.eps*(1/8), ...)
Arguments
object The smooth.spline object.
X,y The x and y values for which the (weighted) likelihood will be calculated. If x

is of type xy.coords any value of argument y will be omitted. If x==NULL, the
x and y values of the smoothing spline will be used.

w The weights for which the (weighted) likelihood will be calculated. If NULL,
weights equal to one are assumed.
base The base of the logarithm of the likelihood. If NULL, the non-logged likelihood
is returned.
rel.tol The relative tolerance used in the call to integrate.
Not used.
Details

The roughness penalty for the smoothing spline, g, fitted from data in the interval [a, b] is defined
as

which is the same as
J(g) =4'(b) — ¢'(a)

The latter is calculated internally by using predict.smooth.spline.

likelihood.smooth.spline 33

Value

Returns the overall (log) likelihood of class SmoothSplineLikelihood, a class with the following

attributes:
Wrss the (weighted) residual sum of square
penalty the penalty which is equal to -1ambda*roughness.
lambda the smoothing parameter
roughness the value of the roughness functional given the specific smoothing spline and
the range of data
Author(s)

Henrik Bengtsson

See Also

smooth.spline and robustSmoothSpline().

Examples
Define f(x)
f <- expression(@.1*x*4 + 1xx*3 + 2*x*2 + x + 10*sin(2x*x))
Simulate data from this function in the range [a,b]
a<--2;b<-5
x <- seq(a, b, length.out=3000)
y <- eval(f)

Add some noise to the data
y <=y + rnorm(length(y), @, 10)

Plot the function and its second derivative
plot(x,y, type="1", lwd=4)

Fit a cubic smoothing spline and plot it
g <- smooth.spline(x,y, df=16)
lines(g, col="yellow"”, lwd=2, lty=2)

Calculating the (log) likelihood of the fitted spline
1 <- likelihood(g)

cat("Log likelihood with unique x values:\n")
print(l)

Note that this is not the same as the log likelihood of the
data on the fitted spline iff the x values are non-unique
x[1:5] <- x[1] # Non-unique x values

g <- smooth.spline(x,y, df=16)

1 <- likelihood(g)

cat("\nLog likelihood of the *splinex data set:\n")

34 medianPolish

print(l)

In cases with non unique x values one has to proceed as

below if one want to get the log likelihood for the original
data.

1 <- likelihood(g, x=x, y=y)

cat("\nLog likelihood of the *original* data set:\n")

print(1l)
medianPolish Median polish

Description

Median polish.
Usage

S3 method for class 'matrix’

medianPolish(X, tol=0.01, maxIter=10L, na.rm=NA, ..., .addExtra=TRUE)
Arguments

X N-times-K matrix

tol A numeric value greater than zero used as a threshold to identify when the

algorithm has converged.
maxIter Maximum number of iterations.

na.rm If TRUE (FALSE), NAs are exclude (not exclude). If NA, it is assumed that X con-
tains no NA values.

.addExtra If TRUE, the name of argument X is returned and the returned structure is assigned
a class. This will make the result compatible what medpolish returns.

Not used.

Details

The implementation of this method give identical estimates as medpolish, but is about 3-5 times
more efficient when there are no NA values.

Non-documented objects 35

Value

Returns a named 1ist structure with elements:

overall The fitted constant term.

row The fitted row effect.

col The fitted column effect.

residuals The residuals.

converged If TRUE, the algorithm converged, otherwise not.
Author(s)

Henrik Bengtsson

See Also
medpolish.

Examples

Deaths from sport parachuting; from ABC of EDA, p.224:

deaths <- matrix(c(14,15,14, 7,4,7, 8,2,10, 15,9,10, 0,2,0), ncol=3, byrow=TRUE)
rownames (deaths) <- c("1-24", "25-74", "75-199", "200++", "NA")
colnames(deaths) <- 1973:1975

print(deaths)

mp <- medianPolish(deaths)
mpl <- medpolish(deaths, trace=FALSE)
print(mp)

n

ff <- c¢("overall”, "row", "col"”, "residuals")
stopifnot(all.equal(mp[ffl, mp1[ff1))

Validate decomposition:
stopifnot(all.equal(deaths, mp$overall+outer(mp$row,mp$col,”"+")+mp$resid))

Non-documented objects
Non-documented objects

Description

This page contains aliases for all "non-documented" objects that R CMD check detects in this pack-
age.

Almost all of them are generic functions that have specific document for the corresponding method
coupled to a specific class. Other functions are re-defined by setMethodS3() to default methods.
Neither of these two classes are non-documented in reality. The rest are deprecated methods.

36 normalizeAffine

normalizeAffine Weighted affine normalization between channels and arrays

Description

Weighted affine normalization between channels and arrays.

This method will remove curvature in the M vs A plots that are due to an affine transformation of
the data. In other words, if there are (small or large) biases in the different (red or green) channels,
biases that can be equal too, you will get curvature in the M vs A plots and this type of curvature
will be removed by this normalization method.

Moreover, if you normalize all slides at once, this method will also bring the signals on the same
scale such that the log-ratios for different slides are comparable. Thus, do not normalize the scale
of the log-ratios between slides afterward.

It is recommended to normalize as many slides as possible in one run. The result is that if creating
log-ratios between any channels and any slides, they will contain as little curvature as possible.

Furthermore, since the relative scale between any two channels on any two slides will be one if one
normalizes all slides (and channels) at once it is possible to add or multiply with the same constant
to all channels/arrays without introducing curvature. Thus, it is easy to rescale the data afterwards
as demonstrated in the example.

Usage

S3 method for class 'matrix'
normalizeAffine(X, weights=NULL, typeOfWeights=c("datapoint”), method="L1",

constraint=0.05, satSignal=2"16 - 1, ..., .fitOnly=FALSE)
Arguments
X An NxK matrix (K>=2) where the columns represent the channels, to be nor-
malized.
weights If NULL, non-weighted normalization is done. If data-point weights are used, this

should be a vector of length N of data point weights used when estimating the
normalization function.

typeOfWeights A character string specifying the type of weights given in argument weights.

method A character string specifying how the estimates are robustified. See iwpca()
for all accepted values.

constraint Constraint making the bias parameters identifiable. See fitIWPCA() for more
details.
satSignal Signals equal to or above this threshold will not be used in the fitting.

Other arguments passed to fitIWPCA() and in turn iwpca(). For example, the
weight argument of iwpca(). See also below.

.fitOnly If TRUE, the data will not be back-transform.

normalizeAffine 37

Details

A line is fitted robustly through the (yg, y) observations using an iterated re-weighted principal
component analysis IWPCA), which minimized the residuals that are orthogonal to the fitted line.
Each observation is down-weighted by the inverse of the absolute residuals, i.e. the fit is done in
L.

Value

A NxK matrix of the normalized channels. The fitted model is returned as attribute modelFit.

Negative, non-positive, and saturated values

Affine normalization applies equally well to negative values. Thus, contrary to normalization meth-
ods applied to log-ratios, such as curve-fit normalization methods, affine normalization, will not set
these to NA.

Data points that are saturated in one or more channels are not used to estimate the normalization
function, but they are normalized.

Missing values

The estimation of the affine normalization function will only be made based on complete non-
saturated observations, i.e. observations that contains no NA values nor saturated values as defined
by satSignal.

Weighted normalization

Each data point/observation, that is, each row in X, which is a vector of length K, can be assigned
a weight in [0,1] specifying how much it should affect the fitting of the affine normalization func-
tion. Weights are given by argument weights, which should be a numeric vector of length N.
Regardless of weights, all data points are normalized based on the fitted normalization function.

Robustness

By default, the model fit of affine normalization is done in L; (method="L1"). This way, outliers
affect the parameter estimates less than ordinary least-square methods.

For further robustness, downweight outliers such as saturated signals, if possible.

We do not use Tukey’s biweight function for reasons similar to those outlined in calibrateMultiscan().

Using known/previously estimated channel offsets

If the channel offsets can be assumed to be known, then it is possible to fit the affine model
with no (zero) offset, which formally is a linear (proportional) model, by specifying argument
center=FALSE. In order to do this, the channel offsets have to be subtracted from the signals man-
ually before normalizing, e.g. Xa <- t(t(X)-a) where e is vector of length ncol(X). Then nor-
malize by Xn <- normalizeAffine(Xa, center=FALSE). You can assert that the model is fitted
without offset by stopifnot(all(attr(Xn, "modelFit")$adiag ==0)).

38 normalizeAffine

Author(s)

Henrik Bengtsson

References

[1] Henrik Bengtsson and Ola Hossjer, Methodological Study of Affine Transformations of Gene
Expression Data, Methodological study of affine transformations of gene expression data with pro-
posed robust non-parametric multi-dimensional normalization method, BMC Bioinformatics, 2006,
7:100.

See Also

calibrateMultiscan().

