Package ‘motifcounter’

November 6, 2025

Type Package

Title R package for analysing TFBSs in DNA sequences

Version 1.34.0

Date 2017

Author Wolfgang Kopp [aut, cre]

Suggests knitr, rmarkdown, testthat, MotifDb, seqLogo, prettydoc
Imports Biostrings, methods

Depends R(>=3.0)

Maintainer Wolfgang Kopp <wolfgang.kopp@mdc-berlin.de>

Description 'motifcounter' provides motif matching, motif counting
and motif enrichment functionality based on position
frequency matrices.
The main features of the packages include the utilization
of higher-order background models and accounting
for self-overlapping motif matches when determining motif enrichment.
The background model allows to capture dinucleotide
(or higher-order nucleotide) composition adequately
which may reduced model biases and misleading results compared
to using simple GC background models.
When conducting a motif enrichment analysis
based on the motif match count, the package
relies on a compound Poisson distribution or alternatively
a combinatorial model. These distribution account for self-overlapping
motif structures as exemplified by repeat-like or palindromic motifs,
and allow to determine the p-value and fold-enrichment for
a set of observed motif matches.

License GPL-2

biocViews Transcription,MotifAnnotation,SequenceMatching,Software
RoxygenNote 6.0.1

VignetteBuilder knitr

NeedsCompilation yes

Collate 'background_wrapper.R' 'comppoiss_wrapper.R'
'combinatorial_wrapper.R' 'score_wrapper.R' 'count_wrapper.R'
‘enrichmentTest.R' 'forground_wrapper.R' 'markovmodel.R’
'motifcounter-package.R' 'observed_wrapper.R' 'option.R’
‘overlap.R' 'simulate_wrapper.R' 'wrapper.R'

2 Contents

git_url https://git.bioconductor.org/packages/motifcounter
git_branch RELEASE_3_22

git_last_commit 64fa306

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2025-11-05

Contents
motifcounter-package L. 3
Background-class 4
clumpSizeDist e 5
combinatorialDist L 6
compoundPoissonDist L. 7
computeClumpStartProb 9
generateDNAString 10
generateDNAStringSet 11
getAlpha L L e e e 11
getBeta e 12
getBeta3po L 12
getBetaSp oL L e e e 13
getCOUNtS e e 13
getGamma e e e e e 14
getOrder e 14
getSinglestranded L 15
getStation e 15
getTrans L e 16
hitStrando 16
lenSequences e e 17
markovModel 18
motifAndBackgroundValido 19
motifcounterOptions e e 20
motifEnrichment o 20
motifHitProfile 22
motifHits e 23
motifValid e 24
normalizeMotif 24
numMotifHitso 25
Overlap-class o e 26
probOverlapHit e 26
readBackground L. 27
revcompMotifo 28
scoreDist e e 28
scoreDistBf L 29
scoreDistEmpirical 30
scoreHistogram e 31
scoreHistogramSingleSeq 32
scoreProfile 33
SCOTESEQUENCE . . « . v v v v v e 34

scoreStrand L L L L e e e e 35

motifcounter-package 3

Index

scoreThreshold e 36
siglevel o 37
simulateClumpSizeDist 37
simulateNumHitsDist 38

40

motifcounter-package TFBSs analysis in DNA sequences

Description

The package provides functions for determining the positions of motif hits as well as motif hit en-
richment for a given position frequency matrix (PFM) in a DNA sequence of interest. The following
examples guides you through the main functions of the ‘motifcounter® package.

Details

For an analysis with ‘motifcounter®, the user is required to provide 1) a PFM, 2) a DNA sequence
which is used to estimate a background model (see 1ink{readBackground}), 3) a DNA sequence
of interest that shall be scanned for motif hits (can be the same as the one used for point 2), and
4) (optionally) a desired false positive probability of motif hits in random DNA sequences (see

motifcounterOptions).
Package: motifcounter
Type: Package
Version: 1.0
Date: 2016-11-04
License: GPL-2

Author(s)
Wolfgang Kopp

Maintainer: Wolfgang Kopp <kopp @molgen.mpg.de>

Examples

Load sequences
file = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(file)

Estimate an order-1 background model
order =1
bg = readBackground(seqs, order)

Load motif
motiffile = system.file("extdata”, "x31.tab"”, package = "motifcounter”)
motif = t(as.matrix(read.table(motiffile)))

Normalize the motif
Normalization is sometimes necessary to prevent zeros in
the motif

4 Background-class

motif = normalizeMotif(motif’)

Use subset of the sequences
seqs = seqs[1:10]

Optionally, set the false positive probability
#alpha=0.001 # is also the default
#motifcounterOptions(alpha)

Investigate the per-position and per-strand scores in a given sequence
scores = scoreSequence(seqs[[1]], motif, bg)

Investigate the per-position and per-strand motif hits in a given sequence
hits = motifHits(seqs[[1]], motif, bg)

