
Optimizing gene expression with GeneGA

Zhenpeng Li, Xiaochen Bo

April 15, 2025

Contents
1 Introduction 1

2 Implementation 1

3 Functions and examples 2

4 Installation notes 6

1 Introduction
Biological engineering has driven the demand of achieving high-level expression of
heterologous genes. There are many factors that can influence the gene expression,
and these factors can be divided into two categories, one relating to the synonymous
mutaions of gene, such as codon bias, mRNA secondary structure and the other having
no relationship with synonymous mutations, such as expression vectors design, gene
dosage and promoter strength. Codon bias and folding energy have been deemed as two
main mechanisms of synonymous mutations to modulate the protein abundance[Tuller
et al., 2010b]. A recent study of expression of a diverse library of GFP gene in E.coli
concluded that mRNA folding and associated rates of translation initiation play a pre-
dominant role in shaping expression levels of individual genes, whereas codon bias
influences global translation efficiency and cellular fitness[Kudla et al., 2009]. Many
tools have been developed to optimize gene for increasing its expression level, such as
OPTIMIZER, GeneDesign and Gene Designer, while almost all of them merely con-
sider codon bias to optimize genes. Here, we put forward a framework to optimize
gene considering both codon bias and mRNA secondary structure using Genetic algo-
rithm. The GeneGA package includes the information of highly expressed genes of
almost 200 genomes and can be used to optimize the expression level of a gene for
heterologous gene expression using rules that have been found or to explore the rules
dominating gene expression.

2 Implementation
GeneGA uses genetic algorithm to optimize the relationship between codon bias and
mRNA secondary structure. Codon adaption index(CAI) is used to quantify codon
bias, which can be computed by cai function in seqinr package, while minimum

1



free energy is used to quantify mRNA secondary structure, which can be computed
by fold function. Certain region can be specified to optimize the relationship between
codon bias and mRNA secondary structure, while codons in the other regions will be
replaced by their correspondence most preference codons. Meanwhile, GeneGA also
has the option to let the user specify the ramp region[Tuller et al., 2010a], i.e. the first
30-50 codons of genes, which has been suggested to have low translation efficiency and
serve as an optimal and robust means to reduce ribosomal traffic jams. When ramp and
the specified region are intersecting, the intersectant region will be optimized to have
lower CAI and higher minimum free energy, while the other region will be optimized
to have higher CAI and higher minimum free energy.
The GA procedure is as follows:
1) Generating a population
At the start, the specified sequence is translated to amino acid sequence, then popSize
random sequences are generated by sampling the synonymous codon of each amino
acid.
2) Calculating the objective function values
Calculate the value of objective function for each member of the population.
If the ramp is not considered or the end of the ramp region does not lie in the selected
region while ramp is considered:
E = R(CAI)2 +R(MFE)2,
If the end of the ramp region lies in the selected region:
E = R(1/CAI1)

2 +R(CAI2)
2 +R(MFE)2,

If the end of the ramp region lies after the position of selected region:
E = R(1/CAI)2 +R(MFE)2,
In the formulas, R(X) represents the rank number of X in the population by increasing
order. CAI and MFE denote the CAI value and minimum free energy of the member
in the population respectively, while CAI1 and CAI2 denote the intersectant region of
ramp and selected region and the region that is not intersected respectively.
3) Selection
Compute the expect number of each sequence based on the objective function values,
the number of that sequence in the new population is determined by the integer part of
expect number, while the digit part of expect number will be undergone roulette algo-
rithm to determine its number in the new population.
4) Crossover
With probability crossoverRate, two member of the population exchange their se-
quences at random chosen point.
5) Mutation
With probability mutationChance, each codon of sequence will change its codon by
random sampling from its synonymous codons.

3 Functions and examples
Users are free to choose the factors to optimize the gene. The function GeneGA
considers both codon bias and mRNA secondary structure to optimize their relation-
ship, GeneFoldGA only takes mRNA secondary structure into account and result in
the largest minimum free energy of the mRNA or selected region, while GeneCodon
merely optimizes the codon bias of gene. Detailed description of these functions can
be accessed from the reference manual. Two show methods are provided to display
the results of GeneGA and GeneFoldGA, meanwhile, two plotGeneGA methods can

2



be used to visualize the variation of optimized and mean overall evaluation values and
variable values during the optimizing progress. Moreover, the package also contains
wSet, which is a data frame with 200 genomes on 64 codons. Users can also com-
pute w table by themselves using specified highly expressed genes of given species or
tissue and use the w table by adding it to wSet. For example, on the assumption that
"EGFP.fasta" is file containing highly expressed gene. By using the following codes,
w table can be computed:

> library(GeneGA)
> seqfile=system.file("sequence", "EGFP.fasta", package="GeneGA")
> aa=read.fasta(seqfile)
> rscu=uco(unlist(aa), index="rscu")
> w_value=rscu # w_value is the w table we need computing
> names(w_value)=names(rscu)
> names=sapply(names(rscu), function(x) translate(s2c(x)))
> amino=hash()
> for(i in unique(names)){
+ amino[[i]]=max(rscu[which(names==i)])
+ }
> for(i in 1:length(names)){
+ w_value[i]=rscu[[names(rscu)[i]]]/amino[[translate(s2c(names(rscu)[i]))]]
+ }

Taking Enhanced Green Fluorescent Protein(EGFP) as an example, we use GeneGA
to optimize EGFP by both considering its codon bias and mRNA secondary structure.
The procedure is as follows:
1) Input the gene sequence. Users can input the sequence as string directly or read the
sequence of fasta format, take fasta format sequence as example:

> seqfile=system.file("sequence", "EGFP.fasta", package="GeneGA")
> seq=unlist(getSequence(read.fasta(seqfile), as.string=TRUE))

2) Implementation of the GeneGA, the region is specified between 1 and 60. It should
be noted that the designated region must be a multiple of three and in accordance with
the ORF(Open reading frame) of gene. Users can also optionally add the regulatory
segment before the start codon or design ramp region by using frontSeq or ramp param-
eters. Meanwhile, the parameters controling the Genetic algorithm processes, such as
popSize, iters, crossoverRate and mutationChance, can be flexibly adjusted to archive
ideal results. Generally, longer region needs larger popSize and iters, while larger
crossoverRate and mutationChance can archive a sooner convergence of results.

> GeneGA.result=GeneGA(sequence=seq, popSize=40, iters=150, crossoverRate=0.3, mutationChance=0.05, region=c(1,60), organism="ec", showGeneration=FALSE)

3) Display the results and plot the variation of optimized and mean overall evalua-
tion values and variable values during the optimizing progress. The show method will
display the first three distinctive and optimum sequences, as well as their overall eval-
uation values, CAI values and minimum free energys. The plotGeneGA method can
visualize the variation of optimized and mean overall evaluation values and variable
values during the progress that genetic algorithm performed.

> show(GeneGA.result)

3



GA Settings:
Population size = 40
Number of Generations = 150
crossoverRate = 0.3
Mutation Chance = 0.05

evaluaton value = 2405
free energy = -5.9
CAI value = 0.672903
ATGGTAAGTAAAGGCGAAGAACTGTTCACTGGTGTTGTTCCGATCCTCGTAGAACTGGACGGTGACGTTA

ACGGTCACAAATTCTCTGTTTCTGGTGAAGGTGAAGGTGACGCTACCTACGGTAAACTGACCCTGAAATT
CATCTGCACCACCGGTAAACTGCCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTACGGTGTTCAG
TGCTTCTCTCGTTACCCGGACCACATGAAACAGCACGACTTCTTCAAATCTGCTATGCCGGAAGGTTACG
TTCAGGAACGTACCATCTTCTTCAAAGACGACGGTAACTACAAAACCCGTGCTGAAGTTAAATTCGAAGG
TGACACCCTGGTTAACCGTATCGAACTGAAAGGTATCGACTTCAAAGAAGACGGTAACATCCTGGGTCAC
AAACTGGAATACAACTACAACTCTCACAACGTTTACATCATGGCTGACAAACAGAAAAACGGTATCAAAG
TTAACTTCAAAATCCGTCACAACATCGAAGACGGTTCTGTTCAGCTGGCTGACCACTACCAGCAGAACAC
CCCGATCGGTGACGGTCCGGTTCTGCTGCCGGACAACCACTACCTGTCTACCCAGTCTGCTCTGTCTAAA
GACCCGAACGAAAAACGTGACCACATGGTTCTGCTGGAATTCGTTACCGCTGCTGGTATCACCCTGGGTA
TGGACGAACTGTACAAATAA
evaluaton value = 1700
free energy = -5.4
CAI value = 0.5909698
ATGGTAAGTAAAGGCGAAGAACTTTTCACTGGTGTTGTTCCGATCCTCGTTGAACTGGACGGTGACGTTA