Examples

pathname <- system.file("data-ex"”, "PMT-RGData.dat”, package="aroma.light")
rg <- read.table(pathname, header=TRUE, sep="\t")
nbrOfScans <- max(rg$slide)

rg <- as.list(rg)
for (field in c("R", "G"))
rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
rg$slide <- rg$spot <- NULL
rg <- as.matrix(as.data.frame(rg))
colnames(rg) <- rep(c("R", "G"), each=nbr0OfScans)

layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))

rgC <-rg
for (channel in c("R", "G")) {
sidx <- which(colnames(rg) == channel)

channelColor <- switch(channel, R="red", G="green")

plotMvsAPairs(rg[,sidx])
title(main=paste("Observed”, channel))
box(col=channelColor)

rgCl,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)

plotMvsAPairs(rgC[,sidx])
title(main=paste(”Calibrated”, channel))
box (col=channelColor)

} # for (channel ...)

normalizeAffine

The average calibrated data
#
Note how the red signals are weaker than the green. The reason
for this can be that the scale factor in the green channel is
greater than in the red channel, but it can also be that there
is a remaining relative difference in bias between the green
and the red channel, a bias that precedes the scanning.

rgCA <- rg
for (channel in c("R", "G")) {

sidx <- which(colnames(rg) == channel)

rgCA[,sidx] <- calibrateMultiscan(rg[,sidx])
}

rgCAavg <- matrix(NA_real_, nrow=nrow(rgCA), ncol=2)
colnames(rgCAavg) <- c("R", "G")
for (channel in c("R", "G")) {
sidx <- which(colnames(rg) == channel)
rgCAavgl,channel] <- apply(rgCAL[,sidx], MARGIN=1, FUN=median, na.rm=TRUE)
3

Add some "fake" outliers
outliers <- 1:600
rgCAavgloutliers,”G"] <- 50000

plotMvsA(rgCAavg)
title(main="Average calibrated (AC)")

Weight-down outliers when normalizing
weights <- rep(1, nrow(rgCAavg))
weights[outliers] <- 0.001

Affine normalization of channels

rgCANa <- normalizeAffine(rgCAavg, weights=weights)

It is always ok to rescale the affine normalized data if its
done on (R,G); not on (A,M)! However, this is only needed for
esthetic purposes.

rgCANa <- rgCANa *2*1.4

plotMvsA(rgCANa)

title(main="Normalized AC")

Curve-fit (lowess) normalization
rgCANlw <- normalizelowess(rgCAavg, weights=weights)
plotMvsA(rgCANlw, col="orange"”, add=TRUE)

Curve-fit (loess) normalization
rgCAN1 <- normalizelLoess(rgCAavg, weights=weights)

39

40 normalizeAverage

plotMvsA(rgCANl, col="red", add=TRUE)

Curve-fit (robust spline) normalization
rgCANrs <- normalizeRobustSpline(rgCAavg, weights=weights)
plotMvsA(rgCANrs, col="blue", add=TRUE)

legend(x=0,y=16, legend=c("affine”, "lowess”, "loess", "r. spline"”), pch=19,
col=c("black”, "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")

plotMvsMPairs(cbind(rgCANa, rgCANlw), col="orange", xlab=expression(M[affinel))

title(main="Normalized AC")

plotMvsMPairs(cbind(rgCANa, rgCANl), col="red", add=TRUE)

plotMvsMPairs(cbind(rgCANa, rgCANrs), col="blue", add=TRUE)

abline(a=0, b=1, 1lty=2)

legend(x=-6,y=6, legend=c("lowess”, "loess"”, "r. spline"”), pch=19,
col=c("orange”, "red”, "blue"), ncol=2, x.intersp=0.3, bty="n")

normalizeAverage Rescales channel vectors to get the same average

Description

Rescales channel vectors to get the same average.

Usage

S3 method for class 'matrix’

normalizeAverage(x, baseline=1, avg=stats::median, targetAvg=2200, ...)

S3 method for class 'list'

normalizeAverage(x, baseline=1, avg=stats::median, targetAvg=2200, ...)
Arguments

X A numeric NxK matrix (or list of length K).

baseline An integer in [1,K] specifying which channel should be the baseline.

avg A function for calculating the average of one channel.

targetAvg The average that each channel should have afterwards. If NULL, the baseline

column sets the target average.
Additional arguments passed to the avg function.

Value

Returns a normalized numeric NxK matrix (or list of length K).

Author(s)

Henrik Bengtsson

normalizeCurveFit 41

normalizeCurveFit Weighted curve-fit normalization between a pair of channels

Description

Weighted curve-fit normalization between a pair of channels.

This method will estimate a smooth function of the dependency between the log-ratios and the
log-intensity of the two channels and then correct the log-ratios (only) in order to remove the de-
pendency. This is method is also known as intensity-dependent or lowess normalization.

The curve-fit methods are by nature limited to paired-channel data. There exist at least one method
trying to overcome this limitation, namely the cyclic-lowess [1], which applies the paired curve-fit
method iteratively over all pairs of channels/arrays. Cyclic-lowess is not implemented here.

We recommend that affine normalization [2] is used instead of curve-fit normalization.

Usage

S3 method for class 'matrix'

normalizeCurveFit(X, weights=NULL, typeOfWeights=c("datapoint”),
method=c("loess"”, "lowess”, "spline”, "robustSpline”), bandwidth=NULL,
satSignal=2%16 - 1, ...)

S3 method for class 'matrix'

normalizeloess(X, ...)

S3 method for class 'matrix'

normalizelLowess(X, ...)

S3 method for class 'matrix'

normalizeSpline(X, ...)

S3 method for class 'matrix'

normalizeRobustSpline(X, ...)

Arguments

X An Nx2 matrix where the columns represent the two channels to be normalized.

weights If NULL, non-weighted normalization is done. If data-point weights are used, this
should be a vector of length N of data point weights used when estimating the
normalization function.

typeOfWeights A character string specifying the type of weights given in argument weights.

method character string specifying which method to use when fitting the intensity-
dependent function. Supported methods: "loess” (better than lowess), "lowess”
(classic; supports only zero-one weights), "spline” (more robust than lowess at
lower and upper intensities; supports only zero-one weights), "robustSpline”
(better than spline).

bandwidth A double value specifying the bandwidth of the estimator used.
satSignal Signals equal to or above this threshold will not be used in the fitting.
Not used.

42 normalizeCurveFit

Details

A smooth function ¢(A) is fitted through data in (A, M), where M = logs(y2/y1) and A =
1/2 x loga(y2 * y1). Data is normalized by M < —M — ¢(A).

Loess is by far the slowest method of the four, then lowess, and then robust spline, which iteratively
calls the spline method.

Value

A Nx2 matrix of the normalized two channels. The fitted model is returned as attribute modelFit.

Negative, non-positive, and saturated values

Non-positive values are set to not-a-number (NaN). Data points that are saturated in one or more
channels are not used to estimate the normalization function, but they are normalized.

Missing values

The estimation of the normalization function will only be made based on complete non-saturated ob-
servations, i.e. observations that contains no NA values nor saturated values as defined by satSignal.

Weighted normalization

Each data point, that is, each row in X, which is a vector of length 2, can be assigned a weight in [0,1]
specifying how much it should affect the fitting of the normalization function. Weights are given by
argument weights, which should be a numeric vector of length N. Regardless of weights, all data
points are normalized based on the fitted normalization function.

Note that the lowess and the spline method only support zero-one {0,1} weights. For such methods,
all weights that are less than a half are set to zero.

Details on loess

For loess, the arguments family="symmetric”, degree=1, span=3/4, control=loess.control (trace.hat="approxima
iterations=5, surface="direct") are used.

Author(s)

Henrik Bengtsson

References

[1] M. Astrand, Contrast Normalization of Oligonucleotide Arrays, Journal Computational Biology,
2003, 10, 95-102.

[2] Henrik Bengtsson and Ola Hossjer, Methodological Study of Affine Transformations of Gene
Expression Data, Methodological study of affine transformations of gene expression data with pro-
posed robust non-parametric multi-dimensional normalization method, BMC Bioinformatics, 2006,
7:100.

normalizeCurveFit

See Also

normalizeAffine().

Examples

pathname <- system.file("data-ex", "PMT-RGData.dat"”, package="aroma.light")
rg <- read.table(pathname, header=TRUE, sep="\t")
nbrOfScans <- max(rg$slide)

rg <- as.list(rg)
for (field in c("R", "G"))
rgllfield]] <- matrix(as.double(rgl[field]]), ncol=nbrOfScans)
rg$slide <- rg$spot <- NULL
rg <- as.matrix(as.data.frame(rg))
colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)

layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))

rgC <- rg
for (channel in c("R", "G")) {
sidx <- which(colnames(rg) == channel)

channelColor <- switch(channel, R="red", G="green")

plotMvsAPairs(rg[,sidx])
title(main=paste("”Observed”, channel))
box (col=channelColor)

rgCl,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)

plotMvsAPairs(rgC[,sidx])
title(main=paste(”Calibrated”, channel))
box(col=channelColor)

} # for (channel ...)

