## ----style, echo = FALSE, results = 'asis'------------------------------------ BiocStyle::markdown() ## ----eval=FALSE--------------------------------------------------------------- # if(!requireNamespace("BiocManager", quietly=TRUE)) # install.packages("BiocManager") # BiocManager::install("scoup") ## ----eval=TRUE---------------------------------------------------------------- # Make package accessible in R session library(scoup) # Number of extant taxa leaves <- 8 # Number of codon sites sSize <- 15 # Number of data replications for each parameter combination sims <- 1 # OU reversion parameter (Theta) value eThta <- c(0.01) # OU asymptotic variance value eVary <- c(0.0001) # OU landscape shift parameters hbrunoStat <- hbInput(c(vNvS=1, nsynVar=0.01)) # Sequence alignment size information seqStat <- seqDetails(c(nsite=sSize, ntaxa=leaves)) # Iterate over all listed OU variance values for(g in seq(1,length(eVary))){ # Iterate over all listed OU reversion parameter values for(h in seq(1,length(eThta))){ # Create appropriate simulation function ("ou") object adaptStat <- ouInput(c(eVar=eVary[g],Theta=eThta[h])) # Iterate over the specified number of replicates for(i in seq(1,sims)){ # Execute simulation simData <- alignsim(adaptStat, seqStat, hbrunoStat, NULL) } } } # Print simulated alignment seqCOL(simData) ## ----eval=TRUE---------------------------------------------------------------- # Make package accessible in R session library(scoup) # Number of extant taxa xtant <- 8 # Number of codon sites siteSize <- 15 # Number of data replications for each parameter combination simSize <- 1 # Variance of the non-synonymous selection coefficients nsynVary <- c(0.001) # Ratio of the variance of the non-synonymous to synonymous coeff. vNvSvec <- c(1) # Sequence alignment size information seqStat <- seqDetails(c(nsite=siteSize, ntaxa=xtant)) # Iterate over all listed coefficient variance ratios for(a in seq(1,length(vNvSvec))){ # Iterate over all listed non-synonymous coefficients variance for(b in seq(1,length(nsynVary))){ # Create appropriate simulation function ("omega") object adaptData <- wInput(list(vNvS=vNvSvec[a],nsynVar=nsynVary[b])) # Iterate over the specified number of replicates for(i in seq(1,simSize)){ # Execute simulation simulateSeq <- alignsim(adaptData, seqStat, NA) } } } # Print simulated alignment cseq(simulateSeq) ## ----eval=TRUE---------------------------------------------------------------- # Make package accessible in R session library(scoup) # Number of codon sites sitesize<- 15 # Variance of non-synonymous selection coefficients nsynVary <- 0.01 # Number of extant taxa ## Commented value was used for results presented in article taxasize <- 8 # Sequence alignment size information seqsEntry <- seqDetails(c(nsite=sitesize, ntaxa=taxasize)) # Create the applicable ("ou") object for simulation function ## eVar= OU asymptotic variance, Theta=OU reversion parameter adaptEntry <- ouInput(c(eVar=0.1,Theta=1)) # Ratio of the variance of the non-synonymous to synonymous coeff. sratio <- c(1e-06) # Iterate over all listed coefficient variance ratios for(a0 in seq(1,length(sratio))){ # OU landscape shift parameters mValues <- hbInput(c(vNvS=sratio[a0], nsynVar=nsynVary)) # Execute simulation simSeq <- alignsim(adaptEntry, seqsEntry, mValues, NA) } # Print simulated codon sequence cseq(simSeq) ## ----eval=TRUE---------------------------------------------------------------- # Make package accessible in R session library(scoup) # Number of internal nodes on the desired balanced tree iNode <- 3 # Number of required codon sites siteCount <- 15 # Variance of non-synonymous selection coefficients nsnV <- 0.01 # Number of data replications for each parameter combination nsim <- 1 # Ratio of the variance of the non-synonymous to synonymous coeff. vNvSvec <- c(1e-06) # Sequence alignment size information seqsBwise <- seqDetails(c(nsite=siteCount, blength=0.10)) # Iterate over all listed coefficient variance ratios for(h in seq(1,length(vNvSvec))){ # Iterate over the specified number of replicates for(i in seq(1,nsim)){ # Create the parameter set applicable at each internal tree node scInput <- rbind(vNvS=c(rep(0,iNode-1),vNvSvec[h]), nsynVar=rep(nsnV,iNode)) # Create the applicable ("discrete") object for simulation function adaptBranch <- discreteInput(list(p02xnodes=scInput)) # Execute simulation genSeq <- alignsim(adaptBranch, seqsBwise, NULL) } } # Print simulated sequence data seqCOL(genSeq) ## ----sessionInfo, echo=FALSE-------------------------------------------------- sessionInfo()