Determine the average score profile across a set of sequences
scores = scoreProfile(seqgs, motif, bg)

Determine the average motif hit profile across a set of sequences
hits = motifHitProfile(segs, motif, bg)

Determine the empirical score distribution
scoreHistogram(seqs, motif, bg)

Determine the theoretical score distribution in random sequences
scoreDist(motif, bg)

Determine the motif hit enrichment in a set of DNA sequences
1. Use the compound Poisson approximation
and scan only a single strand for motif hits
result = motifEnrichment(seqgs, motif, bg,
singlestranded = TRUE, method = "compound")

Determine the motif hit enrichment in a set of DNA sequences
2. Use the compound Poisson approximation
and scan both strands for motif hits
result = motifEnrichment(seqs, motif, bg,
singlestranded = FALSE, method = "compound")

Determine the motif hit enrichment in a set of DNA sequences

3. Use the combinatorial model

and scan both strands for motif hits

result = motifEnrichment(seqs, motif, bg, singlestranded = FALSE,
method = "combinatorial)

Background-class Background class definition

Description

Objects of this class serve as a container that holds parameters for the Background model.

clumpSizeDist 5

Details

A Background model is constructed via readBackground.

Slots

station Stationary probabilities
trans Transition probabilities
counts k-mer counts

order Background model order

clumpSizeDist Clump size distribution

Description

This function approximates the distribution of the clump sizes.

Usage
clumpSizeDist(maxclump, overlap, method = "kopp")
Arguments
maxclump Maximal clump size
overlap An Overlap object.
method String that defines which method shall be invoked: ’pape’ or "kopp’ (see de-
scription). Default: method = "kopp’.
Details

The clump size distribution can be determined in two alternative ways:

1. A re-implemented version of the algorithm that was described in Pape et al. Compound pois-
son approximation of the number of occurrences of a position frequency matrix (PFM) on both
strands. 2008 can be invoked using method="pape’.

2. An improved approximation of the clump size distribution uses more appropriate statistical
assumptions concerning overlapping motif hits and that can be used with order-d background
models as well. The improved version is used by default with method="kopp’.

Value

List containing

dist Distribution of the clump size

See Also

probOverlapHit

6 combinatorialDist

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load motif
motiffile = system.file("extdata”, "x31.tab", package = "motifcounter")
motif = t(as.matrix(read.table(motiffile)))

Load background model
bg = readBackground(segs, 1)

Use 100 individual sequences of length 150 bp each
seqlen = rep(150, 100)

Compute overlapping probabilities
for scanning the forward DNA strand only
op = motifcounter:::probOverlapHit(motif, bg, singlestranded = FALSE)

Computes the compound Poisson distribution
dist = motifcounter:::clumpSizeDist(20, op)

combinatorialDist Combinatrial model approximation of the number of motif hits

Description

This function approxmiates the distribution of the number of motif hits. To this end, it sums over all
combinations of obtaining k hits in a random sequence of a given length using an efficient dynamic
programming algorithm.

Usage

combinatorialDist(seqglen, overlap)

Arguments
seqlen Integer-valued vector that defines the lengths of the individual sequences. For a
given DNAStringSet, this information can be retrieved using numMotifHits.
overlap An Overlap object.
Details

This function is an alternative to compoundPoissonDist which requires fixed-length sequences and
currently only supports the computation of the distribution of the number of hits when both DNA
strands are scanned for motif hits.

Value

List containing

dist Distribution of the number of hits

compoundPoissonDist 7

See Also

compoundPoissonDist
numMotifHits

probOverlapHit

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load motif
motiffile = system.file("extdata”, "x31.tab", package = "motifcounter")
motif = t(as.matrix(read.table(motiffile)))

Load background model
bg = readBackground(seqgs, 1)

Compute overlap probabilities
op = motifcounter:::probOverlapHit(motif, bg, singlestranded = FALSE)

Use 2 sequences of length 100 bp each
seqlen = rep(100, 2)

Computes the combinatorial distribution of the number of motif hits
dist = motifcounter:::combinatorialDist(seqlen, op)

compoundPoissonDist Compound Poisson Approximation

Description

This function approximates the distribution of the number of motif hits that emerges from a random
DNA sequence of a given length.

Usage
compoundPoissonDist(seqlen, overlap, method = "kopp")
Arguments
seqglen Integer-valued vector that defines the lengths of the individual sequences. For a
given DNAStringSet, this information can be retrieved using numMotifHits.
overlap An Overlap object.
method String that defines which method shall be invoked: ’pape’ or ’kopp’ (see de-

scription). Default: method = "kopp’.

Details

The distribution can be determined in two alternative ways:

compoundPoissonDist

1. A re-implemented version of the algorithm that was described in Pape et al. Compound pois-
son approximation of the number of occurrences of a position frequency matrix (PFM) on both
strands. 2008 can be invoked using method="pape’. The main purpose of this implementation
concerns benchmarking an improved approximation. In contrast to the original model, this
implementation can be used with general order-d Markov models.

