
Package ‘TVTB’
October 25, 2025

Type Package

Title TVTB: The VCF Tool Box

Version 1.35.2

Date 2025-08-05

Description The package provides S4 classes and methods to filter,
summarise and visualise genetic variation data stored in VCF
files. In particular, the package extends the FilterRules class
(S4Vectors package) to define news classes of filter rules
applicable to the various slots of VCF objects. Functionalities
are integrated and demonstrated in a Shiny web-application, the
Shiny Variant Explorer (tSVE).

License Artistic-2.0

Depends R (>= 3.4), methods, utils, stats

Imports AnnotationFilter, BiocGenerics (>= 0.25.1), BiocParallel,
Biostrings, ensembldb, Seqinfo, GenomicRanges, GGally, ggplot2,
Gviz, limma, IRanges (>= 2.21.6), reshape2, Rsamtools,
S4Vectors (>= 0.25.14), SummarizedExperiment, VariantAnnotation
(>= 1.19.9)

Suggests EnsDb.Hsapiens.v75 (>= 0.99.7), shiny (>= 0.13.2.9005), DT
(>= 0.1.67), rtracklayer, BiocStyle (>= 2.5.19), knitr (>=
1.12), rmarkdown, testthat, covr, pander

biocViews Software, Genetics, GeneticVariability, GenomicVariation,
DataRepresentation, GUI, Genetics, DNASeq, WholeGenome,
Visualization, MultipleComparison, DataImport,
VariantAnnotation, Sequencing, Coverage, Alignment,
SequenceMatching

Collate utils.R tSVE.R AllClasses.R AllGenerics.R Genotypes-class.R
TVTBparam-class.R VcfFilterRules-class.R parseCSQToGRanges.R
countGenos-methods.R autodetectGenotypes.R
addCountGenos-methods.R addFrequencies-methods.R
addOverallFrequencies-methods.R
addPhenoLevelFrequencies-methods.R dropInfo.R readVcf-methods.R
variantsInSamples-methods.R vepInPhenoLevel-methods.R
plotInfo.R pairsInfo.R show-methods.R

VignetteBuilder knitr

URL https://github.com/kevinrue/TVTB

1

https://github.com/kevinrue/TVTB

2 TVTB-package

BugReports https://github.com/kevinrue/TVTB/issues

git_url https://git.bioconductor.org/packages/TVTB

git_branch devel

git_last_commit 118cbb8

git_last_commit_date 2025-08-06

Repository Bioconductor 3.22

Date/Publication 2025-10-24

Author Kevin Rue-Albrecht [aut, cre]

Maintainer Kevin Rue-Albrecht <kevinrue67@gmail.com>

Contents

TVTB-package . 2
addCountGenos-methods . 3
addFrequencies-methods . 4
addOverallFrequencies-methods . 6
addPhenoLevelFrequencies-methods . 7
autodetectGenotypes-methods . 9
countGenos-methods . 10
dropInfo-methods . 11
Genotypes-class . 12
pairsInfo-methods . 14
parseCSQToGRanges . 15
plotInfo-methods . 16
readVcf-methods . 18
tSVE . 19
TVTBparam-class . 21
variantsInSamples-methods . 23
VcfBasicRules-class . 25
VcfFilterRules-class . 28
vepInPhenoLevel-methods . 31

Index 33

TVTB-package TVTB: The VCF Tool Box

Description

The package provides S4 classes and methods to filter, summarise and visualise genetic variation
data stored in VCF files. In particular, the package extends the FilterRules class (S4Vectors pack-
age) to define news classes of filter rules applicable to the various slots of VCF objects. Func-
tionalities are integrated and demonstrated in a Shiny web-application, the Shiny Variant Explorer
(tSVE).

https://github.com/kevinrue/TVTB/issues

addCountGenos-methods 3

Details

This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Kevin Rue-Albrecht [aut, cre]

Maintainer: Kevin Rue-Albrecht <kevinrue67@gmail.com>

addCountGenos-methods Add count of genotypes to INFO field

Description

Adds the total occurences of a set of genotypes as an INFO field for each variant. All given geno-
types are counted toward a single total (e.g. grand total of c("0/0", "0|0")), while other genotypes
are silently ignored.

Usage

S4 method for signature 'ExpandedVCF'
addCountGenos(

vcf, genos, key, description,
samples = 1:ncol(vcf), force = FALSE)

Arguments

vcf ExpandedVCF object.

genos character vector of genotypes to count (toward a common unique total).

key Name of the INFO field to create or update (character vector of length 1). See
Details below.

description character description of the INFO field to create or overwrite (character vec-
tor of length 1).

samples integer, numeric or character vector indicating samples to consider in VariantAnnotation::geno(vcf).
If not specified, all samples are considered.

force If TRUE, the field header and data will be overwritten if present; If FALSE, an
error is thrown if the field already exists.

Details

In all cases, the new INFO field is inserted after the last existing field. In other words, overwriting
an existing INFO field is achieved by dropping it from the data and header of the info slot, and
subsequently inserting the new data after the last remaining INFO field.

Value

ExpandedVCF object including an additional INFO field stating the count of genotypes.

4 addFrequencies-methods

Author(s)

Kevin Rue-Albrecht

See Also

countGenos,ExpandedVCF-method and geno,VCF-method

Examples

Example data ----

VCF file
vcfFile <- system.file("extdata", "moderate.vcf", package = "TVTB")

TVTB parameters
tparam <- TVTBparam(Genotypes(ref = "0|0", het = c("0|1", "1|0"), alt = "1|1"))

Pre-process variants
vcf <- VariantAnnotation::readVcf(vcfFile, param = tparam)
vcf <- VariantAnnotation::expand(vcf, row.names = TRUE)

Example usage ----

vcf <- addCountGenos(
vcf, het(tparam),
suffix(tparam)["het"],
"Number of heterozygous genotypes")

addFrequencies-methods

Group-level genotypes counts and allele frequencies

Description

Adds genotypes counts (reference homozygote, heterozygote, and alternate homozygote) and allele
frequencies (alternate and minor) as INFO fields in an ExpandedVCF object. Counts and frequen-
cies may be calculated overall (i.e. across all samples), or within groups of samples (i.e. within
phenotype levels). Multiple genotypes can be counted toward a single frequency (e.g. combined
c("0/0", "0|0") for homozygote reference genotypes).

Usage

S4 method for signature 'ExpandedVCF,list'
addFrequencies(vcf, phenos, force = FALSE)

S4 method for signature 'ExpandedVCF,character'
addFrequencies(vcf, phenos, force = FALSE)

S4 method for signature 'ExpandedVCF,missing'
addFrequencies(vcf, force = FALSE)

addFrequencies-methods 5

Arguments

vcf ExpandedVCF object.

metadata(vcf)[["TVTBparam"]] must contain a TVTBparam object.

phenos If NULL, counts and frequencies are calculated across all samples.

Otherwise, either a character vector of phenotypes in colnames(colData(vcf)),
or a named list in which names are phenotypes in colnames(colData(vcf))
and values are character vectors of phenotype levels in colData(vcf)[,phenotype].
See Details below.

force If TRUE, INFO fields header and data are overwritten with a message, if present.

If FALSE, an error is thrown if any field already exists.

Details

The phenos argument is central to control the behaviour of this method.

If phenos=NULL, genotypes and frequencies are calculated across all the samples in the ExpandedVCF
object, and stored in INFO fields named according to settings stored in the TVTBparam object (see
below).

If phenos is a character vector of phenotypes present in colnames(colData(vcf)), counts and
frequencies are calculated for each level of those phenotypes, and stored in INFO fields prefixed
with "<phenotype>_<level>_" and suffixed with the settings stored in the param object (see below).

Finally, if phenos is a named list, names must be phenotypes present in colnames(colData(vcf)),
and values must be levels of those phenotypes. In this case, counts and frequencies are calculated
for the given levels of the given phenotypes, and stored in INFO fields as described above.