The average calibrated data

#

#

Note how the red signals are weaker than the green. The reason
for this can be that the scale factor in the green channel is
greater than in the red channel, but it can also be that there
is a remaining relative difference in bias between the green

and the red channel, a bias that precedes the scanning.

rgCA <- rg
for (channel in c("R", "G")) {

44

normalizeCurveFit

sidx <- which(colnames(rg) == channel)
rgCA[,sidx] <- calibrateMultiscan(rg[,sidx])
3

rgCAavg <- matrix(NA_real_, nrow=nrow(rgCA), ncol=2)
colnames(rgCAavg) <- c("R", "G")
for (channel in c("R", "G")) {
sidx <- which(colnames(rg) == channel)
rgCAavg[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE)
}

Add some "fake" outliers
outliers <- 1:600
rgCAavgloutliers,"G"] <- 50000

plotMvsA(rgCAavg)
title(main="Average calibrated (AC)")

Weight-down outliers when normalizing
weights <- rep(1, nrow(rgCAavg))
weights[outliers] <- 0.001

Affine normalization of channels

rgCANa <- normalizeAffine(rgCAavg, weights=weights)

It is always ok to rescale the affine normalized data if its
done on (R,G); not on (A,M)! However, this is only needed for
esthetic purposes.

rgCANa <- rgCANa *2"1.4

plotMvsA(rgCANa)

title(main="Normalized AC")

Curve-fit (lowess) normalization
rgCAN1w <- normalizelowess(rgCAavg, weights=weights)
plotMvsA(rgCANlw, col="orange", add=TRUE)

Curve-fit (loess) normalization
rgCAN1 <- normalizeloess(rgCAavg, weights=weights)
plotMvsA(rgCANl, col="red"”, add=TRUE)

Curve-fit (robust spline) normalization

rgCANrs <- normalizeRobustSpline(rgCAavg, weights=weights)

plotMvsA(rgCANrs, col="blue", add=TRUE)

legend(x=0,y=16, legend=c("affine”, "lowess"”, "loess”, "r. spline"), pch=19,
col=c("black”, "orange", "red”, "blue"), ncol=2, x.intersp=0.3, bty="n")

plotMvsMPairs(cbind(rgCANa, rgCANlw), col="orange”, xlab=expression(M[affinel))
title(main="Normalized AC")
plotMvsMPairs(cbind(rgCANa, rgCANl), col="red"”, add=TRUE)

normalizeDifferencesToAverage 45

plotMvsMPairs(cbind(rgCANa, rgCANrs), col="blue", add=TRUE)

abline(a=0, b=1, 1lty=2)

legend(x=-6,y=6, legend=c("lowess", "loess"”, "r. spline”), pch=19,
col=c("orange"”, "red", "blue"), ncol=2, x.intersp=0.3, bty="n")

normalizeDifferencesToAverage
Rescales channel vectors to get the same average

Description

Rescales channel vectors to get the same average.

Usage
S3 method for class 'list'
normalizeDifferencesToAverage(x, baseline=1, FUN=median, ...)
Arguments
X A numeric list of length K.
baseline An integer in [1,K] specifying which channel should be the baseline. The

baseline channel will be almost unchanged. If NULL, the channels will be shifted
towards median of them all.

FUN A function for calculating the average of one channel.

Additional arguments passed to the avg function.

Value

Returns a normalized 1ist of length K.

Author(s)

Henrik Bengtsson

Examples

Simulate three shifted tracks of different lengths with same profiles

ns <- c(A=2, B=1, C=0.25)*1000

xx <- lapply(ns, FUN=function(n) { seq(from=1, to=max(ns), length.out=n) })
zz <- mapply(seqg_along(ns), ns, FUN=function(z,n) rep(z,n))

yy <- list(
A = rnorm(ns["A"], mean=0, sd=0.5),
B = rnorm(ns["B"], mean=5, sd=0.4),
C = rnorm(ns["C"], mean=-5, sd=1.1)

46 normalizeFragmentLength

)

yy <- lapply(yy, FUN=function(y) {
n <- length(y)
y[1:(n/2)] <= y[1:(n/2)] + 2
y[1:(n/4)] <- y[1:(n/4)] - 4
Yy

»

Shift all tracks toward the first track
yyN <- normalizeDifferencesToAverage(yy, baseline=1)

The baseline channel is not changed
stopifnot(identical(yy[[11], yyNL[[111))

Get the estimated parameters
fit <- attr(yyN, "fit")

Plot the tracks

layout(matrix(1:2, ncol=1))

X <- unlist(xx)

col <- unlist(zz)

y <- unlist(yy)

yN <- unlist(yyN)

plot(x, y, col=col, ylim=c(-10,10))
plot(x, yN, col=col, ylim=c(-10,10))

normalizeFragmentLength
Normalizes signals for PCR fragment-length effects

Description

Normalizes signals for PCR fragment-length effects. Some or all signals are used to estimated the
normalization function. All signals are normalized.

Usage

Default S3 method:
normalizeFragmentlLength(y, fragmentLengths, targetFcns=NULL, subsetToFit=NULL,

onMissing=c("ignore”, "median"), .islLogged=TRUE, ..., .returnFit=FALSE)
Arguments
y A numeric vector of length K of signals to be normalized across E enzymes.
fragmentLengths

An integer KxE matrix of fragment lengths.

targetFcns An optional 1ist of E functions; one per enzyme. If NULL, the data is normal-
ized to have constant fragment-length effects (all equal to zero on the log-scale).

normalizeFragmentLength 47

subsetToFit The subset of data points used to fit the normalization function. If NULL, all data
points are considered.

onMissing Specifies how data points for which there is no fragment length is normalized.
If "ignore”, the values are not modified. If "median”, the values are updated
to have the same robust average as the other data points.

.isLogged A logical.
Additional arguments passed to lowess.

.returnFit A logical.

Value

Returns a numeric vector of the normalized signals.

Multi-enzyme normalization

It is assumed that the fragment-length effects from multiple enzymes added (with equal weights)
on the intensity scale. The fragment-length effects are fitted for each enzyme separately based on
units that are exclusively for that enzyme. If there are no or very such units for an enzyme, the
assumptions of the model are not met and the fit will fail with an error. Then, from the above single-
enzyme fits the average effect across enzymes is the calculated for each unit that is on multiple
enzymes.

Target functions

It is possible to specify custom target function effects for each enzyme via argument targetFcns.
This argument has to be a 1ist containing one function per enzyme and ordered in the same
order as the enzyme are in the columns of argument fragmentlLengths. For instance, if one wish to
normalize the signals such that their mean signal as a function of fragment length effect is constantly
equal to 2200 (or the intensity scale), the use targetFcns=function(fl, ...) log2(2200) which
completely ignores fragment-length argument ’fI’ and always returns a constant. If two enzymes
are used, then use targetFcns=rep(list(function(fl, ...) log2(2200)), 2).

Note, if targetFcns is NULL, this corresponds to targetFcns=rep(list(function(fl, ...) @),
ncol (fragmentLengths)).

Alternatively, if one wants to only apply minimal corrections to the signals, then one can normalize
toward target functions that correspond to the fragment-length effect of the average array.
Author(s)

Henrik Bengtsson

References

[1] H. Bengtsson, R. Irizarry, B. Carvalho, and T. Speed, Estimation and assessment of raw copy
numbers at the single locus level, Bioinformatics, 2008.

48

Examples

Number samples
I <9

Number of loci
J <- 1000

Fragment lengths
fl <- seq(from=100, to=1000, length.out=J)

Simulate data points with unknown fragment lengths
hasUnknownFL <- seq(from=1, to=J, by=50)
fllhasUnknownFL] <- NA

Simulate data
y <- matrix(@, nrow=J, ncol=I)
maxyY <- 12
for (kk in 1:I) {
k <= runif(n=1, min=3, max=5)
mu <- function(fl) {
mu <- rep(maxY, length(fl))
ok <- lis.na(fl)
mulok] <- mul[ok] - fl[ok]*{1/k}
mu
}
eps <- rnorm(J, mean=0, sd=1)
y[,kk] <= mu(fl) + eps
3

Normalize data (to a zero baseline)
yN <- apply(y, MARGIN=2, FUN=function(y) {

normalizeFragmentLength

normalizeFragmentLength(y, fragmentLengths=f1l, onMissing="median")

b

The correction factors
rho <- y-yN
print(summary(rho))

The correction for units with unknown fragment lengths
equals the median correction factor of all other units

print(summary(rho[hasUnknownFL,]))

Plot raw data
layout(matrix(1:9, ncol=3))

xlim <- c(@,max(fl, na.rm=TRUE))
ylim <- c(@,max(y, na.rm=TRUE))
xlab <- "Fragment length”

ylab <- expression(log2(theta))
for (kk in 1:I) {

plot(fl, y[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)

normalizeFragmentLength 49

ok <- (is.finite(fl) & is.finite(y[,kk1))
lines(lowess(fl[ok], y[ok,kk]l), col="red"”, lwd=2)
3

Plot normalized data

layout(matrix(1:9, ncol=3))

ylim <- c(-1,1)*max(y, na.rm=TRUE)/2

for (kk in 1:I) {
plot(fl, yN[,kk], xlim=x1lim, ylim=ylim, xlab=xlab, ylab=ylab)
ok <- (is.finite(fl) & is.finite(y[,kk1))
lines(lowess(f1llok], yN[ok,kk]), col="blue", lwd=2)

set.seed(0xbeef)