2. We provide an improved compound Poisson approximation that uses more appropriate statis-
tical assumptions concerning overlapping motif hits and that can be used with order-d back-
ground models as well. The improved version is used by default with method="kopp’. Note:
Only method="kopp’ supports the computation of the distribution of the number of motif hits
w.r.t. scanning a single DNA strand (see probOverlapHit).

Value
List containing

dist Distribution of the number of hits

See Also

combinatorialDist
probOverlapHit

numMotifHits

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package
seqs = Biostrings::readDNAStringSet(seqfile)

Load motif
motiffile = system.file("extdata”, "x31.tab", package
motif = t(as.matrix(read.table(motiffile)))

Load background model
bg = readBackground(seqgs, 1)

Use 100 individual sequences of length 150 bp each
seqlen = rep(150, 100)

Compute overlapping probabilities
for scanning the forward DNA strand only

"motifcounter”)

"motifcounter™)

op = motifcounter:: :probOverlapHit(motif, bg, singlestranded =

Computes the compound Poisson distribution
dist = motifcounter:::compoundPoissonDist(seqlen, op)
#plot(1:1length(dist$dist)-1, dist$dist)

Compute overlapping probabilities
for scanning the forward DNA strand only

op = motifcounter:::probOverlapHit(motif, bg, singlestranded

Computes the compound Poisson distribution

TRUE)

FALSE)

computeClumpStartProb 9

dist = motifcounter:::compoundPoissonDist(seqlen, op)
#plot(1:1length(dist$dist)-1, dist$dist)

computeClumpStartProb Computes the Clump start probability based on a Markov model

Description

This function leverages a Markov model in order to determine the clump start probability. The
computation depends on the selected false positive probability for calling motif matches ’alpha’
and the pre-determined overlapping match probabilities "beta’.

Usage

computeClumpStartProb(overlap)

Arguments

overlap An Overlap object.

Details

The general idea of the method relies on the fact that for the stationary distribution of the Markov
model, motif matches must be observed with probability ’alpha’. Hence, the clump start probability
’tau’ is optimized to achieve that goal.

The R interface is only used for the purpose of testing the correctness of the model.

Value

Clump start probability ’tau’

See Also
compoundPoissonDist

numMotifHits
probOverlapHit

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load motif
motiffile = system.file("extdata”, "x31.tab", package = "motifcounter")

motif = t(as.matrix(read.table(motiffile)))

Load background model
bg = readBackground(seqgs, 1)

Compute overlap probabilities

10 generateDNAString

op = motifcounter:: :probOverlapHit(motif, bg, singlestranded = FALSE)

Computes the clump start probability
dist = motifcounter:::computeClumpStartProb(op)

generateDNAString Generate DNAString

Description

This function generates a random DNAString of a given length by sampling from the background
model.

Usage

generateDNAString(len, bg)

Arguments
len Integer length of the sequence
bg A Background object
Value
A DNAString object
See Also
generateDNAStringSet
Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Generate a 1 kb random sequence
motifcounter:::generateDNAString(1000, bg)

generateDNAStringSet 11

generateDNAStringSet Generate DNAStringSet

Description
This function generates a DNAStringSet-object of the given individual sequence lengths by sam-
pling from the background model.

Usage

generateDNAStringSet(seqlen, bg)

Arguments
seqlen Integer-valued vector that defines the lengths of the individual sequences. For a
given DNAStringSet, this information can be retrieved using numMotifHits.
bg A Background object
Value
A DNAStringSet object
See Also
generateDNAStringSet
Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Generate random sequences of various lengths
motifcounter:::generateDNAStringSet(10:50, bg)

getAlpha Accessor to slot alpha

Description

Accessor to slot alpha

Usage

getAlpha(obj)

12

Arguments

obj An Overlap object

Value

alpha slot

getBeta3p

getBeta Accessor to slot beta

Description

Accessor to slot beta

Usage

getBeta(obj)

Arguments

obj An Overlap object

Value

beta slot

getBeta3p Accessor to slot beta3p

Description

Accessor to slot beta3p

Usage

getBeta3p(obj)

Arguments

obj An Overlap object

Value

beta3p slot

getBeta5p

13

getBetabp

Accessor to slot beta

Description

Accessor to slot beta

Usage

getBeta5p(obj)

Arguments

obj An Overlap object

Value

beta5p slot

getCounts

Accessor to slot counts

Description

Accessor to slot counts

Usage

getCounts(obj)

Arguments

obj A Background object

Value

counts slot

14

getOrder

getGamma Accessor to slot gamma

Description

Accessor to slot gamma

Usage

getGamma(obj)

Arguments

obj An Overlap object

Value

gamma slot

getOrder Accessor to slot order

Description

Accessor to slot order

Usage

getOrder(obj)

Arguments

obj A Background object

Value

order slot

getSinglestranded

getSinglestranded Accessor to slot singlestranded

Description

Accessor to slot singlestranded

Usage

getSinglestranded(obj)