The param object controls the key (suffix) of INFO fields as follows:

names(ref(param)) Count of reference homozygote genotypes.

names(het(param)) Count of heterozygote genotypes.

names(alt(param)) Count of alternate homozygote genotypes.

aaf(param) Alternate allele frequency.

maf(param) Minor allele frequency

Value

ExpandedVCF object including additional INFO fields for genotype counts and allele frequencies.
See Details.

Author(s)

Kevin Rue-Albrecht

See Also

addOverallFrequencies,ExpandedVCF-method, addPhenoLevelFrequencies,ExpandedVCF-method,
VCF, and TVTBparam.

6 addOverallFrequencies-methods

Examples

Example data ----

VCF file
vcfFile <- system.file("extdata", "moderate.vcf", package = "TVTB")

Phenotype file
phenoFile <- system.file("extdata", "moderate_pheno.txt", package = "TVTB")
phenotypes <- S4Vectors::DataFrame(read.table(phenoFile, TRUE, row.names = 1))

TVTB parameters
tparam <- TVTBparam(Genotypes("0|0", c("0|1", "1|0"), "1|1"))

Pre-process variants
vcf <- VariantAnnotation::readVcf(

vcfFile, param = tparam, colData = phenotypes)
vcf <- VariantAnnotation::expand(vcf, row.names = TRUE)

Example usage ----

vcf <- addFrequencies(vcf, list(super_pop = "AFR"))

addOverallFrequencies-methods

Overall genotypes counts and allele frequencies

Description

Adds dataset-wide genotypes counts (reference homozygote, heterozygote, and alternate homozy-
gote) and allele frequencies (alternate and minor) as INFO fields in an ExpandedVCF object. Counts
and frequencies may be calculated across all samples. Multiple genotypes can be counted toward a
single frequency (e.g. combined c("0/0", "0|0") for homozygote reference genotypes).

Usage

S4 method for signature 'ExpandedVCF'
addOverallFrequencies(vcf, force = FALSE)

Arguments

vcf ExpandedVCF object.
metadata(vcf)[["TVTBparam"]] must contain a TVTBparam object.

force If TRUE, INFO fields header and data are overwritten.
If FALSE, an error is thrown if any field already exists.

Details

Genotypes and frequencies are calculated across all the samples in the ExpandedVCF object, and
stored in INFO fields named according to settings stored in the TVTBparam object (see below).

The param object controls the key of INFO fields as follows:

addPhenoLevelFrequencies-methods 7

names(ref(param)) Count of reference homozygote genotypes.

names(het(param)) Count of heterozygote genotypes.

names(alt(param)) Count of alternate homozygote genotypes.

aaf(param) Alternate allele frequency.

maf(param) Minor allele frequency

Value

ExpandedVCF object including additional INFO fields for genotype counts and allele frequencies.
See Details.

Warning

A warning message is issued if genotypes are not fully defined in the TVTBparam.

Author(s)

Kevin Rue-Albrecht

See Also

addFrequencies,ExpandedVCF,list-method, addPhenoLevelFrequencies,ExpandedVCF-method,
and VCF.

Examples

Example data ----

VCF file
vcfFile <- system.file("extdata", "moderate.vcf", package = "TVTB")

TVTB parameters
tparam <- TVTBparam(Genotypes("0|0", c("0|1", "1|0"), "1|1"))

Pre-process variants
vcf <- VariantAnnotation::readVcf(vcfFile, param = tparam)
vcf <- VariantAnnotation::expand(vcf, row.names = TRUE)

Example usage ----

vcf <- addOverallFrequencies(vcf, tparam)

addPhenoLevelFrequencies-methods

Genotypes and allele frequencies for a given phenotype level

Description

Adds genotypes counts (reference homozygote, heterozygote, and alternate homozygote) and allele
frequencies (alternate and minor) calculated in a group of samples associated with a given level of
a given phenotype as INFO fields in an ExpandedVCF object. Multiple genotypes can be counted
toward a single frequency (e.g. combined c("0/0", "0|0") for homozygote reference genotypes).

8 addPhenoLevelFrequencies-methods

Usage

S4 method for signature 'ExpandedVCF'
addPhenoLevelFrequencies(

vcf, pheno, level, force = FALSE)

Arguments

vcf ExpandedVCF object.

metadata(vcf)[["TVTBparam"]] must contain a TVTBparam object.

pheno Phenotype in colnames(colData(vcf)).

level Phenotype level in colData(vcf)[,pheno].

force If TRUE, INFO fields header and data are overwritten.

If FALSE, an error is thrown if any field already exists.

Details

Genotypes and frequencies are calculated within the groups of samples associated with the given
level of the given phenotype, and stored in INFO fields named according to settings stored in
metadata(vcf)[["TVTBparam"]] (see below).

The TVTBparam object controls the key suffix of INFO fields as follows:

names(ref(param)) Count of reference homozygote genotypes.

names(het(param)) Count of heterozygote genotypes.

names(alt(param)) Count of alternate homozygote genotypes.

aaf(param) Alternate allele frequency.

maf(param) Minor allele frequency

Value

ExpandedVCF object including additional INFO fields for genotype counts and allele frequencies.
See Details.

Warning

A warning message is issued if genotypes are not fully defined in the TVTBparam.

Author(s)

Kevin Rue-Albrecht

See Also

addFrequencies,ExpandedVCF,list-method, addOverallFrequencies,ExpandedVCF-method,
VCF, and TVTBparam.

autodetectGenotypes-methods 9

Examples

Example data ----

VCF file
vcfFile <- system.file("extdata", "moderate.vcf", package = "TVTB")

Phenotype file
phenoFile <- system.file("extdata", "moderate_pheno.txt", package = "TVTB")
phenotypes <- S4Vectors::DataFrame(read.table(phenoFile, TRUE, row.names = 1))

TVTB parameters
tparam <- TVTBparam(Genotypes("0|0", c("0|1", "1|0"), "1|1"))

Pre-process variants
vcf <- VariantAnnotation::readVcf(

vcfFile, param = tparam, colData = phenotypes)
vcf <- VariantAnnotation::expand(vcf, row.names = TRUE)

Example usage ----

vcf <- addPhenoLevelFrequencies(vcf, "super_pop", "AFR")

autodetectGenotypes-methods

Define genotypes in the TVTBparam metadata slot

Description

This method attempts to auto-detect genotypes (i.e. homozygote reference, heterozygote, and ho-
mozygote alternate) in a VCF object, and sets or creates a TVTBparam object accordingly, in the
metadata slot.

Usage

S4 method for signature 'VCF'
autodetectGenotypes(vcf)

Arguments

vcf VCF object.

Value

VCF object including a new or updated TVTBparam object in metadata(vcf)[["TVTBparam"]] .

Warning

A warning message is issued if genotypes cannot be fully defined.

Author(s)

Kevin Rue-Albrecht

10 countGenos-methods

Examples

Example data ----

VCF file
vcfFile <- system.file("extdata", "moderate.vcf", package = "TVTB")

TVTB parameters
tparam <- TVTBparam()

Pre-process variants
vcf <- VariantAnnotation::readVcf(vcfFile, param = tparam) # warning expected
vcf <- VariantAnnotation::expand(vcf, row.names = TRUE)

Example usage ----

vcf <- autodetectGenotypes(vcf)

countGenos-methods Count occurences of genotypes

Description

Counts the total occurences of a set of genotypes by row in a matrix of genotype. All given geno-
types are counted toward a single total (e.g. grand total of c("0/0", "0|0")), while other genotypes
are silently ignored.

Usage

S4 method for signature 'ExpandedVCF'
countGenos(

x, genos, pheno = NULL, level = NULL)

Arguments

x ExpandedVCF object.

genos character vector of genotypes to count (toward a common unique total).

pheno If x is an ExpandedVCF object, phenotype in colnames(colData(x)).

level If x is an ExpandedVCF object, phenotype level in colData(x)[,pheno].