Number samples
I<-5

Number of loci
J <- 3000

Fragment lengths (two enzymes)
fl <- matrix(@, nrow=J, ncol=2)
f1[,1] <- seq(from=100, to=1000, length.out=J)
f1[,2] <- seq(from=1000, to=100, length.out=J)

Let 1/2 of the units be on both enzymes
fllseq(from=1, to=J, by=4),1] <- NA
fllseq(from=2, to=J, by=4),2] <- NA

Let some have unknown fragment lengths
hasUnknownFL <- seq(from=1, to=J, by=15)
f1l[hasUnknownFL,] <- NA

Sty/Nsp mixing proportions:

rho <- rep(1, I)

rho[1] <- 1/3; # Less Sty in 1st sample
rho[3] <- 3/2; # More Sty in 3rd sample

Simulate data
z <- array(0, dim=c(J,2,I))
maxLog2Theta <- 12
for (ii in 1:I) {
Common effect for both enzymes
mu <- function(fl) {
k <= runif(n=1, min=3, max=5)
mu <- rep(maxLog2Theta, length(fl))
ok <- is.finite(fl)

50

mulok] <- mul[ok] - fl[ok]*{1/k}
mu

3

Calculate the effect for each data point
for (ee in 1:2) {
z[,ee,ii] <- mu(fl[,eel)

3

Update the Sty/Nsp mixing proportions
ee <- 2
z[,ee,ii] <- rhol[iil*z[,ee,ii]

Add random errors
for (ee in 1:2) {
eps <- rnorm(J, mean=0, sd=1/sqrt(2))
z[,ee,ii] <- z[,ee,ii] + eps
}
}

hasFl <- is.finite(fl)

unitSets <- list(
nsp = which(hasF1[,1] & 'hasF1l[,2]),
sty = which(!hasF1[,1] & hasFl[,2]),
both = which(hasF1[,1] & hasFl[,2]),
none = which(!hasF1[,1] & 'hasFl[,2])
)

The observed data is a mix of two enzymes
theta <- matrix(NA_real_, nrow=J, ncol=I)

Single-enzyme units

for (ee in 1:2) {
uu <- unitSets[[ee]]
thetaluu,] <- 2*z[uu,ee,]

}

Both-enzyme units (sum on intensity scale)
uu <- unitSets$both
thetaluu,] <- (2*z[uu,1,1+2*z[uu,2,1)/2

Missing units (sample from the others)
uu <- unitSets$none
thetaluu,] <- apply(theta, MARGIN=2, sample, size=length(uu))

Calculate target array
thetaT <- rowMeans(theta, na.rm=TRUE)
targetFcns <- list()
for (ee in 1:2) {
uu <- unitSets[[ee]]
fit <- lowess(fl[uu,ee], log2(thetaT[uul))

normalizeFragmentLength

normalizeFragmentLength

class(fit) <- "lowess”
targetFcns[[ee]] <- function(fl, ...) {
predict(fit, newdata=fl)
}
3

Fit model only to a subset of the data
subsetToFit <- setdiff(1:J, seq(from=1, to=J, by=10))

Normalize data (to a target baseline)
thetaN <- matrix(NA_real_, nrow=J, ncol=I)
fits <- vector("list"”, I)
for (ii in 1:I) {
1thetaNi <- normalizeFragmentLength(log2(thetal[,ii]), targetFcns=targetFcns,
fragmentLengths=f1, onMissing="median",
subsetToFit=subsetToFit, .returnFit=TRUE)
fits[[ii]] <- attr(lthetaNi, "modelFit")
thetaN[,ii] <- 2*1thetaNi
3

Plot raw data

xlim <- c(@, max(fl, na.rm=TRUE))

ylim <- c(@, max(log2(theta), na.rm=TRUE))
Mlim <- c(-1,1)*4

xlab <- "Fragment length”

ylab <- expression(log2(theta))

Mlab <- expression(M==log[2](theta/thetalR]))

layout(matrix(1:(3*I), ncol=I, byrow=TRUE))
for (ii in 1:I) {
plot(NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, main="raw")

Single-enzyme units
for (ee in 1:2) {

The raw data

uu <- unitSets[[ee]]

points(flluu,ee], log2(thetaluu,iil]), col=ee+1)
}

Both-enzyme units (use fragment-length for enzyme #1)
uu <- unitSets$both
points(flfuu,1], log2(thetaluu,iil), col=3+1)

for (ee in 1:2) {
The true effects
uu <- unitSets[[ee]]
lines(lowess(fl[uu,ee], log2(thetaluu,iil])), col="black”, lwd=4, 1lty=3)

The estimated effects
fit <- fits[[iil][[eell$fit
lines(fit, col="orange"”, 1lwd=3)

52 normalizeQuantileRank

muT <- targetFcns[[eel]l(fl[uu,ee])
lines(fl[uu,ee], muT, col="cyan"”, 1lwd=1)
}
3

Calculate log-ratios
thetaR <- rowMeans(thetaN, na.rm=TRUE)
M <- log2(thetaN/thetaR)

Plot normalized data
for (ii in 1:I) {
plot(NA, xlim=x1lim, ylim=Mlim, xlab=xlab, ylab=Mlab, main="normalized")
Single-enzyme units
for (ee in 1:2) {
The normalized data
uu <- unitSets[[eel]
points(fllfuu,eel, M[uu,ii], col=ee+1)
3
Both-enzyme units (use fragment-length for enzyme #1)
uu <- unitSets$hoth
points(flfuu,1], M[uu,ii], col=3+1)
3

ylim <- ¢(0,1.5)
for (ii in 1:I) {
data <- list()
for (ee in 1:2) {
The normalized data
uu <- unitSets[[ee]]
datal[[ee]] <- M[uu,ii]
}
uu <- unitSets$bhoth
if (length(uu) > @)
datal[3]] <- M[uu,iil

uu <- unitSets$none
if (length(uu) > @)
datal[[4]] <- M[uu,ii]

cols <- seqg_along(data)+1
plotDensity(data, col=cols, xlim=Mlim, xlab=Mlab, main="normalized")

abline(v=0, 1ty=2)

normalizeQuantileRank Normalizes the empirical distribution of one of more samples to a tar-
get distribution

normalizeQuantileRank 53

Description

Normalizes the empirical distribution of one of more samples to a target distribution.

The average sample distribution is calculated either robustly or not by utilizing either weightedMedian()
or weighted.mean(). A weighted method is used if any of the weights are different from one.

Usage

S3 method for class 'numeric'
normalizeQuantileRank(x, xTarget, ties=FALSE, ...)
S3 method for class 'list'

normalizeQuantileRank(X, xTarget=NULL, ...)
Default S3 method:
normalizeQuantile(x, ...)
Arguments
X, X anumeric vector of length N or a 1ist of length N with numeric vectors. If

a list, then the vectors may be of different lengths.

xTarget The target empirical distribution as a sorted numeric vector of length M. If
NULL and X is a list, then the target distribution is calculated as the average
empirical distribution of the samples.

ties Should ties in x be treated with care or not? For more details, see "limma:normalizeQuantiles".

Not used.

Value

Returns an object of the same shape as the input argument.

Missing values

Missing values are excluded when estimating the "common" (the baseline). Values that are NA
remain NA after normalization. No new NAs are introduced.

Weights

Currently only channel weights are support due to the way quantile normalization is done. If signal
weights are given, channel weights are calculated from these by taking the mean of the signal
weights in each channel.

Author(s)

Adopted from Gordon Smyth (http://www.statsci.org/)in 2002 & 2006. Original code by Ben
Bolstad at Statistics Department, University of California.

See Also

To calculate a target distribution from a set of samples, see averageQuantile(). For an alternative
empirical density normalization methods, see normalizeQuantileSpline().

http://www.statsci.org/

54 normalizeQuantileRank.matrix

Examples

Simulate ten samples of different lengths
N <- 10000
X <- list(Q)
for (kk in 1:8) {
rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
size <- runif(1, min=0.3, max=1)
a <- rgamma(1, shape=20, rate=10)
b <- rgamma(1, shape=10, rate=10)
values <- rfcn(size*N, a, b)

"Censor"” values
values[values < @ | values > 8] <- NA

X[Lkk1] <- values
3

Add 20% missing values

X <- lapply(X, FUN=function(x) {
x[sample(length(x), size=0.20*xlength(x))] <- NA
X

b

Normalize quantiles
Xn <- normalizeQuantile(X)

Plot the data

layout(matrix(1:2, ncol=1))

xlim <- range(X, na.rm=TRUE)

plotDensity(X, lwd=2, xlim=x1lim, main="The original distributions"”)
plotDensity(Xn, 1lwd=2, xlim=xlim, main="The normalized distributions”)

normalizeQuantileRank.matrix
Normalizes the empirical distribution of a set of samples to a common
target distribution

Description

Normalizes the empirical distribution of a set of samples to a common target distribution.

The average sample distribution is calculated either robustly or not by utilizing either weightedMedian()
or weighted.mean(). A weighted method is used if any of the weights are different from one.