Arguments

obj An Overlap object

Value

singlestranded slot

getStation Accessor to slot station

Description

Accessor to slot station

Usage

getStation(obj)

Arguments

obj A Background object

Value

station slot

16 hitStrand
getTrans Accessor to slot trans
Description
Accessor to slot trans
Usage
getTrans(obj)
Arguments
obj A Background object
Value
trans slot
hitStrand Hit strand
Description
This function computes the per-position motif matches in a given DNA strand.
Usage
hitStrand(seq, pfm, bg, threshold = NULL)
Arguments
seq A DNAString object
pfm An R matrix that represents a position frequency matrix
bg A Background object
threshold Score threshold for calling motif matches. If NULL, the threshold will deter-
mined from alpha.
Details

The function returns the per-position scores for the given strand. If the sequence is too short, it

contains an empty vector.

Value

hits Vector of motif hits on the given strand

lenSequences 17

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab"”, package = "motifcounter”)
motif = t(as.matrix(read.table(motiffile)))

Compute the per-position and per-strand scores
motifcounter:::hitStrand(seqs[[1]], motif, bg)

lenSequences Length of sequences in a given fasta file

Description

The function returns a vector containing the lengths of each sequence contained in a set of se-
quences. Sequences containing N’ or 'n’ are skipped from the analysis and are set to length zero.

Usage

lenSequences(seqs)
Arguments

seqs A DNAStringSet object
Value

A vector containing the lengths of each individual sequences

Examples

Load sequences
file = system.file("extdata”, "seq.fasta”, package = "motifcounter")
seqs = Biostrings::readDNAStringSet(file)

Retrieve sequence lengths
motifcounter:::lenSequences(seqs)

18 markovModel

markovModel Markov model for generating Y_1Y 2_Y3 ...

Description

This function implements the Markov model for producing motif matches. The function takes a

state probability vector and uses the transition probabilities in order to obtain the state probability at

the next time point. This function is used used to determine the stationary distribution of the states.
Usage

markovModel (overlap, nsteps = 1)

Arguments

overlap An Overlap object.

nsteps Number of state transitions to perform
Details

The R interface is only used for the purpose of testing the correctness of the model.

Value
List containing

dist State probability distribution after the given number of steps

See Also
compoundPoissonDist

numMotifHits
probOverlapHit

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load motif
motiffile = system.file("extdata”, "x31.tab"”, package = "motifcounter”)
motif = t(as.matrix(read.table(motiffile)))

Load background model
bg = readBackground(seqgs, 1)

Compute overlap probabilities

op = motifcounter:::probOverlapHit(motif, bg, singlestranded = FALSE)

Computes the state probabilities of the Markov model
(default: after one step)

motifAndBackgroundValid 19

dist = motifcounter:::markovModel (op)

motifAndBackgroundvalid
Check valididity of PFM with background

Description

This function checks if the PFM x background combination is valid. The function throws an error
if this is not the case.

Usage

motifAndBackgroundvalid(pfm, bg)

Arguments

pfm An R matrix that represents a position frequency matrix

bg A Background object

Value

None

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Load motif
motiffile = system.file("extdata”, "x1.tab"”, package = "motifcounter"”)
motif = t(as.matrix(read.table(motiffile)))

Check validity
motifcounter:: :motifAndBackgroundValid(motif, bg)

20 motifEnrichment

motifcounterOptions Set parameters for the enrichment analysis

Description

This function sets some global parameters for the ‘motifcounter* package.

Usage

motifcounterOptions(alpha = 0.001, gran = 0.1, ncores = 1)

Arguments
alpha Numeric False positive probabililty for calling motif hits by chance. Default:
alpha = 0.001
gran Numeric score granularity which is used for discretizing the score range. De-
fault: gran =0.1
ncores Interger number of cores used for parallel processing, if openMP is available.
Default: ncores = 1
Details

alpha=0.001 amounts to calling one motif hit per strand by chance in a sequence of length 1000 bp.
Decreasing gran will increase number of discrete bins that represent the real-valued score range.
This will yield more a accurate score distribution due to less discretization noise, however, it incurs
an increase of the computational burden.

Value

None

Examples

Prescribe motifcounter Options
motifcounterOptions(alpha = 0.001, gran = 0.1, ncores = 1)

motifEnrichment Enrichment of motif hits

Description

This function determines whether a given motif is enriched in a given DNA sequences.