Value

An integer vector representing the aggregated count of the given genotypes in each row.

Author(s)

Kevin Rue-Albrecht

See Also

VCF

dropInfo-methods 11

Examples

Example data ----

VCF file
vcfFile <- system.file("extdata", "moderate.vcf", package = "TVTB")

Phenotype file
phenoFile <- system.file("extdata", "moderate_pheno.txt", package = "TVTB")
phenotypes <- S4Vectors::DataFrame(read.table(phenoFile, TRUE, row.names = 1))

TVTB parameters
tparam <- TVTBparam(Genotypes("0|0", c("0|1", "1|0"), "1|1"))

Pre-process variants
vcf <- VariantAnnotation::readVcf(

vcfFile, param = tparam, colData = phenotypes)
vcf <- VariantAnnotation::expand(vcf, row.names = TRUE)

Example usage ----

vcf <- countGenos(vcf, het(tparam), "super_pop", "AFR")

dropInfo-methods Remove INFO keys from VCF objects

Description

Given a character vector of INFO keys, removes either the associated header, data, or both from
a VCF object. If no INFO key is given (the default), all INFO keys are checked and removed from
the given slot if they do not have a matching entry in the other slot.

Usage

S4 method for signature 'VCF'
dropInfo(

vcf, key = NULL, slot = "both")

Arguments

vcf VCF object.

key character vector of INFO keys to remove.
If NULL (the default), all keys are checked, and removed from the given slot if
they do not have a matching entry in the other slot.

slot Should the INFO keys be removed from the "header", the "data", or "both" (the
default)?

Value

An integer vector representing the aggregated count of the given genotypes in each row.

12 Genotypes-class

Note

In the future, x should also support genotype quality (GQ) to consider only genotypes above a given
quality cut-off.

Author(s)

Kevin Rue-Albrecht

See Also

VCF

Examples

Example data ----

VCF file
vcfFile <- system.file("extdata", "moderate.vcf", package = "TVTB")

TVTB parameters
tparam <- TVTBparam(Genotypes("0|0", c("0|1", "1|0"), "1|1"))

Pre-process variants
vcf <- VariantAnnotation::readVcf(

vcfFile, param = tparam)
vcf <- VariantAnnotation::expand(vcf, row.names = TRUE)

Example usage ----

dropInfo(vcf)
dropInfo(vcf, "CSQ")

Genotypes-class Genotypes class objects

Description

The Genotypes class stores genotype definitions in a convenient format.

Usage

Genotypes(
ref = NA_character_, het = NA_character_, alt = NA_character_,
suffix = c(ref="REF", het="HET", alt="ALT"))

Arguments

ref A character vector declaring the encoding of homozygote reference geno-
types.

het A character vector declaring the encoding of heterozygote genotypes.

alt A character vector declaring the encoding of homozygote alternate genotypes.

Genotypes-class 13

suffix Set the individual INFO key suffixes used to store the statistics of homozygote
reference, heterozygote, and homozygote alternate genotypes, in this order. See
Details section.

Details

Genotypes may be initialised as NA_character_ and updated from an imported VCF object using
the autodetectGenotypes method. This may be useful if genotype encodings are not known
beforehand.

For each suffix stored in the Genotypes object, TVTB may store data in the VCF object under the
INFO keys defined as follows:

suffix Statistics across all samples in the ExpandedVCF (e.g. "MAF").

phenotype_level_suffix Statistics across samples associated with a given level of a given phenotype
(e.g. "gender_male_MAF").

Users are recommended to avoid using those INFO keys for other purposes.

Value

A Genotypes object that contains genotype definitions.

Accessor methods

In the following code snippets x is a Genotypes object.

ref(x), ref(x) <- value Gets or sets the vector that declares homozygote reference genotypes.

het(x), het(x) <- value Gets or sets the vector that declares heterozygote genotypes.

alt(x), alt(x) <- value Gets or sets the vector that declares homozygote alternate genotypes.

genos(x) Gets a vector of concatenated homozygote reference, heterozygote, and homozygote
alternate genotypes. See also ref, het, alt, and carrier accessors.

carrier(x) Gets a vector of concatenated heterozygote and homozygote alternate genotypes. See
also het and alt accessors.

suffix(x) Gets a named character vector that declares individual suffixes used to store the data
for each set of genotypes in the INFO field of the VCF object. Names of this vector are ref,
het, and alt.

Author(s)

Kevin Rue-Albrecht

See Also

VCF, TVTBparam, and addCountGenos-methods.

Examples

Constructors ----

genotypes <- Genotypes("0|0", c("0|1", "1|0"), "1|1")

Accessors ----

14 pairsInfo-methods

Concatenated homozygote reference, heterozygote, and alternate heterozygote
genotypes stored in the Genotypes object returned by the genos() accessor.
genos(genotypes)

Individual genotypes can be extracted with ref(), het(), alt() accessors.
ref(genotypes)
het(genotypes)
alt(genotypes)

Their individual INFO key suffixes can be extracted with suffix() accessors
and the relevant name
suffix(genotypes)
suffix(genotypes)["ref"]
suffix(genotypes)["het"]
suffix(genotypes)["alt"]

Concatenated heterozygote, and alternate heterozygote genotypes are
returned by the carrier() accessor.
carrier(genotypes)
names(carrier(genotypes))

pairsInfo-methods Plot an INFO metric on a genomic axis.

Description

Make a matrix of plots that display a metric calculated in levels of a given phenotype, and stored in
columns of the info slot of a VCF object.

Usage

S4 method for signature 'VCF'
pairsInfo(vcf, metric, phenotype, ..., title = metric)

Arguments

vcf VCF object.

metric Metric to plot on the Y axis. All columns in the info slot of hte vcf object that
match the pattern "phenotype_(.*)_metric" are plotted in the DataTrack. An
error is thrown if no such column is found.

phenotype Column in the phenoData slot of the vcf object. Levels of this phenotype are
plotted and contrasted in the DataTrack. See argument metric for details.

... Additional arguments, passed to the ggpairs method.

title Title for the graph, passed to the ggpairs method.

Value

gg object returned by the ggpairs method.

Author(s)

Kevin Rue-Albrecht

parseCSQToGRanges 15

See Also

ggpairs, addPhenoLevelFrequencies,ExpandedVCF-method, and VCF.

Examples

Example data ----

VCF file
vcfFile <- system.file("extdata", "moderate.vcf", package = "TVTB")

Phenotype file
phenoFile <- system.file("extdata", "moderate_pheno.txt", package = "TVTB")
phenotypes <- S4Vectors::DataFrame(read.table(phenoFile, TRUE, row.names = 1))

TVTB parameters
tparam <- TVTBparam(Genotypes("0|0", c("0|1", "1|0"), "1|1"))

Pre-process variants
vcf <- VariantAnnotation::readVcf(

vcfFile, param = tparam, colData = phenotypes)
vcf <- VariantAnnotation::expand(vcf, row.names = TRUE)
vcf <- addFrequencies(vcf, "super_pop")

Example usage ----

pairsInfo(vcf, "MAF", "super_pop")

parseCSQToGRanges Parse the CSQ column of a VCF object into a GRanges object

Description

Parse the CSQ column in a VCF object returned from the Ensembl Variant Effect Predictor (VEP).

**This method was rescued following the deprecation of the package ensemblVEP in the Bio-
conductor release 3.20.**

Usage

S4 method for signature 'VCF'
parseCSQToGRanges(x, VCFRowID=character(),

..., info.key = "CSQ")

Arguments

x A VCF object.
VCFRowID A character vector of rownames from the original VCF. When provided, the

result includes a metadata column named ‘VCFRowID’ which maps the result
back to the row (variant) in the original VCF.
When VCFRowID is not provided no ‘VCFRowID’ column is included.

info.key The name of the INFO key that VEP writes the consequences to in the output
(default is CSQ). This should only be used if something other that CSQ was passed
in the –vcf_info_field flag in the output options.