Usage

S3 method for class 'matrix'
normalizeQuantileRank(X, ties=FALSE, robust=FALSE, weights=NULL,
typeOfWeights=c("channel”, "signal”), ...)

normalizeQuantileRank. matrix 55

Arguments
X a numerical NxK matrix with the K columns representing the channels and the
N rows representing the data points.
robust If TRUE, the (weighted) median function is used for calculating the average sam-
ple distribution, otherwise the (weighted) mean function is used.
ties Should ties in x be treated with care or not? For more details, see "limma:normalizeQuantiles".
weights If NULL, non-weighted normalization is done. If channel weights, this should be

a vector of length K specifying the weights for each channel. If signal weights,
it should be an NxK matrix specifying the weights for each signal.

typeOfWeights A character string specifying the type of weights given in argument weights.
Not used.

Value

Returns an object of the same shape as the input argument.

Missing values

Missing values are excluded when estimating the "common" (the baseline). Values that are NA
remain NA after normalization. No new NAs are introduced.

Weights

Currently only channel weights are support due to the way quantile normalization is done. If signal
weights are given, channel weights are calculated from these by taking the mean of the signal
weights in each channel.

Author(s)

Adopted from Gordon Smyth (http://www.statsci.org/) in 2002 & 2006. Original code by
Ben Bolstad at Statistics Department, University of California. Support for calculating the average
sample distribution using (weighted) mean or median was added by Henrik Bengtsson.

See Also

median, weightedMedian, mean() and weighted.mean. normalizeQuantileSpline().

Examples

Simulate three samples with on average 20% missing values
N <- 10000
X <= cbind(rnorm(N, mean=3, sd=1),
rnorm(N, mean=4, sd=2),
rgamma(N, shape=2, rate=1))
X[sample(3*N, size=0.20%3x*N)] <- NA

Normalize quantiles
Xn <- normalizeQuantile(X)

http://www.statsci.org/

56 normalizeQuantileSpline

Plot the data

layout(matrix(1:2, ncol=1))

xlim <- range(X, Xn, na.rm=TRUE)

plotDensity(X, lwd=2, xlim=x1lim, main="The three original distributions")
plotDensity(Xn, 1lwd=2, xlim=xlim, main="The three normalized distributions”)

normalizeQuantileSpline

Normalizes the empirical distribution of one or more samples to a tar-
get distribution

Description

Normalizes the empirical distribution of one or more samples to a target distribution. After normal-
ization, all samples have the same average empirical density distribution.

Usage

S3 method for class 'numeric'

normalizeQuantileSpline(x, w=NULL, xTarget, sortTarget=TRUE, robust=TRUE, ...)

S3 method for class 'matrix'

normalizeQuantileSpline(X, w=NULL, xTarget=NULL, sortTarget=TRUE, robust=TRUE, ...)
S3 method for class 'list'

normalizeQuantileSpline(X, w=NULL, xTarget=NULL, sortTarget=TRUE, robust=TRUE, ...)

Arguments
X, X A single (K = 1) numeric vector of length N, a numeric Nz K matrix, or
a list of length K with numeric vectors, where K represents the number of
samples and N the number of data points.
w An optional numeric vector of length IV of weights specific to each data point.
xTarget The target empirical distribution as a sorted numeric vector of length M. If
NULL and X is a list, then the target distribution is calculated as the average
empirical distribution of the samples.
sortTarget If TRUE, argument xTarget will be sorted, otherwise it is assumed to be already
sorted.
robust If TRUE, the normalization function is estimated robustly.
Arguments passed to (smooth.spline or robustSmoothSpline).
Value

Returns an object of the same type and dimensions as the input.

normalizeQuantileSpline 57

Missing values

Both argument X and xTarget may contain non-finite values. These values do not affect the esti-
mation of the normalization function. Missing values and other non-finite values in X, remain in the
output as is. No new missing values are introduced.

Author(s)

Henrik Bengtsson

References

[1] H. Bengtsson, R. Irizarry, B. Carvalho, and T. Speed, Estimation and assessment of raw copy
numbers at the single locus level, Bioinformatics, 2008.

See Also

The target distribution can be calculated as the average using averageQuantile().
Internally either robustSmoothSpline (robust=TRUE) or smooth.spline (robust=FALSE)is used.

An alternative normalization method that is also normalizing the empirical densities of samples
is normalizeQuantileRank(). Contrary to this method, that method requires that all samples are
based on the exact same set of data points and it is also more likely to over-correct in the tails of the
distributions.

Examples

Simulate three samples with on average 20% missing values
N <- 10000
X <= cbind(rnorm(N, mean=3, sd=1),
rnorm(N, mean=4, sd=2),
rgamma(N, shape=2, rate=1))
X[sample(3*N, size=0.20%3*N)] <- NA

Plot the data

layout(matrix(c(1,0,2:5), ncol=2, byrow=TRUE))

x1lim <- range(X, na.rm=TRUE)

plotDensity(X, 1lwd=2, xlim=xlim, main="The three original distributions")

Xn <- normalizeQuantile(X)
plotDensity(Xn, 1lwd=2, xlim=xlim, main="The three normalized distributions”)
plotXYCurve(X, Xn, xlim=x1lim, main="The three normalized distributions")

Xn2 <- normalizeQuantileSpline(X, xTarget=Xn[,1], spar=0.99)
plotDensity(Xn2, lwd=2, xlim=xlim, main="The three normalized distributions")
plotXYCurve(X, Xn2, xlim=x1lim, main="The three normalized distributions")

58 normalize TumorBoost

normalizeTumorBoost Normalizes allele B fractions for a tumor given a match normal

Description

TumorBoost [1] is a normalization method that normalizes the allele B fractions of a tumor sample
given the allele B fractions and genotypes of a matched normal. The method is a single-sample
(single-pair) method. It does not require total copy-number estimates. The normalization is done
such that the total copy number is unchanged afterwards.

Usage

S3 method for class 'numeric'
normalizeTumorBoost(betaT, betaN, muN=callNaiveGenotypes(betaN), preserveScale=FALSE,

flavor=c("v4", "v3", "v2", "v1"), ...)
Arguments
betaT, betaN Two numeric vectors each of length J with tumor and normal allele B fractions,
respectively.
muN An optional vector of length J containing normal genotypes calls in (0,1/2,1,NA)

for (AA,AB,BB).

preserveScale If TRUE, SNPs that are heterozygous in the matched normal are corrected for
signal compression using an estimate of signal compression based on the amount
of correction performed by TumorBoost on SNPs that are homozygous in the
matched normal.

flavor A character string specifying the type of correction applied.
Not used.

Details

Allele B fractions are defined as the ratio between the allele B signal and the sum of both (all) allele
signals at the same locus. Allele B fractions are typically within [0,1], but may have a slightly wider
support due to for instance negative noise. This is typically also the case for the returned normalized
allele B fractions.

Value
Returns a numeric vector of length J containing the normalized allele B fractions for the tumor.
Attribute modelFit is a 1ist containing model fit parameters.

Flavors

This method provides a few different "flavors" for normalizing the data. The following values of
argument flavor are accepted:

* v4: (default) The TumorBoost method, i.e. Eqns. (8)-(9) in [1].

normalize TumorBoost 59

* v3: Eqn (9) in [1] is applied to both heterozygous and homozygous SNPs, which effectively
is v4 where the normalized allele B fractions for homozygous SNPs becomes 0 and 1.

e v2: ...

* v1: TumorBoost where correction factor is forced to one, i.e. 7; = 1. As explained in [1],
this is a suboptimal normalization method. See also the discussion in the paragraph following
Eqn (12) in [1].

Preserving scale

As of aroma.light v1.33.3 (March 30, 2014), argument preserveScale no longer has a default
value and has to be specified explicitly. This is done in order to change the default to FALSE in a
future version, while minimizing the risk for surprises.

Allele B fractions are more or less compressed toward a half, e.g. the signals for homozygous SNPs
are slightly away from zero and one. The TumorBoost method decreases the correlation in allele B
fractions between the tumor and the normal conditioned on the genotype. What it does not control
for is the mean level of the allele B fraction conditioned on the genotype.

By design, most flavors of the method will correct the homozygous SNPs such that their mean levels
get close to the expected zero and one levels. However, the heterozygous SNPs will typically keep
the same mean levels as before. One possibility is to adjust the signals such as the mean levels
of the heterozygous SNPs relative to that of the homozygous SNPs is the same after as before the
normalization.

If argument preserveScale=TRUE, then SNPs that are heterozygous (in the matched normal) are
corrected for signal compression using an estimate of signal compression based on the amount of
correction performed by TumorBoost on SNPs that are homozygous (in the matched normal).

The option of preserving the scale is not discussed in the TumorBoost paper [1], which presents the
preserveScale=FALSE version.

