## ----setup, include=FALSE----------------------------------------------------- library(GeneNetworkBuilder) library(knitr) library(STRINGdb) library(org.Hs.eg.db) ## ----STRING------------------------------------------------------------------- library(GeneNetworkBuilder) gR <- NULL try({ ## just in case STRINGdb not work library(STRINGdb) curr_version_table <- read.table(url("https://string-db.org/api/tsv-no-header/version"), colClasses = "character")$V1[1] string_db <- STRINGdb$new( version=curr_version_table, species=9606, score_threshold=400) data(diff_exp_example1) example1_mapped <- string_db$map( diff_exp_example1, "gene", removeUnmappedRows = TRUE ) i <- string_db$get_interactions(example1_mapped$STRING_id) colnames(example1_mapped) <- c("gene", "P.Value", "logFC", "symbols") ## get significant up regulated genes. genes <- unique(example1_mapped$symbols[example1_mapped$P.Value<0.005 & example1_mapped$logFC>3]) ### rooted network, guess the root by connections x<-networkFromGenes(genes = genes, interactionmap=i, level=3) ## filter network ## unique expression data by symbols column expressionData <- uniqueExprsData(example1_mapped, method = 'Max', condenseName = "logFC") ## merge binding table with expression data by symbols column cifNetwork<-filterNetwork(rootgene=x$rootgene, sifNetwork=x$sifNetwork, exprsData=expressionData, mergeBy="symbols", miRNAlist=character(0), tolerance=1, cutoffPVal=0.001, cutoffLFC=1) ## convert the id back to symbol IDsMap <- expressionData$gene names(IDsMap) <- expressionData$symbols cifNetwork <- convertID(cifNetwork, IDsMap) ## add additional info for searching, any character content columns cifNetwork$info1 <- sample(c("groupA", "groupB"), size = nrow(cifNetwork), replace = TRUE) cifNetwork$info2 <- sample(c(FALSE, TRUE), size = nrow(cifNetwork), replace = TRUE) cifNetwork$info3 <- sample(seq.int(7), size = nrow(cifNetwork), replace = TRUE) ## polish network gR<-polishNetwork(cifNetwork, edgeWeight='combined_score') ## browse network browseNetwork(gR) ## try predefined colors cifNetwork$color <- sample(rainbow(7), nrow(cifNetwork), replace = TRUE) ## polish network gR<-polishNetwork(cifNetwork, nodecolor="color") ## browse network browseNetwork(gR) ### unrooted network x<-networkFromGenes(genes = genes, interactionmap=i, unrooted=TRUE) ## filter network ## unique expression data by symbols column expressionData <- uniqueExprsData(example1_mapped, method = 'Max', condenseName = "logFC") ## merge binding table with expression data by symbols column cifNetwork<-filterNetwork(sifNetwork=x$sifNetwork, exprsData=expressionData, mergeBy="symbols", miRNAlist=character(0), tolerance=1, cutoffPVal=0.001, cutoffLFC=1) # set minify=FALSE to retrieve all the interactions ## convert the id to symbol IDsMap <- expressionData$gene names(IDsMap) <- expressionData$symbols cifNetwork <- convertID(cifNetwork, IDsMap) ## polish network gR<-polishNetwork(cifNetwork, edgeWeight = 'combined_score') ## browse network browseNetwork(gR) }) ## ----subset------------------------------------------------------------------- if(!is.null(gR)){ library(org.Hs.eg.db) goGenes <- mget("GO:0002274", org.Hs.egGO2ALLEGS)[[1]] goGenes <- unique(unlist(mget(unique(goGenes), org.Hs.egSYMBOL))) gRs <- subsetNetwork(gR, goGenes) browseNetwork(gRs) } ## ----rcy3, eval=FALSE--------------------------------------------------------- # cy3Network(gRs)