ACGGTCACAAATTCTCTGTTTCTGGTGAAGGTGAAGGTGACGCTACCTACGGTAAACTGACCCTGAAATT
CATCTGCACCACCGGTAAACTGCCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTACGGTGTTCAG
TGCTTCTCTCGTTACCCGGACCACATGAAACAGCACGACTTCTTCAAATCTGCTATGCCGGAAGGTTACG
TTCAGGAACGTACCATCTTCTTCAAAGACGACGGTAACTACAAAACCCGTGCTGAAGTTAAATTCGAAGG
TGACACCCTGGTTAACCGTATCGAACTGAAAGGTATCGACTTCAAAGAAGACGGTAACATCCTGGGTCAC
AAACTGGAATACAACTACAACTCTCACAACGTTTACATCATGGCTGACAAACAGAAAAACGGTATCAAAG
TTAACTTCAAAATCCGTCACAACATCGAAGACGGTTCTGTTCAGCTGGCTGACCACTACCAGCAGAACAC
CCCGATCGGTGACGGTCCGGTTCTGCTGCCGGACAACCACTACCTGTCTACCCAGTCTGCTCTGTCTAAA
GACCCGAACGAAAAACGTGACCACATGGTTCTGCTGGAATTCGTTACCGCTGCTGGTATCACCCTGGGTA
TGGACGAACTGTACAAATAA
evaluaton value = 1604
free energy = -10.4
CAI value = 0.7672232
ATGGTATCCAAAGGTGAAGAACTGTTCACTGGTGTTGTTCCGATCCTCGTAGAACTGGACGGTGACGTTA

ACGGTCACAAATTCTCTGTTTCTGGTGAAGGTGAAGGTGACGCTACCTACGGTAAACTGACCCTGAAATT
CATCTGCACCACCGGTAAACTGCCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTACGGTGTTCAG
TGCTTCTCTCGTTACCCGGACCACATGAAACAGCACGACTTCTTCAAATCTGCTATGCCGGAAGGTTACG
TTCAGGAACGTACCATCTTCTTCAAAGACGACGGTAACTACAAAACCCGTGCTGAAGTTAAATTCGAAGG
TGACACCCTGGTTAACCGTATCGAACTGAAAGGTATCGACTTCAAAGAAGACGGTAACATCCTGGGTCAC
AAACTGGAATACAACTACAACTCTCACAACGTTTACATCATGGCTGACAAACAGAAAAACGGTATCAAAG
TTAACTTCAAAATCCGTCACAACATCGAAGACGGTTCTGTTCAGCTGGCTGACCACTACCAGCAGAACAC
CCCGATCGGTGACGGTCCGGTTCTGCTGCCGGACAACCACTACCTGTCTACCCAGTCTGCTCTGTCTAAA
GACCCGAACGAAAAACGTGACCACATGGTTCTGCTGGAATTCGTTACCGCTGCTGGTATCACCCTGGGTA
TGGACGAACTGTACAAATAA

> plotGeneGA(GeneGA.result, type=1)

4



0 50 100 150

0.
3

0.
4

0.
5

0.
6

0 50 100 150

0.
3

0.
4

0.
5

0.
6

Generation

C
A

I V
al

ue

> plotGeneGA(GeneGA.result, type=2)

0 50 100 150

−
12

−
10

−
8

−
6

0 50 100 150

−
12

−
10

−
8

−
6

Generation

F
re

e 
E

ne
rg

y

> plotGeneGA(GeneGA.result, type=3)

5



0.3 0.4 0.5 0.6

−
12

−
10

−
8

−
6

0.3 0.4 0.5 0.6

−
12

−
10

−
8

−
6

CAI Value

F
re

e 
E

ne
rg

y

4 Installation notes
The GeneGA package depends on three other R packages: one Bioconductor pack-
age and two CRAN packages. Other than these R packages, Vienna RNA Pack-
age(http://www.tbi.univie.ac.at/ ivo/RNA/) should also be installed on your operating
system.

References
G. Kudla, A.W. Murray, D. Tollervey, and J.B. Plotkin. Coding-sequence determinants

of gene expression in Escherichia coli. Science, 324(5924):255, 2009.

T. Tuller, A. Carmi, K. Vestsigian, S. Navon, Y. Dorfan, J. Zaborske, T. Pan, O. Dahan,
I. Furman, and Y. Pilpel. An Evolutionarily Conserved Mechanism for Controlling
the Efficiency of Protein Translation. Cell, 141(2):344–354, 2010a.

T. Tuller, Y.Y. Waldman, M. Kupiec, and E. Ruppin. Translation efficiency is deter-
mined by both codon bias and folding energy. Proceedings of the National Academy
of Sciences, 107(8):3645, 2010b.

6