Author(s)

Henrik Bengtsson, Pierre Neuvial

References

[1] H. Bengtsson, P. Neuvial and T.P. Speed, TumorBoost: Normalization of allele-specific tumor
copy numbers from a single pair of tumor-normal genotyping microarrays, BMC Bioinformatics,
2010, 11:245. [PMID 20462408]

Examples

library(R.utils)

Load data

pathname <- system.file("data-ex/TumorBoost, fracB,exampleData.Rbin", package="aroma.light")
data <- loadObject(pathname)

attachlLocally(data)

pos <- position/1e6

muN <- genotypeN

60 pairedAlleleSpecificCopyNumbers

layout(matrix(1:4, ncol=1))
par(mar=c(2.5,4,0.5,1)+0.1)

ylim <- c(-0.05, 1.05)

col <- rep("#999999", length(muN))
col[muN == 1/2] <- "#000000"

Allele B fractions for the normal sample
plot(pos, betaN, col=col, ylim=ylim)

Allele B fractions for the tumor sample
plot(pos, betaT, col=col, ylim=ylim)

TumorBoost w/ naive genotype calls
betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE)
plot(pos, betaTN, col=col, ylim=ylim)

TumorBoost w/ external multi-sample genotype calls
betaTNx <- normalizeTumorBoost(betaT=betaT, betaN=betaN, muN=muN, preserveScale=FALSE)
plot(pos, betaTNx, col=col, ylim=ylim)

pairedAlleleSpecificCopyNumbers
Calculating tumor-normal paired allele-specific copy number strati-
fied on genotypes

Description

Calculating tumor-normal paired allele-specific copy number stratified on genotypes. The method is
a single-sample (single-pair) method. It requires paired tumor-normal parent-specific copy number
signals.

Usage

S3 method for class 'numeric'
pairedAlleleSpecificCopyNumbers(thetaT, betaT, thetaN, betaN,
muN=callNaiveGenotypes(betaN), ...)

Arguments

thetaT, betaT Theta and allele-B fraction signals for the tumor.

thetaN, betaN Total and allele-B fraction signals for the matched normal.

muN An optional vector of length J containing normal genotypes calls in (0,1/2,1,NA)
for (AA,AB,BB).
Not used.
Value

Returns a data. frame with elements CT, betaT and muN.

plotDensity 61

Author(s)

Pierre Neuvial, Henrik Bengtsson

See Also

This definition of calculating tumor-normal paired ASCN is related to how the normalizeTumorBoost()
method calculates normalized tumor BAFs.

plotDensity Plots density distributions for a set of vectors

Description

Plots density distributions for a set of vectors.

Usage

S3 method for class 'data.frame'

plotDensity(X,

., xlab=NULL)

S3 method for class 'matrix'

plotDensity(X,

., xlab=NULL)

S3 method for class 'numeric'

plotDensity(X,

., xlab=NULL)

S3 method for class 'list'
plotDensity(X, W=NULL, x1im=NULL, ylim=NULL, xlab=NULL,
ylab="density (integrates to one)", col=1:length(X), 1ty=NULL, 1wd=NULL, ...,

add=FALSE)

Arguments

X

W

xlim, ylim
xlab, ylab
col

1ty

lwd

add

Author(s)

Henrik Bengtsson

A single of 1list of numeric vectors or density objects, a numeric matrix,
or a numeric data.frame.

(optional) weights of similar data types and dimensions as X.
character vector of length 2. The x and y limits.
character string for labels on x and y axis.

The color(s) of the curves.

The types of curves.

The width of curves.

Additional arguments passed to density, plot(), and lines.

If TRUE, the curves are plotted in the current plot, otherwise a new is created.

62 plotMvsA

See Also

Internally, density is used to estimate the empirical density.

plotMvsA Plot log-ratios vs log-intensities

Description

Plot log-ratios vs log-intensities.

Usage

S3 method for class 'matrix'
plotMvsA(X, Alab="A",6 Mlab="M", Alim=c(@, 16), Mlim=c(-1, 1) x diff(Alim) * aspectRatio,

aspectRatio=1, pch=".", ..., add=FALSE)
Arguments
X Nx2 matrix with two channels and N observations.
Alab, Mlab Labels on the x and y axes.
Alim, Mlim Plot range on the A and M axes.
aspectRatio Aspect ratio between MLim and Alim.
pch Plot symbol used.

Additional arguments accepted by points.

add If TRUE, data points are plotted in the current plot, otherwise a new plot is cre-
ated.

Details

Red channel is assumed to be in column one and green in column two. Log-ratio are calculated
taking channel one over channel two.

Value

Returns nothing.

Author(s)

Henrik Bengtsson

plotMvsAPairs 63

plotMvsAPairs Plot log-ratios/log-intensities for all unique pairs of data vectors

Description

Plot log-ratios/log-intensities for all unique pairs of data vectors.

Usage

S3 method for class 'matrix'
plotMvsAPairs(X, Alab="A", Mlab="M", Alim=c(@, 16), Mlim=c(-1, 1) * diff(Alim), pch=".",

., add=FALSE)
Arguments
X NxK matrix where N is the number of observations and K is the number of
channels.
Alab, Mlab Labels on the x and y axes.
Alim, Mlim Plot range on the A and M axes.
pch Plot symbol used.
Additional arguments accepted by points.
add If TRUE, data points are plotted in the current plot, otherwise a new plot is cre-
ated.
Details

Log-ratios and log-intensities are calculated for each neighboring pair of channels (columns) and
plotted. Thus, in total there will be K-1 data set plotted.

The colors used for the plotted pairs are 1, 2, and so on. To change the colors, use a different color
palette.

Value

Returns nothing.

Author(s)

Henrik Bengtsson

64 plotMvsMPairs

plotMvsMPairs Plot log-ratios vs log-ratios for all pairs of columns

Description

Plot log-ratios vs log-ratios for all pairs of columns.

Usage

S3 method for class 'matrix'
plotMvsMPairs(X, xlab="M", ylab="M" 6 xlim=c(-1, 1) * 6, ylim=xlim, pch="."

© oy e e ey

add=FALSE)
Arguments
X Nx2K matrix where N is the number of observations and 2K is an even number
of channels.
xlab, ylab Labels on the x and y axes.
x1lim, ylim Plot range on the x and y axes.
pch Plot symbol used.
Additional arguments accepted by points.
add If TRUE, data points are plotted in the current plot, otherwise a new plot is cre-
ated.
Details

Log-ratio are calculated by over paired columns, e.g. column 1 and 2, column 3 and 4, and so on.

Value

Returns nothing.

Author(s)

Henrik Bengtsson

plotXYCurve 65

plotXYCurve Plot the relationship between two variables as a smooth curve

Description

Plot the relationship between two variables as a smooth curve.

Usage

S3 method for class 'numeric'

plotXYCurve(x, y, col=1L, lwd=2, dlwd=1, dcol=NA, x1im=NULL, ylim=xlim, xlab=NULL,
ylab=NULL, curveFit=smooth.spline, ..., add=FALSE)

S3 method for class 'matrix’

plotXYCurve(X, Y, col=seq_len(nrow(X)), lwd=2, dlwd=1, dcol=NA, x1im=NULL, ylim=x1lim,

xlab=NULL, ylab=NULL, curveFit=smooth.spline, ..., add=FALSE)
Arguments
X, ¥, X, Y Two numeric vectors of length N for one curve (K=1), or two numeric NxK
matrix:es for K curves.
col The color of each curve. Either a scalar specifying the same value of all curves,
or a vector of K curve-specific values.
lwd The line width of each curve. Either a scalar specifying the same value of all
curves, or a vector of K curve-specific values.
dlwd The width of each density curve.
dcol The fill color of the interior of each density curve.
x1lim, ylim The x and y plotting limits.
xlab, ylab The x and y labels.
curveFit The function used to fit each curve. The two first arguments of the function
must take x and y, and the function must return a 1ist with fitted elements x
and y.
Additional arguments passed to lines used to draw each curve.
add If TRUE, the graph is added to the current plot, otherwise a new plot is created.
Value

Returns nothing.

Missing values

Data points (x,y) with non-finite values are excluded.

Author(s)

Henrik Bengtsson

66 robustSmoothSpline

print.SmoothSplinelLikelihood
Prints an SmoothSplineLikelihood object

Description

Prints an SmoothSplineLikelihood object. A SmoothSplineLikelihood object is returned by 1ikelihood. smooth.spline().

Usage
S3 method for class 'SmoothSplinelLikelihood'
print(x, digits=getOption("digits"), ...)
Arguments
X Object to be printed.
digits Minimal number of significant digits to print.
Not used.
Value

Returns nothing.

Author(s)

Henrik Bengtsson

robustSmoothSpline Robust fit of a Smoothing Spline

Description

Fits a smoothing spline robustly using the L; norm. Currently, the algorithm is an iterative reweighted
smooth spline algorithm which calls smooth.spline(x,y,w, .. .) ateach iteration with the weights
w equal to the inverse of the absolute value of the residuals for the last iteration step.

Usage

Default S3 method:

robustSmoothSpline(x, y=NULL, w=NULL, ..., minIter=3, maxIter=max(minIter, 50),
method=c("L1", "symmetric"), sdCriteria=2e-04, reps=le-15, tol=1e-06 * IQR(x),
plotCurves=FALSE)

robustSmoothSpline

Arguments

X

minIter

maxIter

method

sdCriteria

reps

tol

plotCurves

Value

67

a vector giving the values of the predictor variable, or a 1ist or a two-column
matrix specifying x and y. If x is of class smooth.spline then x$x is used as
the x values and x$yin are used as the y values.

responses. If y is missing, the responses are assumed to be specified by x.

a vector of weights the same length as x giving the weights to use for each
element of x. Default value is equal weight to all values.

