## ----------------------------------------------------------------------------- library(rSWeeP) path = paste (system.file("examples/aaMitochondrial/",package = "rSWeeP"),'/', sep = '') sw = SWeePlite(path,seqtype='AA',mask=c(4),psz=1000) ## ----------------------------------------------------------------------------- sw$info ## ----plot Tree1, fig.height=10,fig.width=10----------------------------------- library(ape) # get the distance matrix mdist = dist(sw$proj,method='euclidean') # use the NJ algorithm to build the tree tr = nj(mdist) # root the tree in the plant sample tr = root(tr,outgroup='14_Rhazya_stricta') # plot plot(tr) ## ----------------------------------------------------------------------------- pathmetadata <- system.file(package = "rSWeeP" , "examples" , "metadata_mitochondrial.csv") mt = read.csv(pathmetadata,header=TRUE) ## ----eval tree---------------------------------------------------------------- data = data.frame(sp=mt$fileName,family=mt$family) PCCI(tr,data) # PhyloTaxonomic Consistency Cophenetic Index PMPG(tr,data) # Percentage of Mono or Paraphyletic Groups ## ----PCA, fig.height=7,fig.width=9-------------------------------------------- pca_output <- prcomp (sw$proj , scale = FALSE) par(mfrow=c(1,2)) plot(pca_output$x[,1],pca_output$x[,2],xlab = 'PC-1' , ylab = 'PC-2' , pch =20 , col = mt$id) legend("bottomright",unique(mt$family),col=as.character(c(1:length(unique(mt$family)))),pch=20) plot(pca_output$x[,3],pca_output$x[,4],xlab = 'PC-3' , ylab = 'PC-4' , pch =20 , col = mt$id) ## ----label='Session information', eval=TRUE, echo=FALSE----------------------- sessionInfo()