Usage

motifEnrichment(seqs, pfm, bg, singlestranded = FALSE, method = "compound")

motifEnrichment 21

Arguments
seqgs A DNAStringSet or DNAString object
pfm An R matrix that represents a position frequency matrix
bg A Background object

singlestranded Boolean that indicates whether a single strand or both strands shall be scanned
for motif hits. Default: singlestranded = FALSE.

method String that defines whether to use the ’compound’ Poisson approximation’ or
the ’combinatorial’ model. Default: method="compound’.
Details

Enrichment is tested by comparing the observed number of motif hits against a theoretical distribu-
tion of the number of motif hits in random DNA sequences. Optionally, the theoretical distribution
of the number of motif hits can be evaluated by either a ’compound Poisson model’ or the ’combi-
natorial model’. Additionally, the enrichment test can be conducted with respect to scanning only
the forward strand or both strands of the DNA sequences. The latter option is only available for the
’compound Poisson model’

Value
List that contains

pvalue P-value for the enrichment test

fold Fold-enrichment with respect to the expected number of hits

See Also

compoundPoissonDist, combinatorialDist

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab", package = "motifcounter")

motif = t(as.matrix(read.table(motiffile)))

1) Motif enrichment test w.r.t. scanning a *singlex DNA strand
based on the 'Compound Poisson model'

result = motifEnrichment(seqs, motif, bg,
singlestranded = TRUE, method = "compound")

2) Motif enrichment test w.r.t. scanning xboth* DNA strand
based on the 'Compound Poisson model'

result = motifEnrichment(seqs, motif, bg, method = "compound")

22 motifHitProfile

3) Motif enrichment test w.r.t. scanning *both* DNA strand
based on the *combinatorial modelx

result = motifEnrichment(seqs, motif, bg, singlestranded = FALSE,
method = "combinatorial”)

motifHitProfile Motif hit profile across multiple sequences

Description
This function computes the per-position average motif hit profile across a set of fixed-length DNA
sequences. It can be used to reveal positional constraints of TFBSs.

Usage

motifHitProfile(seqgs, pfm, bg)

Arguments
seqgs A DNAStringSet or DNAString object
pfm An R matrix that represents a position frequency matrix
bg A Background object

Value

List containing

fscores Per-position average forward strand motif hits

rscores Per-position average reverse strand motif hits

Examples

Load sequences

seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

seqs = seqs[1:10]

Load background
bg = readBackground(seqs, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab", package = "motifcounter”)
motif = t(as.matrix(read.table(motiffile)))

Compute the motif hit profile
motifHitProfile(seqs, motif, bg)

motifHits 23

motifHits Motif hit observations

Description

This function determines per-position motif hits in a given DNA sequence.

Usage

motifHits(seq, pfm, bg, threshold = NULL)

Arguments
seq A DNAString object
pfm An R matrix that represents a position frequency matrix
bg A Background object
threshold Score threshold for calling motif matches. If NULL, the threshold will deter-
mined from alpha.
Value

List containing

fhits Per-position motif hits on the forward strand

rhits Per-position motif hits on the reverse strand

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seq = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seq, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab", package = "motifcounter")
motif = t(as.matrix(read.table(motiffile)))

Determine the motif hits
motifHits(seq[[1]], motif, bg)

24 normalizeMotif

motifValid Check valididity of PFM

Description
This function checks if the PFM is valid. The function throws an error if the R matrix does not
represent a PFM.

Usage
motifValid(pfm)

Arguments

pfm An R matrix that represents a position frequency matrix

Value

None

Examples

Load motif
motiffile = system.file("extdata”, "x1.tab"”, package = "motifcounter”)
motif = t(as.matrix(read.table(motiffile)))

Check validity
motifcounter:::motifValid(motif)

normalizeMotif Normalizes a PFM

Description

This function normalizes a PFM and optionally adds pseudo-evidence to each entry of the matrix.

Usage

normalizeMotif(pfm, pseudo = 0.01)

Arguments
pfm An R matrix that represents a position frequency matrix
pseudo Small numeric pseudo-value that is added to each entry in the PFM in order to
ensure strictly positive entries. Default: pseudo = 0.01
Value

A normalized PFM

numMotifHits 25

Examples

Load motif
motiffile = system.file("extdata”, "x1.tab", package = "motifcounter"”)
motif = t(as.matrix(read.table(motiffile)))

Normalize motif
new_motif = normalizeMotif(motif)

numMotifHits Number of motif hits in a set of DNA sequences

Description

This function counts the number of motif hits that are found in a given set of DNA sequences.

Usage
numMotifHits(seqgs, pfm, bg, singlestranded = FALSE)

Arguments
seqgs A DNAStringSet or DNAString object
pfm An R matrix that represents a position frequency matrix
bg A Background object

singlestranded Boolean that indicates whether a single strand or both strands shall be scanned
for motif hits. Default: singlestranded = FALSE.
Details

Optionally, it can be used to count motif hits on one or both strands, respectively.

Value
A list containing
nseq Number of individual sequences

Iseq Vector of individual sequence lengths

numofhits Vector of the number of hits in each individual sequence

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab", package = "motifcounter")

26 probOverlapHit

motif = t(as.matrix(read.table(motiffile)))

Count motif hits both strands
noc = motifcounter:::numMotifHits(seqs, motif, bg)
noc$numofhits

Count motif hits on a single strand
noc = motifcounter:::numMotifHits(seqs, motif, bg, singlestranded = TRUE)
noc$numofhits

Overlap-class Overlap class definition

Description

Objects of this class serve as a container that holds parameters for the overlapping hit probabilities.