... Arguments passed to other methods. Currently not used.

16 plotInfo-methods

Details

- When ensemblVEP returns a VCF object, the consequence data are returned unparsed in the ’CSQ’
INFO column. parseCSQToGRanges parses these data into a GRanges object that is expanded
to match the dimension of the ’CSQ’ data. Because each variant can have multiple matches,
the ranges in the GRanges are repeated.
If rownames from the original VCF are provided as VCFRowID a metadata column is included
in the result that maps back to the row (variant) in the original VCF. This option is only
applicable when the info.key field has data (is not empty).
If no info.key column is found the function returns the data in rowRanges().

Value

Returns a GRanges object with consequence data as the metadata columns. If no ’CSQ’ column is
found the GRanges from rowRanges() is returned.

Author(s)

Valerie Obenchain, Kevin Rue-Albrecht

References

Ensembl VEP Home: http://uswest.ensembl.org/info/docs/tools/vep/index.html

Examples

library(VariantAnnotation)
file <- system.file("extdata", "moderate.vcf", package = "TVTB")
vep <- readVcf(file)

The returned 'CSQ' data are unparsed.
info(vep)$CSQ

Parse into a GRanges and include the 'VCFRowID' column.
vcf <- readVcf(file, "hg19")
csq <- parseCSQToGRanges(vep, VCFRowID=rownames(vcf))
csq[1:4]

plotInfo-methods Plot an INFO metric on a genomic axis.

Description

Plot, on a genomic axis, a metric calculated in levels of a given phenotype, and stored in columns
of the info slot of a VCF object.

Usage

S4 method for signature 'VCF'
plotInfo(

vcf, metric, range, annotation, phenotype, type = c("p", "heatmap"),
zero.rm = FALSE)

http://uswest.ensembl.org/info/docs/tools/vep/index.html

plotInfo-methods 17

Arguments

vcf VCF object.

metric Metric to plot on the Y axis. All columns in the info slot of hte vcf object that
match the pattern "phenotype_(.*)_metric" are plotted in the DataTrack. An
error is thrown if no such column is found.

range A GRanges of length one that defines the region to visualise. All variants in the
vcf object overlapping this region are plotted.

annotation An EnsDb annotation package from which to fetch gene annotations. TxDb pack-
ages may be supported in the future.

phenotype Column in the phenoData slot of the vcf object. Levels of this phenotype are
plotted and contrasted in the DataTrack. See argument metric for details.

type Plotting type(s), as listed in DataTrack.

zero.rm If TRUE, values equal to 0 are not displayed in the DataTrack.

Value

list returned by the plotTracks method.

Author(s)

Kevin Rue-Albrecht

See Also

plotTracks, addPhenoLevelFrequencies,ExpandedVCF-method, and VCF.

Examples

Example data ----

VCF file
vcfFile <- system.file("extdata", "moderate.vcf", package = "TVTB")

Phenotype file
phenoFile <- system.file("extdata", "moderate_pheno.txt", package = "TVTB")
phenotypes <- S4Vectors::DataFrame(read.table(phenoFile, TRUE, row.names = 1))

TVTB parameters
tparam <- TVTBparam(Genotypes("0|0", c("0|1", "1|0"), "1|1"))

Pre-process variants
vcf <- VariantAnnotation::readVcf(

vcfFile, param = tparam, colData = phenotypes)
vcf <- VariantAnnotation::expand(vcf, row.names = TRUE)
vcf <- addFrequencies(vcf, "super_pop")

Example usage ----

if (requireNamespace("EnsDb.Hsapiens.v75")){
plotInfo(

vcf, "MAF",
range(GenomicRanges::granges(vcf)),
EnsDb.Hsapiens.v75::EnsDb.Hsapiens.v75,

18 readVcf-methods

"super_pop"
)

}

readVcf-methods Read VCF files

Description

Read Variant Call Format (VCF) files, attaches the given TVTBparam in the metadata slot of the
resulting VCF object, and attaches optional phenotype information in the phenoData slot.

Usage

S4 method for signature 'character,TVTBparam'
readVcf(

file, genome, param, ..., colData = DataFrame(), autodetectGT = FALSE)
S4 method for signature 'TabixFile,TVTBparam'
readVcf(

file, genome, param, ..., colData = DataFrame(), autodetectGT = FALSE)

Arguments

file, genome See readVcf.

param TVTBparam object that contains recurrent parameters.
The vep slot of param is checked for presence among the INFO keys of the VCF
file. The TVTBparam object is coerced to ScanVcfParam using the ranges slot
only. All fixed, info, and geno fields are imported (see argument colData to
declare samples to import).

... Additional arguments, passed to methods.

colData Phenotype information in a DataFrame.
If supplied, only samples identifiers present in rownames(colData) are im-
ported from the VCF file. An error is thrown if any of the samples is absent
from the VCF file.

autodetectGT If TRUE, the method updates the genotypes definitions in the TVTBparam object
attached to the resulting VCF object after guessing the codes that represent ho-
mozygote reference, heterozygote, and homzoygote alternate genotypes.

Value

VCF object. See ?VCF for complete details of the class structure.

Warning

A warning message is issued if genotypes cannot be fully defined, when autodetectGT=TRUE.

Author(s)

Kevin Rue-Albrecht

tSVE 19

See Also

readVcf,TabixFile,ScanVcfParam-method, and VCF.

Examples

Example data ----

VCF file
vcfFile <- system.file("extdata", "moderate.vcf.gz", package = "TVTB")

Phenotype file
phenoFile <- system.file("extdata", "moderate_pheno.txt", package = "TVTB")
phenotypes <- S4Vectors::DataFrame(read.table(phenoFile, TRUE, row.names = 1))

TVTB parameters
tparam <- TVTBparam(Genotypes("0|0", c("0|1", "1|0"), "1|1"))

Example usage ----

vcf <- readVcf(vcfFile, "b37", tparam, colData = phenotypes)

tSVE The Shiny Variant Explorer (tSVE) web-application

Description

Currently unsupported — Package undergoing major updates.

This function starts the interactive tSVE shiny web-application that allows to interactively load and
visualise genetic variants and their Ensembl Variant Effect Predictor (VEP) predictions using the
package methods. All arguments after the . . . set default values for the application (e.g. widgets).

Usage

tSVE(
...,
refGT = "0|0",
hetGT = c("0|1", "1|2", "0|2", "1|0", "2|1", "2|0"),
altGT = c("1|1", "2|2"),
vepKey = "CSQ",
refSuffix = "REF", hetSuffix = "HET", altSuffix = "ALT",
aafSuffix = "AAF", mafSuffix = "MAF",
genoHeatmap.height = "500px",
options.width = 120,
autodetectGTimport = FALSE

)

Arguments

... Additional arguments passed to the runApp function from the shiny package.

refGT Default homozygote reference genotypes.

20 tSVE

hetGT Default heterozygote genotypes.

altGT Default homozygote alternate genotypes.

vepKey Default INFO key for the VEP prediction field.

refSuffix Default INFO key suffix used to store the data for homozygote reference geno-
types.

hetSuffix Default INFO key suffix used to store the data for heterozygote genotypes.

altSuffix Default INFO key suffix used to store the data for homozygote alternate geno-
types.

aafSuffix Default INFO key suffix used to store the data for alternate allele frequency.

mafSuffix Default INFO key suffix used to store the data for minor allele frequency.

genoHeatmap.height

Default height (in pixels) of the heatmap that represents the genotype of each
variant in each sample.

options.width Sets options("width").

autodetectGTimport

Default checkbox value. If FALSE, genotypes (ref, het, alt) are taken as is from
the Advanced settings panel. If TRUE, genotypes selected in the Advanced set-
tings panel are updated using the autodetectGenotypes method, immediately
after variants are imported.