Other arguments passed to smooth.spline.

the minimum number of iterations used to fit the smoothing spline robustly.
Default value is 3.

the maximum number of iterations used to fit the smoothing spline robustly.
Default value is 25.

the method used to compute robustness weights at each iteration. Default value
is "L1", which uses the inverse of the absolute value of the residuals. Using
"symmetric” will use Tukey’s biweight with cut-off equal to six times the MAD
of the residuals, equivalent to lowess.

Convergence criteria, which the difference between the standard deviation of the
residuals between two consecutive iteration steps. Default value is 2e-4.

Small positive number added to residuals to avoid division by zero when calcu-
lating new weights for next iteration.

Passed to smooth.spline (R >=2.14.0).
If TRUE, the fitted splines are added to the current plot, otherwise not.

Returns an object of class smooth.spline.

Author(s)

Henrik Bengtsson

See Also

This implementation of this function was adopted from smooth. spline of the stats package. Be-
cause of this, this function is also licensed under GPL v2.

Examples

data(cars)
attach(cars)

plot(speed, dist,

main = "data(cars) & robust smoothing splines"”)

Fit a smoothing spline using L_2 norm
cars.spl <- smooth.spline(speed, dist)
lines(cars.spl, col = "blue")

68 sampleCorrelations

Fit a smoothing spline using L_1 norm
cars.rspl <- robustSmoothSpline(speed, dist)
lines(cars.rspl, col = "red"”)

Fit a smoothing spline using L_2 norm with 10 degrees of freedom
lines(smooth.spline(speed, dist, df=10), 1lty=2, col = "blue")

Fit a smoothing spline using L_1 norm with 10 degrees of freedom
lines(robustSmoothSpline(speed, dist, df=10), 1ty=2, col = "red")

legend(5,120, c(
paste(”smooth.spline [C.V.] => df =",round(cars.spl$df,1)),
paste("robustSmoothSpline [C.V.] => df =",round(cars.rspl$df,1)),
"standard with s(* , df = 10)", "robust with s(* , df = 10)"
), col = c("blue”,"red","blue”,"red"), 1ty = c¢(1,1,2,2), bg="bisque')

sampleCorrelations Calculates the correlation for random pairs of observations

Description

Calculates the correlation for random pairs of observations.

Usage
S3 method for class 'matrix’
sampleCorrelations(X, MARGIN=1, pairs=NULL, npairs=max(5000, nrow(X)), ...)
Arguments
X An NxK matrix where N >=2 and K >= 2.
MARGIN The dimension (1 or 2) in which the observations are. If MARGIN==1 (==2), each
row (column) is an observation.
pairs If a Lx2 matrix, the L index pairs for which the correlations are calculated. If
NULL, pairs of observations are sampled.
npairs The number of correlations to calculate.
Not used.
Value

Returns a double vector of length npairs.

Author(s)

Henrik Bengtsson

sampleTuples 69

References
[1] A. Ploner, L. Miller, P. Hall, J. Bergh & Y. Pawitan. Correlation test to assess low-level pro-
cessing of high-density oligonucleotide microarray data. BMC Bioinformatics, 2005, vol 6.

See Also

sample().

Examples

Simulate 20000 genes with 10 observations each
X <- matrix(rnorm(n=20000), ncol=10)

Calculate the correlation for 5000 random gene pairs
cor <- sampleCorrelations(X, npairs=5000)
print(summary(cor))

sampleTuples Sample tuples of elements from a set

Description

Sample tuples of elements from a set. The elements within a sampled tuple are unique, i.e. no two
elements are the same.

Usage
Default S3 method:
sampleTuples(x, size, length, ...)
Arguments
X A set of elements to sample from.
size The number of tuples to sample.
length The length of each tuple.

Additional arguments passed to sample().

Value

Returns a NxK matrix where N = size and K = length.

Author(s)

Henrik Bengtsson

70 wpca

See Also

sample().

Examples

pairs <- sampleTuples(1:10, size=5, length=2)
print(pairs)

triples <- sampleTuples(1:10, size=5, length=3)
print(triples)

Allow tuples with repeated elements
quadruples <- sampleTuples(1:3, size=5, length=4, replace=TRUE)
print(quadruples)

wpca Light-weight Weighted Principal Component Analysis

Description

Calculates the (weighted) principal components of a matrix, that is, finds a new coordinate system
(not unique) for representing the given multivariate data such that i) all dimensions are orthogonal
to each other, and ii) all dimensions have maximal variances.

Usage
S3 method for class 'matrix'

wpca(x, w=NULL, center=TRUE, scale=FALSE, method=c("dgesdd"”, "dgesvd"),
swapDirections=FALSE, ...)

Arguments

An NxK matrix.

w An N vector of weights for each row (observation) in the data matrix. If NULL,
all observations get the same weight, that is, standard PCA is used.

center If TRUE, the (weighted) sample mean column vector is subtracted from each
column in mat, first. If data is not centered, the effect will be that a linear
subspace that goes through the origin is fitted.

scale If TRUE, each column in mat is divided by its (weighted) root-mean-square of
the centered column, first.
method If "dgesdd"” LAPACK’s divide-and-conquer based SVD routine is used (faster

[1]). If "dgesvd", LAPACK’s QR-decomposition-based routine is used.

swapDirections If TRUE, the signs of eigenvectors that have more negative than positive compo-
nents are inverted. The signs of corresponding principal components are also
inverted. This is only of interest when for instance visualizing or comparing
with other PCA estimates from other methods, because the PCA (SVD) decom-
position of a matrix is not unique.

Not used.

wpca 71

Value

Returns a 1ist with elements:

pc An NxK matrix where the column vectors are the principal components (a.k.a.
loading vectors, spectral loadings or factors etc).

d An K vector containing the eigenvalues of the principal components.

vt An KxK matrix where the column vectors are the eigenvector of the principal
components.

xMean The center coordinate.

It holds that x == t (t (fit$pc %*% fit$vt) + fit$xMean).

Method

A singular value decomposition (SVD) is carried out. Let X=mat, then the SVD of the matrix is
X =UDV’, where U and V are orthogonal, and D is a diagonal matrix with singular values. The
principal returned by this method are U D.

Internally La.svd() (or svd()) of the base package is used. For a popular and well written intro-
duction to SVD see for instance [2].

Author(s)

Henrik Bengtsson

References

[1]J. Demmel and J. Dongarra, DOE2000 Progress Report, 2004. https://people.eecs.berkeley.
edu/~demmel/DOE2000/Reportd100.html

[2] Todd Will, Introduction to the Singular Value Decomposition, UW-La Crosse, 2004. http:
//websites.uwlax.edu/twill/svd/

See Also

For a iterative re-weighted PCA method, see iwpca(). For Singular Value Decomposition, see svd().
For other implementations of Principal Component Analysis functions see (if they are installed):
prcomp in package stats and pca() in package pcurve.

Examples

for (zzz in @) {

This example requires plot3d() in R.basic [http://www.braju.com/R/]
if (!require(pkgName <- "R.basic”, character.only=TRUE)) break

Simulate data from the model y <- a + bx + eps(bx)

https://people.eecs.berkeley.edu/~demmel/DOE2000/Report0100.html
https://people.eecs.berkeley.edu/~demmel/DOE2000/Report0100.html
http://websites.uwlax.edu/twill/svd/
http://websites.uwlax.edu/twill/svd/

72

wpca

x <- rexp(1000)

a <- ¢(2,15,3)

b <- ¢(2,3,15)

bx <- outer(b,x)

eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1xx))
y <- a + bx + eps

y <= t(y)

Add some outliers by permuting the dimensions for 1/3 of the observations
idx <- sample(1:nrow(y), size=1/3*nrow(y))
ylidx,] <- y[idx,c(2,3,1)]

Down-weight the outliers W times to demonstrate how weights are used
W <-10

Plot the data with fitted lines at four different view points
N <-4

theta <- seq(@,180,length.out=N)

phi <- rep(30, length.out=N)

Use a different color for each set of weights
col <- topo.colors(W)

opar <- par(mar=c(1,1,1,1)+0.1)
layout(matrix(1:N, nrow=2, byrow=TRUE))
for (kk in seg_along(theta)) {

Plot the data

plot3d(y, theta=thetalkk], phi=philkk])

First, same weights for all observations
w <- rep(1, length=nrow(y))

for (ww in 1:W) {
Fit a line using IWPCA through data
fit <- wpca(y, w=w, swapDirections=TRUE)

Get the first principal component

ymid <- fit$xMean

do <- apply(y, MARGIN=2, FUN=min) - ymid

dl <- apply(y, MARGIN=2, FUN=max) - ymid

b <- fit$vt[1,]

y0 <- -b * max(abs(d@))

y1 <= b x max(abs(d1))

yline <- matrix(c(yQ,y1), nrow=length(b), ncol=2)
yline <- yline + ymid

points3d(t(ymid), col=col)
lines3d(t(yline), col=col)

Down-weight outliers only, because here we know which they are.
wlidx] <- wlidx]/2

wpca
Highlight the last one
lines3d(t(yline), col="red", lwd=3)
3
par(opar)

} # for (zzz in @)
rm(zzz)

if (dev.cur() > 1) dev.off()