Details

An Overlap object is constructed via the probOverlapHit

Slots

alpha Scalar numeric significance level to call motif matches

beta Numeric vector of principal overlapping hit probabilities on the same strand.
beta3p Numeric vector of principal overlapping hit probabilities with 3’-overlap.

beta5p Numeric vector of principal overlapping hit probabilities with 5’-overlap.

gamma Numeric vector of marginal overlapping hit probabilities.

singlestranded logical flag to indicate whether one or both strands are scanned for motif matches.

probOverlapHit Overlapping motif hit probabilities

Description

This function computes a set of self-overlapping probabilites for a motif and background model.

Usage

probOverlapHit(pfm, bg, singlestranded = FALSE)

Arguments
pfm An R matrix that represents a position frequency matrix
bg A Background object

singlestranded Boolean that indicates whether a single strand or both strands shall be scanned
for motif hits. Default: singlestranded = FALSE.

readBackground 27

Details

The ‘gamma‘s are determined based on two-dimensional score distributions (similar as described
in Pape et al. 2008), however, they are computed based on an order-d background model. On the
other hand, the ‘beta‘s represent overlapping hit probabilities that were corrected for intermediate
hits.

Value

An Overlap object

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab", package = "motifcounter")
motif = t(as.matrix(read.table(motiffile)))

Compute overlapping hit probabilities for scanning both DNA strands
op = motifcounter:::probOverlapHit(motif, bg, singlestranded = FALSE)

Compute overlapping hit probabilities for scanning a single DNA strand
op = motifcounter:::probOverlapHit(motif, bg, singlestranded = TRUE)

readBackground Estimates a background model from a set of DNA sequences

Description
Given a set of DNA sequences and an order, this function estimates an order-d Markov model which
is used to characterize random DNA sequences.

Usage

readBackground(seqs, order = 1)

Arguments
seqs A DNAStringSet object
order Order of the Markov models that shall be used as the background model. De-
fault: order = 1.
Value

A Background object

28 scoreDist

Examples

Load sequences
file = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(file)

Estimate an order-1 Markov model
bg = readBackground(seqgs, 1)

revcompMotif Reverse complements a PFM

Description

This function computes the reverse complement of a given PFM.

Usage

revcompMotif (pfm)
Arguments

pfm An R matrix that represents a position frequency matrix
Value

Reverse complemented PFM

Examples

Load motif
motiffile = system.file("extdata”, "x1.tab"”, package = "motifcounter”)
motif = t(as.matrix(read.table(motiffile)))

Reverse complement motif
revcompmotif = motifcounter:::revcompMotif(motif)

scoreDist Score distribution

Description
This function computes the score distribution for the given PFM and background. The Score distri-
bution is computed based on an efficient dynamic programming algorithm.

Usage

scoreDist(pfm, bg)

scoreDistBf

Arguments
pfm An R matrix that represents a position frequency matrix
bg A Background object

Value

List that contains

scores Vector of scores

dist Score distribution

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqs, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab"”, package = "motifcounter”)
motif = t(as.matrix(read.table(motiffile)))

Compute the score distribution
dp = scoreDist(motif, bg)

29

scoreDistBf Score distribution

Description

This function computes the score distribution for a given PFM and a background model.

Usage

scoreDistBf (pfm, bg)

Arguments
pfm An R matrix that represents a position frequency matrix
bg A Background object

Details

The result of this function is identical to scoreDist, however, the method employs a less efficient
algorithm that enumerates all DNA sequences of the length of the motif. This function is only used
for debugging and testing purposes and might require substantial computational resources for long

motifs.

30 scoreDistEmpirical

Value
List containing

scores Vector of scores

dist Score distribution

See Also

scoreDist

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab", package = "motifcounter")
motif = t(as.matrix(read.table(motiffile)))

Compute the score distribution
dp = motifcounter:::scoreDistBf (motif, bg)

scoreDistEmpirical Empirical score distribution

Description
This function estimates the empirical score distribution on a set of randomly generated DNA se-
quences based on the background model. This function is only used for benchmarking analysis.
Usage

scoreDistEmpirical(pfm, bg, seqlen, nsim)

Arguments
pfm An R matrix that represents a position frequency matrix
bg A Background object
seqlen Integer-valued vector that defines the lengths of the individual sequences. For a
given DNAStringSet, this information can be retrieved using numMotifHits.
nsim Integer number of random samples.
Value

List containing

scores Vector of scores

dist Score distribution

scoreHistogram 31

See Also

scoreDist

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab"”, package = "motifcounter”)
motif = t(as.matrix(read.table(motiffile)))

Compoute the empirical score distribution in
sequences of length 1kb using 1000 samples
motifcounter:::scoreDistEmpirical(motif, bg, seqlen = 1000, nsim = 1000)

scoreHistogram Score histogram

Description

This function computes the empirical score distribution for a given set of DNA sequences.