Value

Not applicable (yet).

Author(s)

Kevin Rue-Albrecht

References

Interface to EnsDb adapted from the ensembldb package.

See Also

runEnsDbApp.

Examples

if (interactive()){
runEnsDbApp()

}

TVTBparam-class 21

TVTBparam-class TVTBparam class objects

Description

The TVTBparam class stores recurrent parameters of the TVTB package in a convenient format.

Usage

TVTBparam(
genos, ranges = GRangesList(),
aaf = "AAF", maf = "MAF", vep = "CSQ", bp = SerialParam(),
svp = ScanVcfParam(which = reduce(unlist(ranges))))

Arguments

genos A Genotypes object that declares the three sets of homozygote reference, het-
erozygote, and homozygote alternate genotypes, as well as the individual key
suffix used to store data for each set of genotypes in the info slot of a VCF
object. See also Details section.

ranges A GRangesList of genomic regions. See svp argument. In the future, may be
used to facet statistics and figures.

aaf INFO key suffix used to store the alternate allele frequency (AAF).

maf INFO key suffix used to store the minor allele frequency (MAF).

vep INFO key suffix used to extract the VEP predictions. See svp argument.

bp A BiocParallelParam object.

svp A ScanVcfParam object. If none is supplied, the ScanVcfParam slot which is
automatically set to reduce(unlist(ranges)).

Details

For each suffix stored in the TVTBparam object, TVTB may store data in the VCF object under the
INFO keys defined as follows:

suffix Statistics across all samples in the ExpandedVCF (e.g. "MAF").

phenotype_level_suffix Statistics across samples associated with a given level of a given phenotype
(e.g. "gender_male_MAF").

Users are recommended to avoid using those INFO keys for other purposes.

Value

A TVTBparam object that contains recurrent parameters.

22 TVTBparam-class

Accessor methods

In the following code snippets x is a TVTBparam object.

genos(x), genos(x) <- value Gets or sets the Genotypes object stored in the genos slot.

ranges(x), ranges(x) <- value List of genomic ranges to group variants during analyses and
plots.

ref(x), ref(x) <- value Gets or sets the character vector that declares homozygote reference
genotypes.

het(x), het(x) <- value Gets or sets the character vector that declares heterozygote genotypes.

alt(x), alt(x) <- value Gets or sets the character vector that declares homozygote alternate
genotypes.

carrier(x) Gets a character vectors of concatenated heterozygote and homozygote alternate
genotypes. See also het and alt accessors.

aaf(x), aaf(x) <- value Gets or sets the INFO key suffix used to store the alternate allele fre-
quency (AAF).

maf(x), maf(x) <- value Gets or sets the INFO key suffix used to store the minor allele frequency
(MAF).

vep(x), maf(x) <- value Gets or sets the INFO key suffix used to extract the VEP predictions.

bp(x), bp(x) <- value Gets or sets the BiocParallel parameters.

suffix(x) Gets a named character vector that declares individual suffixes used to store the data
for each set of genotypes in the INFO field of the VCF object. Names of this vector are ref,
het, alt, aaf, and maf.

svp(x), svp(x) <- value Gets or sets the ScanVcfParam parameters.

Author(s)

Kevin Rue-Albrecht

See Also

Genotypes, VCF, ExpandedVCF, addCountGenos-methods vepInPhenoLevel-methods, variantsInSamples-methods,
and BiocParallelParam.

Examples

Constructors ----

grl <- GenomicRanges::GRangesList(GenomicRanges::GRanges(
"15", IRanges::IRanges(48413170, 48434757, names = "SLC24A5")
))

tparam <- TVTBparam(Genotypes("0|0", c("0|1", "1|0"), "1|1"), ranges = grl)

Accessors ----

The Genotypes object stored in the genos slot of the TVTBparam object
return by the genos() accessor.
genos(tparam)

Genomic ranges stored in the TVTBparam object returned by the ranges()

variantsInSamples-methods 23

accessor.
ranges(tparam)

Individual genotypes can be extracted with ref(), het(), alt() accessors.
ref(tparam)
het(tparam)
alt(tparam)

Their individual INFO key suffixes can be extracted with suffix() applied to
the above accessors.
suffix(tparam)
suffix(tparam)["ref"]
suffix(tparam)["het"]
suffix(tparam)["alt"]
suffix(tparam)["aaf"]
suffix(tparam)["maf"]

Heterozygote, and alternate heterozygote genotypes are
returned by the carrier() accessor.
carrier(tparam)

INFO key suffix of alternate/minor allele frequency returned by the aaf()
and maf() accessors.
aaf(tparam)
maf(tparam)

INFO key suffix of the VEP predictions returned by the vep() accessor.
vep(tparam)

BiocParallel parameters
bp(tparam)

ScanVcfParam parameters
svp(tparam)

variantsInSamples-methods

Identify variants observed in samples

Description

Identifies variants observed (uniquely) in at least one sample of a given group.

Usage

S4 method for signature 'ExpandedVCF'
variantsInSamples(

vcf, samples = 1:ncol(vcf), unique = FALSE)

Arguments

vcf ExpandedVCF object.
metadata(vcf)[["TVTBparam"]] must contain a TVTBparam object.

24 variantsInSamples-methods

samples integer, numeric or character vector indicating samples to consider in VariantAnnotation::geno(vcf).
If not specified, all samples are considered.

unique If TRUE, consider only variants unique to the phenotype level (i.e. not seen in
any other phenotype level).

Value

An named integer vector of indices indicating the name and index of variants that are (uniquely)
observed in at least one non-reference genotype in the given group of samples.

Warning

A warning message is issued if genotypes are not fully defined in the TVTBparam.

Author(s)

Kevin Rue-Albrecht

See Also

VCF and TVTBparam.

Examples

Example data ----

VCF file
vcfFile <- system.file("extdata", "moderate.vcf", package = "TVTB")

Phenotype file
phenoFile <- system.file("extdata", "moderate_pheno.txt", package = "TVTB")
phenotypes <- S4Vectors::DataFrame(

read.table(file = phenoFile, header = TRUE, row.names = 1))

TVTB parameters
tparam <- TVTBparam(Genotypes("0|0", c("0|1", "1|0"), "1|1"))

Pre-process variants
vcf <- VariantAnnotation::readVcf(

vcfFile, param = tparam, colData = phenotypes)
vcf <- VariantAnnotation::expand(vcf, row.names = TRUE)

Example usage ----

variantsInSamples(
vcf,
which(SummarizedExperiment::colData(vcf)[,"super_pop"] == "EUR"))

VcfBasicRules-class 25

VcfBasicRules-class VCF filters class objects sub-types

Description

The VcfFixedRules and VcfInfoRules classes store filters applicable to the fixed and info slots
of VCF objects, respectively.

The VcfVepRules stores filters applicable to Ensembl VEP predictions stores in a given INFO key.

Details

All arguments are first passed to S4Vectors::FilterRules before re-typing the resulting as a
VcfFixedRules, VcfInfoRules, or VcfVepRules class.

Accessor methods

In the following code snippets x is an object from any of the classes decribed in this help page,
except when specified otherwise.

active(x), active(x)<- Gets or sets the active state of each filter rule in x. Inherited from
FilterRules

vep(x), vep(x)<- Gets or sets the INFO key where the Ensembl VEP predictions to use for fil-
tering are stored. Returns NA_character_ for filters not applicable to VEP predictions.

type(x) Returns "filter" (linkS4class{FilterRules}), "fixed" (linkS4class{VcfFixedRules}),
"info" (linkS4class{VcfInfoRules}), or "vep" (linkS4class{VcfVepRules}) as a character
vector of length(x).