Data
x <- ¢(1,2,3,4,5)
y <= ¢(2,4,3,3,6)

opar <- par(bty="L")
opalette <- palette(c(”blue”, "red”, "black"))
xlim <- ylim <- c(0,6)

Plot the data and the center mass
plot(x,y, pch=16, cex=1.5, xlim=x1lim, ylim=ylim)
points(mean(x), mean(y), cex=2, lwd=2, col="blue")

Linear regression y ~ x
fit <= Im(y ~ x)
abline(fit, 1lty=1, col=1)

Linear regression y ~ x through without intercept
fit <= Im(y ~ x - 1)
abline(fit, 1ty=2, col=1)

Linear regression x ~ vy

fit <= Im(x ~y)

c <- coefficients(fit)

b <- 1/c[2]

a <= -bxc[1]

abline(a=a, b=b, 1lty=1, col=2)

Linear regression x ~ y through without intercept
fit <- Im(x ~y - 1)

b <- 1/coefficients(fit)

abline(a=0, b=b, lty=2, col=2)

Orthogonal linear "regression”
fit <- wpca(cbind(x,y))

73

74

wpca

b <- fit$vt[1,2]/Ffit$vt[1,1]
a <- fit$xMean[2]-bxfit$xMean[1]
abline(a=a, b=b, 1lwd=2, col=3)

Orthogonal linear "regression” without intercept
fit <- wpca(cbind(x,y), center=FALSE)

b <- fit$vt[1,2]/fit$vt[1,1]

a <- fit$xMean[2]-b*fit$xMean[1]

abline(a=a, b=b, 1lty=2, 1lwd=2, col=3)

legend(x1im[1],ylim[2], legend=c("1m(y~x)", "lIm(y~x-1)", "lm(x~y)",
"Im(x~y-1)", "pca”, "pca w/o intercept”), lty=rep(1:2,3),
lwd=rep(c(1,1,2),each=2), col=rep(1:3,each=2))

palette(opalette)
par(opar)

Index

x algebra
distanceBetweenlLines, 18
fitIWPCA, 22
iwpca, 29
medianPolish, 34
wpca, 70

+ documentation
1. Calibration and Normalization, 5
Non-documented objects, 35

* internal
findPeaksAndValleys, 20
likelihood.smooth.spline, 31
Non-documented objects, 35
print.SmoothSplinelLikelihood, 66

+x methods
averageQuantile, 8
backtransformAffine, 9
backtransformPrincipalCurve, 10
calibrateMultiscan, 14
callNaiveGenotypes, 16
findPeaksAndValleys, 20
fitIWPCA, 22
fitNaiveGenotypes, 24
fitPrincipalCurve, 25
fitXYCurve, 27
iwpca, 29
likelihood. smooth.spline, 31
medianPolish, 34
normalizeAffine, 36
normalizeAverage, 40
normalizeCurveFit, 41
normalizeDifferencesToAverage, 45
normalizeQuantileRank, 52
normalizeQuantileRank.matrix, 54
normalizeQuantileSpline, 56
normalizeTumorBoost, 58
pairedAlleleSpecificCopyNumbers,

60

plotDensity, 61

75

plotMvsA, 62

plotMvsAPairs, 63
plotMvsMPairs, 64

plotXYCurve, 65
print.SmoothSplineLikelihood, 66
sampleCorrelations, 68

wpca, 70

* multivariate

averageQuantile, 8
normalizeQuantileRank, 52
normalizeQuantileRank.matrix, 54
normalizeQuantileSpline, 56
plotXYCurve, 65

* nonparametric

averageQuantile, 8
normalizeFragmentlLength, 46
normalizeQuantileRank, 52
normalizeQuantileRank.matrix, 54
normalizeQuantileSpline, 56
plotXYCurve, 65

+ package

aroma.light-package, 3

* robust

averageQuantile, 8
normalizeFragmentlLength, 46
normalizeQuantileRank, 52
normalizeQuantileRank.matrix, 54
normalizeQuantileSpline, 56
plotXYCurve, 65
robustSmoothSpline, 66

* smooth

likelihood. smooth.spline, 31
robustSmoothSpline, 66

* utilities

1.

sampleCorrelations, 68
sampleTuples, 69
Calibration and Normalization, 5

aroma.light (aroma.light-package), 3
aroma.light-package, 3

76

averageQuantile, 8, 53, 57

backtransformAffine, 9
backtransformPrincipalCurve, 10, 25
backtransformXYCurve (fitXYCurve), 27

calibrateMultiscan, 3, 14, 24, 37, 38
callNaiveGenotypes, 16, 21, 25
character, 14,22, 24, 27, 36,41, 55, 58, 61

data.frame, 21, 60, 61
density, 21,61, 62
distanceBetweenlLines, 18, 24
double, 23, 24, 28, 41, 68

FALSE, 23, 34, 59
findPeaksAndValleys, 20, 24, 25
fitIWPCA, 14,22, 36
fitNaiveGenotypes, 16, 17,24
fitPrincipalCurve, 11,25
fitXYCurve, 27
function, 14, 29, 40, 4547, 65

Inf, 17,24
integer, 24, 40, 45, 46
iwpca, 14, 23, 24, 29, 36, 71

likelihood (Non-documented objects), 35

likelihood. smooth.spline, 31, 66

lines, 61, 65

lines.XYCurveFit (Non-documented
objects), 35

list, 8, 9, 18, 23-25, 28-30, 35, 40, 4547,
53,56, 58,61, 65,67,71

loess, 15,28, 42

logical, 16, 24, 25,47

lowess, 47, 67

matrix, 8, 9, 11, 14, 15,22, 23, 25,27, 29, 34,
36, 37,4042, 46, 55, 56, 61-65,
67-71

mean, 55

median, 55

medianPolish, 34

medpolish, 34, 35

NA, 15-17, 25,28, 34, 37,42, 53, 55, 58, 60
NaN, 42

Non-documented objects, 35
normalizeAffine, 3, 16, 24, 36, 43

INDEX

normalizeAverage, 40
normalizeCurveFit, 3, 41
normalizeDifferencesToAverage, 45
normalizeFragmentLength, 46
normalizeloess (normalizeCurveFit), 41
normalizelowess (normalizeCurveFit), 41
normalizeQuantile
(normalizeQuantileRank), 52
normalizeQuantileRank, 3, 8, 52, 57
normalizeQuantileRank.matrix, 54
normalizeQuantileSpline, 3, 8, 53, 55, 56
normalizeRobustSpline
(normalizeCurveFit), 41
normalizeSpline (normalizeCurveFit), 41
normalizeTumorBoost, 58, 6/
NULL, 74, 23, 24, 27, 29, 32, 36, 40, 41, 4547,
53,55, 56, 68, 70
numeric, 8, 15, 16, 21, 22, 24, 28, 34, 37, 40,
42,45-47,53, 56, 58, 61, 65

pairedAlleleSpecificCopyNumbers, 60

plot, 61

plotDensity, 61

plotMvsA, 62

plotMvsAPairs, 63

plotMvsMPairs, 64

plotXYCurve, 65

points, 62—64

prcomp, 71

predict.lowess (Non-documented
objects), 35

predict.smooth.spline, 32

principal_curve, 25

print,SmoothSplineLikelihood-method
(print.SmoothSplineLikelihood),
66

print.SmoothSplinelLikelihood, 66

projectUontoV (Non-documented objects),
35

quantile, 8

robustSmoothSpline, 33, 56, 57, 66
rowAverages (Non-documented objects), 35

sample, 69, 70

sampleCorrelations, 68

sampleTuples, 69

scalarProduct (Non-documented objects),
35

INDEX

smooth.spline, 11, 33, 56, 57, 67

SmoothSplineLikelihood.print
(print.SmoothSplinelLikelihood),
66

svd, 71

tr (Non-documented objects), 35
TRUE, 9, 14, 15, 21, 23, 34-36, 55, 56, 58,
61-65, 67,70

vector, 8, 9, 14-16, 18, 21, 23, 24, 27-29, 36,
37,41, 42,46, 47, 53, 55, 56, 58, 60,
61, 65,67, 68,70, 71
Verbose, 16, 24, 25

weighted.mean, 55
weightedMedian, 55
wpca, 29, 30, 70

77

	aroma.light-package
	1. Calibration and Normalization
	averageQuantile
	backtransformAffine
	backtransformPrincipalCurve
	calibrateMultiscan
	callNaiveGenotypes
	distanceBetweenLines
	findPeaksAndValleys
	fitIWPCA
	fitNaiveGenotypes
	fitPrincipalCurve
	fitXYCurve
	iwpca
	likelihood.smooth.spline
	medianPolish
	Non-documented objects
	normalizeAffine
	normalizeAverage
	normalizeCurveFit
	normalizeDifferencesToAverage
	normalizeFragmentLength
	normalizeQuantileRank
	normalizeQuantileRank.matrix
	normalizeQuantileSpline
	normalizeTumorBoost
	pairedAlleleSpecificCopyNumbers
	plotDensity
	plotMvsA
	plotMvsAPairs
	plotMvsMPairs
	plotXYCurve
	print.SmoothSplineLikelihood
	robustSmoothSpline
	sampleCorrelations
	sampleTuples
	wpca
	Index