Usage

scoreHistogram(seqs, pfm, bg)

Arguments
seqgs A DNAStringSet or DNAString object
pfm An R matrix that represents a position frequency matrix
bg A Background object

Details

It can be used to compare the empirical score distribution against the theoretical one (see scoreDist).

Value
List containing

scores Vector of scores

dist Score distribution

See Also

scoreDist

32 scoreHistogramSingleSeq

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab"”, package = "motifcounter”)
motif = t(as.matrix(read.table(motiffile)))

Compute the empirical score histogram
scoreHistogram(seqgs, motif, bg)

scoreHistogramSingleSeq
Score histogram on a single sequence

Description
This function computes the empirical score distribution by normalizing the observed score his-
togram for a given sequence.

Usage

scoreHistogramSingleSeq(seq, pfm, bg)

Arguments
seq A DNAString object
pfm An R matrix that represents a position frequency matrix
bg A Background object

Value

List containing

scores Vector of scores

dist Score distribution

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Load motif

scoreProfile

motiffile = system.file("extdata”, "x31.tab", package = "motifcounter")
motif = t(as.matrix(read.table(motiffile)))

Compute the per-position and per-strand scores
motifcounter:::scoreHistogramSingleSeq(seqs[[1]], motif, bg)

33

scoreProfile Score profile across multiple sequences

Description

This function computes the per-position and per-strand average score profiles across a set of DNA

sequences. It can be used to reveal positional constraints of TFBSs.

Usage

scoreProfile(seqs, pfm, bg)

Arguments
seqs A DNAStringSet or DNAString object
pfm An R matrix that represents a position frequency matrix
bg A Background object

Value

List containing

fscores Vector of per-position average forward strand scores

rscores Vector of per-position average reverse strand scores

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab", package = "motifcounter")
motif = t(as.matrix(read.table(motiffile)))

Compute the score profile
scoreProfile(seqgs, motif, bg)

34 scoreSequence

scoreSequence Score observations

Description

This function computes the per-position and per-strand score in a given DNA sequence.

Usage

scoreSequence(seq, pfm, bg)

Arguments
seq A DNAString object
pfm An R matrix that represents a position frequency matrix
bg A Background object

Value

List containing

fscores Vector of scores on the forward strand

rscores Vector of scores on the reverse strand

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab"”, package = "motifcounter”)
motif = t(as.matrix(read.table(motiffile)))

Compute the per-position and per-strand scores
scoreSequence(seqs[[1]], motif, bg)

scoreStrand 35

scoreStrand Score strand

Description

This function computes the per-position score in a given DNA strand.

Usage

scoreStrand(seq, pfm, bg)

Arguments
seq A DNAString object
pfm An R matrix that represents a position frequency matrix
bg A Background object

Details

The function returns the per-position scores for the given strand. If the sequence is too short, it
contains an empty vector.

Value

scores Vector of scores on the given strand

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab"”, package = "motifcounter”)
motif = t(as.matrix(read.table(motiffile)))

Compute the per-position and per-strand scores
motifcounter:::scoreStrand(seqs[[1]], motif, bg)

36 scoreThreshold

scoreThreshold Score threshold

Description

This function computes the score threshold for a desired false positive probability ‘alpha‘.

Usage

scoreThreshold(pfm, bg)

Arguments
pfm An R matrix that represents a position frequency matrix
bg A Background object

Details

Note that the returned alpha usually differs slightly from the one that is prescribed using motifcounterOptions,
because of the discrete nature of the sequences.

Value

List containing

threshold Score threshold
alpha False positive probability

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab"”, package = "motifcounter”)
motif = t(as.matrix(read.table(motiffile)))

Compute the score threshold
motifcounter:::scoreThreshold(motif, bg)

sigLevel 37

siglevel Retrieve the false positive probability

Description

This function returns the current false positive level for calling motif hits in random sequences.

Usage
siglevel ()

Details
The returned value is usually slightly smaller than the prescribed ‘alpha‘ in ‘motifcounterOptions®,
because of the discrete nature of sequences.

Value

False positive probability

Examples

motifcounter:::siglLevel()

simulateClumpSizeDist Empirical clump size distribution

Description

This function repeatedly simulates random DNA sequences according to the background model
and subsequently counts the number of k-clump occurrences, where denotes the clump size. This
function is only used for benchmarking analysis.

Usage

simulateClumpSizeDist(pfm, bg, seglen, nsim = 10, singlestranded = FALSE)

Arguments
pfm An R matrix that represents a position frequency matrix
bg A Background object
seqlen Integer-valued vector that defines the lengths of the individual sequences. For a
given DNAStringSet, this information can be retrieved using numMotifHits.
nsim Integer number of random samples.

singlestranded Boolean that indicates whether a single strand or both strands shall be scanned
for motif hits. Default: singlestranded = FALSE.