Constructors

VcfFixedRules(exprs = list(), ..., active = TRUE)

VcfInfoRules(exprs = list(), ..., active = TRUE)

VcfVepRules(exprs = list(), ..., active = TRUE, vep = "CSQ")

All methods construct an object of the corresponding class with the rules given in the list exprs or
in The initial active state of the rules is given by active, which is recycled as necessary.

See the constructor of FilterRules for more details.

Subsetting and Replacement

In the following code snippets x and value are objects from any of the classes described in this help
page.

• x[i]: Subsets the filter rules using the same interface as for List.

• x[[i]]: Extracts an expression or function via the same interface as for List.

• x[i] <- value: Replaces a filter rule by one of the same class. The active state(s) and name(s)
are transferred from value to x.

• x[[i]] <- value: The same interface as for List. The default active state for new rules is
TRUE.

26 VcfBasicRules-class

Combining

In the following code snippets x, values, and ... are objects from any of the classes described in
this help page, or VcfFilterRules.

• append(x, values, after = length(x)): Appends the values onto x at the index given by
after.

• c(x, ...,): Concatenates the filters objects in ... onto the end of x.

Note that combining rules of different types (e.g. VcfFixedRules and VcfVepRules) produces a
VcfFilterRules object.

Evaluating

As described in the S4Vectors documentation:

• eval(expr, envir, enclos): Evaluates a rule instance (passed as the expr argument) in
their respective context of a VCF object (passed as the envir argument). i.e.:

– VcfFixedRules: fixed(envir)
– VcfInfoRules: info(envir)
– VcfVepRules: mcols(parseCSQToGRanges(envir, ...))

– FilterRules: envir

• evalSeparately(expr, envir, enclos):
subsetByFilter(x, filter)

summary(object)

See eval,FilterRules,ANY-method for details.

Author(s)

Kevin Rue-Albrecht

See Also

FilterRules, VcfFilterRules, and VCF.

Examples

Constructors ----

fixedRules <- VcfFixedRules(list(
pass = expression(FILTER == "PASS"),
qual = expression(QUAL > 20)
))

fixedRules

infoRules <- VcfInfoRules(list(
common = expression(MAF > 0.01), # minor allele frequency
alt = expression(ALT > 0) # count of alternative homozygotes
))

infoRules

vepRules <- VcfVepRules(list(
missense = expression(Consequence %in% c("missense_variant")),
CADD = expression(CADD_PHRED > 15)

VcfBasicRules-class 27

))
vepRules

filterRules <- S4Vectors::FilterRules(list(
PASS = function(x) fixed(x)$FILTER == "PASS",
COMMON = function(x) info(x)$MAF > 0.05
))

filterRules

Accessors ----

get/set the active state directly
S4Vectors::active(infoRules)
S4Vectors::active(infoRules)["common"] <- FALSE

See S4Vectors::FilterRules for more examples

Example data ----

VCF file
vcfFile <- system.file("extdata", "moderate.vcf", package = "TVTB")

TVTB parameters
tparam <- TVTBparam(Genotypes("0|0", c("0|1", "1|0"), "1|1"))

Pre-process variants
vcf <- VariantAnnotation::readVcf(vcfFile, param = tparam)
vcf <- VariantAnnotation::expand(vcf, row.names = TRUE)
vcf <- addOverallFrequencies(vcf)

Applying filters to VCF objects ----

Evaluate filters
S4Vectors::eval(fixedRules, vcf)
S4Vectors::eval(infoRules, vcf)
S4Vectors::eval(vepRules, vcf)
S4Vectors::eval(filterRules, vcf)

summary(S4Vectors::eval(vepRules, vcf))

Evaluate filters separately
S4Vectors::evalSeparately(vepRules, vcf)

summary(S4Vectors::evalSeparately(vepRules, vcf))

Subset VCF by filters
S4Vectors::subsetByFilter(vcf, vepRules)

Subsetting and Replacement ----

vep1 <- vepRules[1] # VcfVepRules
vepRules[[1]] # expression

28 VcfFilterRules-class

Replace the expression (active reset to TRUE, original name retained)
vepRules[[2]] <- expression(CADD_PHRED > 30)

Replace the rule (active state and name transferred from v5obj)
vepRules[2] <- VcfVepRules(

list(newRule = expression(CADD_PHRED > 30)),
active = FALSE)

VcfFilterRules-class VcfFilterRules class objects

Description

The VcfFilterRules class can stores multiple types of filters applicable to various slots of VCF
objects.

Details

All arguments must be VcfFixedRules, VcfInfoRules, VcfVepRules, VcfFilterRules of FilterRules
objects.

Accessor methods

In the following code snippets x is a VcfFilterRules object.

active(x), active(x)<- Get or set the active state of each filter rule in x. Inherited from FilterRules

vep(x), vep(x)<- Gets or sets the INFO key where the Ensembl VEP predictions to use for fil-
tering are stored.

type(x) Gets the type of each filter stored in a VcfFilterRules object. Read-only.

Constructors

• VcfFilterRules(...) constructs an VcfFilterRules object from VcfFixedRules, VcfInfoRules,
VcfVepRules, and VcfFilterRules objects in

Subsetting and Replacement

In the code snippets below, x is a VcfFilterRules object.

• x[i, drop = TRUE]: Subsets the filter rules using the same interface as for Vector. If all filter
rules are of the same type and drop=TRUE (default), the resulting object is re-typed to the most
specialised class, if possible. In other words, if all remaining filter rules are of type "vep", the
object will be type as VcfVepRules.

• x[[i]]: Extracts an expression or function via the same interface as for List.

• x[i] <- value: Replaces a filter rule by one of any valid class (VcfFixedRules, VcfInfoRules,
VcfVepRules, or VcfFilterRules). The active state(s), name(s), and type(s) (if applicable)
are transferred from value.

• x[[i]] <- value: The same interface as for List. The default active state for new rules is
TRUE.

VcfFilterRules-class 29

Combining

In the following code snippets x is an object of class VcfFilterRules, while values and ... are
objects from any of the classes VcfFixedRules, VcfInfoRules, VcfVepRules, or VcfFilterRules:

• append(x, values, after = length(x)): Appends the values onto x at the index given by
after.

• c(x, ...,): Concatenates the filters objects in ... onto the end of x.

Evaluating

As described in the S4Vectors documentation:

• eval(expr, envir, enclos) Evaluates each active rule in a VcfFilterRules instance (passed
as the expr argument) in their respective context of a VCF object (passed as the envir argu-
ment).

• evalSeparately(expr, envir, enclos):
subsetByFilter(x, filter)

summary(object)

See eval,FilterRules,ANY-method for details.

Author(s)

Kevin Rue-Albrecht

See Also

FilterRules, VcfFixedRules, VcfInfoRules, VcfVepRules, and VCF.