38 simulateNumHitsDist

Value

A List that contains

dist Empirical distribution of the clump sizes

See Also

compoundPoissonDist,combinatorialDist

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab", package = "motifcounter")
motif = t(as.matrix(read.table(motiffile)))

Study the clump size frequencies in one sequence of length 1 Mb
seqlen = 1000000

scan both strands
simc = motifcounter:::simulateClumpSizeDist(motif, bg, seqlen)

scan a single strand
simc = motifcounter:::simulateClumpSizeDist(motif, bg,
seqlen, singlestranded = TRUE)

simulateNumHitsDist Empirical number of motif hits distribution

Description

This function repeatedly simulates random DNA sequences according to the background model
and subsequently counts how many motif hits occur in them. Thus, this function gives rise to the
empirical distribution of the number of motif hits. This function is only used for benchmarking
analysis.

Usage

simulateNumHitsDist(pfm, bg, seglen, nsim, singlestranded = FALSE)

simulateNumHitsDist 39

Arguments
pfm An R matrix that represents a position frequency matrix
bg A Background object
seqglen Integer-valued vector that defines the lengths of the individual sequences. For a
given DNAStringSet, this information can be retrieved using numMotifHits.
nsim Integer number of random samples.

singlestranded Boolean that indicates whether a single strand or both strands shall be scanned
for motif hits. Default: singlestranded = FALSE.

Value

A List that contains

dist Empirical distribution of the number of motif hits

See Also

compoundPoissonDist,combinatorialDist

Examples

Load sequences
seqfile = system.file("extdata”, "seq.fasta”, package = "motifcounter”)
seqs = Biostrings::readDNAStringSet(seqfile)

Load background
bg = readBackground(seqgs, 1)

Load motif
motiffile = system.file("extdata”, "x31.tab", package = "motifcounter")
motif = t(as.matrix(read.table(motiffile)))

Study the counts in one sequence of length 150 bp
seqlen = rep(150, 1)

Compute empirical distribution of the number of motif hits
by scanning both strands using 100 samples
simc = motifcounter:::simulateNumHitsDist(motif, bg,

seqlen, nsim = 100, singlestranded = FALSE)

Compute empirical distribution of the number of motif hits
by scanning a single strand using 100 samples
simc = motifcounter:::simulateNumHitsDist(motif, bg,

seqlen, nsim = 100, singlestranded = TRUE)

Index

+* MotifEnrichment
motifcounter-package, 3
x PFM,
motifcounter-package, 3
.Background (Background-class), 4
.Overlap (Overlap-class), 26

Background-class, 4

clumpSizeDist, 5

combinatorialDist, 6, 8, 21, 38, 39

compoundPoissonDist, 6, 7,7, 9, 18, 21, 38,
39

computeClumpStartProb, 9

generateDNAString, 10
generateDNAStringSet, 10, 11, 11
getAlpha, 11
getBeta, 12
getBeta3p, 12
getBetabp, 13
getCounts, 13
getGamma, 14
getOrder, 14
getSinglestranded, 15
getStation, 15
getTrans, 16

hitStrand, 16
lenSequences, 17

markovModel, 18
motifAndBackgroundValid, 19
motifcounter (motifcounter-package), 3
motifcounter-package, 3
motifcounterOptions, 3, 20, 36
motifEnrichment, 20
motifHitProfile, 22

motifHits, 23

motifValid, 24

normalizeMotif, 24
numMotifHits, 6-9, 11, 18, 25, 30, 37, 39

40

Overlap-class, 26
probOverlapHit, 5, 7-9, 18, 26, 26

readBackground, 5, 27
revcompMotif, 28

scoreDist, 28, 29-31
scoreDistBf, 29
scoreDistEmpirical, 30
scoreHistogram, 31
scoreHistogramSingleSeq, 32
scoreProfile, 33
scoreSequence, 34
scoreStrand, 35
scoreThreshold, 36
siglevel, 37
simulateClumpSizeDist, 37
simulateNumHitsDist, 38

	motifcounter-package
	Background-class
	clumpSizeDist
	combinatorialDist
	compoundPoissonDist
	computeClumpStartProb
	generateDNAString
	generateDNAStringSet
	getAlpha
	getBeta
	getBeta3p
	getBeta5p
	getCounts
	getGamma
	getOrder
	getSinglestranded
	getStation
	getTrans
	hitStrand
	lenSequences
	markovModel
	motifAndBackgroundValid
	motifcounterOptions
	motifEnrichment
	motifHitProfile
	motifHits
	motifValid
	normalizeMotif
	numMotifHits
	Overlap-class
	probOverlapHit
	readBackground
	revcompMotif
	scoreDist
	scoreDistBf
	scoreDistEmpirical
	scoreHistogram
	scoreHistogramSingleSeq
	scoreProfile
	scoreSequence
	scoreStrand
	scoreThreshold
	sigLevel
	simulateClumpSizeDist
	simulateNumHitsDist
	Index