Examples

Constructors ----

fixedR <- VcfFixedRules(list(
pass = expression(FILTER == "PASS"),
qual = expression(QUAL > 20)
))

fixedR

infoR <- VcfInfoRules(list(
common = expression(MAF > 0.1), # minor allele frequency
present = expression(ALT + HET > 0) # count of non-REF homozygotes
))

...is synonym to...
infoR <- VcfInfoRules(list(

common = expression(MAF > 0.1), # minor allele frequency
present = expression(ALT > 0 | HET > 0)
))

infoR

vepR <- VcfVepRules(list(
missense = expression(Consequence %in% c("missense_variant")),
CADD = expression(CADD_PHRED > 15)
))

vepR

30 VcfFilterRules-class

vcfRules <- VcfFilterRules(fixedR, infoR, vepR)
vcfRules

Accessors ----

Type of each filter stored in the VcfFilterRules object
type(vcfRules)

Example data ----

VCF file
vcfFile <- system.file("extdata", "moderate.vcf", package = "TVTB")

TVTB parameters
tparam <- TVTBparam(Genotypes("0|0", c("0|1", "1|0"), "1|1"))

Pre-process variants
vcf <- VariantAnnotation::readVcf(vcfFile, param = tparam)
vcf <- VariantAnnotation::expand(vcf, row.names = TRUE)
vcf <- addOverallFrequencies(vcf, tparam)

Applying filters to VCF objects ----

Evaluate filters
eval(vcfRules, vcf)

Evaluate filters separately
as.data.frame(evalSeparately(vcfRules, vcf))

Interestingly, the only common missense variant has a lower CADD score
Deactivate the CADD score filter
active(vcfRules)["CADD"] <- FALSE

Subset VCF by filters (except CADD, deactivated above)
subsetByFilter(vcf, vcfRules)

Subsetting and Replacement ----

v123 <- vcfRules[1:3]

Extract the expression
v5expr <- vcfRules[[5]]
Subset the object
v5obj <- vcfRules[5]

Replace the expression (active reset to TRUE, original name retained)
v123[[2]] <- v5expr

Replace the rule (active state and name transferred from v5obj)
v123[2] <- v5obj

vepInPhenoLevel-methods 31

vepInPhenoLevel-methods

VEP predictions of variants observed in samples

Description

Returns VEP predictions for variants observed (uniquey) in samples associated with a given pheno-
type level.

Usage

S4 method for signature 'ExpandedVCF'
vepInPhenoLevel(

vcf, phenoCol, level, vepCol, unique = FALSE)

Arguments

vcf ExpandedVCF object.
metadata(vcf)[["TVTBparam"]] must contain a TVTBparam object.

phenoCol Name of a column in pheno.

level Phenotype level; only variants observed in at least one sample will be consid-
ered.

vepCol VEP prediction fields; character vector of metadata columns in parseCSQToGRanges(vcf).

unique If TRUE, consider only variants unique to the phenotype level (i.e. absent from
all other phenotype levels).

Value

A GRanges including all VEP predictions associated with a variant seen in at least one sample
(heterozygote or alternate homozygote) associated with the phenotype level. The GRanges contains
at least one column for the VEP prediction value. Additional columns containing another VEP
prediction field may be added using the facet argument.

Note

If available, "Feature" is a recommended value for this argument, as VEP typically produce one
prediction per variant per feature.

Warning

A warning message is issued if genotypes are not fully defined in the TVTBparam.

Author(s)

Kevin Rue-Albrecht

See Also

VCF, GRanges, and DataFrame.

32 vepInPhenoLevel-methods

Examples

Example data ----

VCF file
vcfFile <- system.file("extdata", "moderate.vcf", package = "TVTB")

Phenotype file
phenoFile <- system.file("extdata", "moderate_pheno.txt", package = "TVTB")
phenotypes <- S4Vectors::DataFrame(

read.table(file = phenoFile, header = TRUE, row.names = 1))

TVTB parameters
tparam <- TVTBparam(Genotypes("0|0", c("0|1", "1|0"), "1|1"))

Pre-process variants
vcf <- VariantAnnotation::readVcf(

vcfFile, param = tparam, colData = phenotypes)
vcf <- VariantAnnotation::expand(vcf, row.names = TRUE)

Example usage ----

vepInPhenoLevel(vcf, "super_pop", "AFR", c("CADD_PHRED", "Feature", "IMPACT"))

Index

∗ methods
addCountGenos-methods, 3
autodetectGenotypes-methods, 9
countGenos-methods, 10
dropInfo-methods, 11
parseCSQToGRanges, 15
variantsInSamples-methods, 23
vepInPhenoLevel-methods, 31

∗ package
TVTB-package, 2

[,VcfFilterRules,ANY,ANY,ANY-method
(VcfFilterRules-class), 28

[,VcfFilterRules,ANY,ANY,logical-method
(VcfFilterRules-class), 28

[,VcfFilterRules,ANY,ANY,missing-method
(VcfFilterRules-class), 28

[,VcfFixedRules,ANY,ANY-method
(VcfBasicRules-class), 25

[,VcfInfoRules,ANY,ANY-method
(VcfBasicRules-class), 25

[,VcfVepRules,ANY,ANY-method
(VcfBasicRules-class), 25

[<-,VcfFilterRules,numeric,missing,VcfFilterRules-method
(VcfFilterRules-class), 28

[<-,VcfFilterRules,numeric,missing,VcfFixedRules-method
(VcfFilterRules-class), 28

[<-,VcfFilterRules,numeric,missing,VcfInfoRules-method
(VcfFilterRules-class), 28

[<-,VcfFilterRules,numeric,missing,VcfVepRules-method
(VcfFilterRules-class), 28

[<-,VcfFixedRules,numeric,missing,VcfFixedRules-method
(VcfBasicRules-class), 25

[<-,VcfInfoRules,numeric,missing,VcfInfoRules-method
(VcfBasicRules-class), 25

[<-,VcfVepRules,numeric,missing,VcfVepRules-method
(VcfBasicRules-class), 25

[[,VcfFilterRules,ANY,ANY-method
(VcfFilterRules-class), 28

[[,VcfFixedRules,ANY,ANY-method
(VcfBasicRules-class), 25

[[,VcfInfoRules,ANY,ANY-method
(VcfBasicRules-class), 25

[[,VcfVepRules,ANY,ANY-method

(VcfBasicRules-class), 25
[[<-,VcfFilterRules,ANY,ANY-method

(VcfFilterRules-class), 28
[[<-,VcfFixedRules,ANY,ANY-method

(VcfBasicRules-class), 25
[[<-,VcfInfoRules,ANY,ANY-method

(VcfBasicRules-class), 25
[[<-,VcfVepRules,ANY,ANY-method

(VcfBasicRules-class), 25

aaf (TVTBparam-class), 21
aaf,TVTBparam-method (TVTBparam-class),

21
aaf<- (TVTBparam-class), 21
aaf<-,TVTBparam,character-method

(TVTBparam-class), 21
addCountGenos (addCountGenos-methods), 3
addCountGenos,ExpandedVCF-method

(addCountGenos-methods), 3
addCountGenos-methods, 3
addFrequencies

(addFrequencies-methods), 4
addFrequencies,ExpandedVCF,character-method

(addFrequencies-methods), 4
addFrequencies,ExpandedVCF,list-method

(addFrequencies-methods), 4
addFrequencies,ExpandedVCF,missing-method

(addFrequencies-methods), 4
addFrequencies-methods, 4
addOverallFrequencies

(addOverallFrequencies-methods),
6

addOverallFrequencies,ExpandedVCF-method
(addOverallFrequencies-methods),
6

addOverallFrequencies-methods, 6
addPhenoLevelFrequencies

(addPhenoLevelFrequencies-methods),
7

addPhenoLevelFrequencies,ExpandedVCF-method
(addPhenoLevelFrequencies-methods),
7

addPhenoLevelFrequencies-methods, 7

33

34 INDEX

alt,Genotypes-method (Genotypes-class),
12

alt,TVTBparam-method (TVTBparam-class),
21

alt<-,Genotypes,character-method
(Genotypes-class), 12

alt<-,TVTBparam,character-method
(TVTBparam-class), 21

alt<-,TVTBparam,list-method
(TVTBparam-class), 21

append,VcfFilterRules,FilterRules-method
(VcfFilterRules-class), 28

append,VcfFixedRules,FilterRules-method
(VcfBasicRules-class), 25

append,VcfInfoRules,FilterRules-method
(VcfBasicRules-class), 25

append,VcfVepRules,FilterRules-method
(VcfBasicRules-class), 25

autodetectGenotypes, 13
autodetectGenotypes

(autodetectGenotypes-methods),
9

autodetectGenotypes,VCF-method
(autodetectGenotypes-methods),
9

autodetectGenotypes-methods, 9

BiocParallelParam, 22
bp (TVTBparam-class), 21
bp,TVTBparam-method (TVTBparam-class),

21
bp<- (TVTBparam-class), 21
bp<-,TVTBparam,BiocParallelParam-method

(TVTBparam-class), 21

c,VcfFilterRules-method
(VcfFilterRules-class), 28

c,VcfFixedRules-method
(VcfBasicRules-class), 25

c,VcfInfoRules-method
(VcfBasicRules-class), 25

c,VcfVepRules-method
(VcfBasicRules-class), 25

carrier (Genotypes-class), 12
carrier,Genotypes-method

(Genotypes-class), 12
carrier,TVTBparam-method

(TVTBparam-class), 21
class:Genotypes (Genotypes-class), 12
class:TVTBparam (TVTBparam-class), 21
class:VcfFilterRules

(VcfFilterRules-class), 28

class:VcfFixedRules
(VcfBasicRules-class), 25

class:VcfInfoRules
(VcfBasicRules-class), 25

class:VcfVepRules
(VcfBasicRules-class), 25

countGenos (countGenos-methods), 10
countGenos,ExpandedVCF-method

(countGenos-methods), 10
countGenos-methods, 10

DataFrame, 18, 31
DataTrack, 17
dropInfo (dropInfo-methods), 11
dropInfo,VCF-method (dropInfo-methods),

11
dropInfo-methods, 11

EnsDb, 17
eval,VcfFilterRules,VCF-method

(VcfFilterRules-class), 28
eval,VcfFixedRules,VCF-method

(VcfBasicRules-class), 25
eval,VcfInfoRules,VCF-method

(VcfBasicRules-class), 25
eval,VcfVepRules,VCF-method

(VcfBasicRules-class), 25
ExpandedVCF, 22

FilterRules, 25, 26, 28, 29

genos (Genotypes-class), 12
genos,Genotypes-method

(Genotypes-class), 12
genos,TVTBparam-method

(TVTBparam-class), 21
genos<- (TVTBparam-class), 21
genos<-,TVTBparam,Genotypes-method

(TVTBparam-class), 21
Genotypes, 22
Genotypes (Genotypes-class), 12
Genotypes-class, 12
Genotypes-methods (Genotypes-class), 12
ggpairs, 14, 15
GRanges, 31

het (Genotypes-class), 12
het,Genotypes-method (Genotypes-class),

12
het,TVTBparam-method (TVTBparam-class),

21
het<- (Genotypes-class), 12
het<-,Genotypes,character-method

(Genotypes-class), 12

INDEX 35

het<-,TVTBparam,character-method
(TVTBparam-class), 21

het<-,TVTBparam,list-method
(TVTBparam-class), 21

initialize,Genotypes-method
(Genotypes-class), 12

initialize,TVTBparam-method
(TVTBparam-class), 21

initialize,VcfFilterRules-method
(VcfFilterRules-class), 28

initialize,VcfFixedRules-method
(VcfBasicRules-class), 25

initialize,VcfInfoRules-method
(VcfBasicRules-class), 25

initialize,VcfVepRules-method
(VcfBasicRules-class), 25

List, 25, 28

maf (TVTBparam-class), 21
maf,TVTBparam-method (TVTBparam-class),

21
maf<- (TVTBparam-class), 21
maf<-,TVTBparam,character-method

(TVTBparam-class), 21

pairsInfo (pairsInfo-methods), 14
pairsInfo,VCF-method

(pairsInfo-methods), 14
pairsInfo-methods, 14
parseCSQToGRanges, 15
parseCSQToGRanges,VCF-method

(parseCSQToGRanges), 15
phenoData, 14, 17
plotInfo (plotInfo-methods), 16
plotInfo,VCF-method (plotInfo-methods),

16
plotInfo-methods, 16
plotTracks, 17

ranges (TVTBparam-class), 21
ranges,TVTBparam-method

(TVTBparam-class), 21
ranges<- (TVTBparam-class), 21
ranges<-,TVTBparam,GRangesList-method

(TVTBparam-class), 21
readVcf, 18
readVcf,character,TVTBparam-method

(readVcf-methods), 18
readVcf,TabixFile,TVTBparam-method

(readVcf-methods), 18
readVcf-methods, 18

ref,Genotypes-method (Genotypes-class),
12

ref,TVTBparam-method (TVTBparam-class),
21

ref<-,Genotypes,character-method
(Genotypes-class), 12

ref<-,TVTBparam,character-method
(TVTBparam-class), 21

ref<-,TVTBparam,list-method
(TVTBparam-class), 21

runApp, 19
runEnsDbApp, 20

ScanVcfParam, 18, 21
suffix (Genotypes-class), 12
suffix,Genotypes-method

(Genotypes-class), 12
suffix,TVTBparam-method

(TVTBparam-class), 21
svp (TVTBparam-class), 21
svp,TVTBparam-method (TVTBparam-class),

21
svp<- (TVTBparam-class), 21
svp<-,TVTBparam,ScanVcfParam-method

(TVTBparam-class), 21

tSVE, 19
TVTB-package, 2
TVTBparam, 5, 6, 8, 13, 18, 23, 24, 31
TVTBparam (TVTBparam-class), 21
TVTBparam-class, 21
TVTBparam-methods (TVTBparam-class), 21
TxDb, 17
type,FilterRules-method

(VcfBasicRules-class), 25
type,VcfFilterRules-method

(VcfFilterRules-class), 28
type,VcfFixedRules-method

(VcfBasicRules-class), 25
type,VcfInfoRules-method

(VcfBasicRules-class), 25
type,VcfVepRules-method

(VcfBasicRules-class), 25

variantsInSamples
(variantsInSamples-methods), 23

variantsInSamples,ExpandedVCF-method
(variantsInSamples-methods), 23

variantsInSamples-methods, 23
VCF, 5, 7, 8, 10, 12, 13, 15, 17, 19, 22, 24, 26,

29, 31
VcfBasicRules-class, 25
VcfFilterRules, 26

36 INDEX

VcfFilterRules (VcfFilterRules-class),
28

VcfFilterRules-class, 28
VcfFixedRules, 29
VcfFixedRules (VcfBasicRules-class), 25
VcfFixedRules-class

(VcfBasicRules-class), 25
VcfInfoRules, 29
VcfInfoRules (VcfBasicRules-class), 25
VcfInfoRules-class

(VcfBasicRules-class), 25
VcfVepRules, 29
VcfVepRules (VcfBasicRules-class), 25
VcfVepRules-class

(VcfBasicRules-class), 25
Vector, 28
vep (TVTBparam-class), 21
vep,FilterRules-method

(VcfBasicRules-class), 25
vep,TVTBparam-method (TVTBparam-class),

21
vep,VcfFilterRules-method

(VcfFilterRules-class), 28
vep,VcfFixedRules-method

(VcfBasicRules-class), 25
vep,VcfInfoRules-method

(VcfBasicRules-class), 25
vep,VcfVepRules-method

(VcfBasicRules-class), 25
vep<- (TVTBparam-class), 21
vep<-,TVTBparam,character-method

(TVTBparam-class), 21
vep<-,VcfFilterRules,character-method

(VcfFilterRules-class), 28
vep<-,VcfVepRules,character-method

(VcfBasicRules-class), 25
vepInPhenoLevel

(vepInPhenoLevel-methods), 31
vepInPhenoLevel,ExpandedVCF-method

(vepInPhenoLevel-methods), 31
vepInPhenoLevel-methods, 31

	TVTB-package
	addCountGenos-methods
	addFrequencies-methods
	addOverallFrequencies-methods
	addPhenoLevelFrequencies-methods
	autodetectGenotypes-methods
	countGenos-methods
	dropInfo-methods
	Genotypes-class
	pairsInfo-methods
	parseCSQToGRanges
	plotInfo-methods
	readVcf-methods
	tSVE
	TVTBparam-class
	variantsInSamples-methods
	VcfBasicRules-class
	VcfFilterRules-class
	vepInPhenoLevel-methods
	Index

