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buildAnnotationDatabase

Build a local annotation database for metaseqR2

Description

This function creates a local annotation database to be used with metaseqr2 so as to avoid long time
on the fly annotation downloads and formatting.
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Usage

buildAnnotationDatabase(organisms, sources,
db = file.path(system.file(package = "metaseqR2"),

"annotation.sqlite"),
forceDownload = TRUE, rc = NULL)

Arguments

organisms a list of organisms and versions for which to download and build annotations.
Check the main metaseqr2 help page for details on supported organisms and
the Details section below.

sources a character vector of public sources from which to download and build annota-
tions. Check the main metaseqr2 help page for details on supported annotation
sources.

db a valid path (accessible at least by the current user) where the annotation database
will be set up. It defaults to system.file(package = "metaseqR2"), "annotation.sqlite")
that is, the installation path of metaseqR2 package. See also Details.

forceDownload by default, buildAnnotationDatabase will not download an existing annota-
tion again (FALSE). Set to TRUE if you wish to update the annotation database for
a particular version.

rc fraction (0-1) of cores to use in a multicore system. It defaults to NULL (no
parallelization). Sometimes used for building certain annotation types.

Details

Regarding the organisms argument, it is a list with specific format which instructs buildAnnotationDatabase
on which organisms and versions to download from the respective sources. Such a list may have
the format: organisms=list(hg19=75, mm9=67, mm10=96:97) This is explained as follows:

• A database comprising the human genome versions hg19 and the mouse genome versions
mm9, mm10 will be constructed.

• If "ensembl" is in sources, version 75 is downloaded for hg19 and versions 67, 96, 97 for
mm9, mm10.

• If "ucsc" or "refseq" are in sources, the latest versions are downloaded and marked by the
download date. As UCSC and RefSeq versions are not accessible in the same way as Ensembl,
this procedure cannot always be replicated.

organisms can also be a character vector with organism names/versions (e.g. organisms = c("mm10","hg19")),
then the latest versions are downloaded in the case of Ensembl.

Regarding db, this controls the location of the installation database. If the default is used, then there
is no need to provide the local database path to any function that uses the database (e.g. the main
metaseqr2). Otherwise, the user will either have to provide this each time, or the annotation will
have to be downloaded and used on-the-fly.

Value

The function does not return anything. Only the SQLite database is created or updated.
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Author(s)

Panagiotis Moulos

Examples

# Build a test database with one genome
myDb <- file.path(tempdir(),"testann.sqlite")

organisms <- list(mm10=75)
sources <- "ensembl"

# If the example is not running in a multicore system, rc is ignored
#buildAnnotationDatabase(organisms,sources,db=myDb,rc=0.5)

# A more complete case, don't run as example
# Since we are using Ensembl, we can also ask for a version
#organisms <- list(
# mm9=67,
# mm10=96:97,
# hg19=75,
# hg38=96:97
#)
#sources <- c("ensembl", "refseq")

## Build on the default location (depending on package location, it may
## require root/sudo)
#buildAnnotationDatabase(organisms,sources)

## Build on an alternative location
#myDb <- file.path(path.expand("~"),"my_ann.sqlite")
#buildAnnotationDatabase(organisms,sources,db=myDb)

buildCustomAnnotation Import custom annotation to the metaseqR2 annotation database from
GTF file

Description

This function imports a GTF file with some custom annotation to the metaseqR2 annotation database.

Usage

buildCustomAnnotation(gtfFile, metadata,
db = file.path(system.file(package = "metaseqR2"),

"annotation.sqlite"), rewrite=TRUE)
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Arguments

gtfFile a GTF file containing the gene structure of the organism to be imported.

metadata a list with additional information about the annotation to be imported. See De-
tails.

db a valid path (accessible at least by the current user) where the annotation database
will be set up. It defaults to system.file(package = "metaseqR2"), "annotation.sqlite")
that is, the installation path of metaseqR2 package. See also Details.

rewrite if custom annotation found, rwrite? (default FALSE). Set to TRUE if you wish to
update the annotation database for a particular custom annotation.

Details

Regarding the metadata argument, it is a list with specific format which instructs buildCustomAnnotation
on importing the custom annotation. Such a list may has the following members:

• organism a name of the organism which is imported (e.g. "my_mm9"). This is the only manda-
tory member.

• source a name of the source for this custom annotation (e.g. "my_mouse_db"). If not given
or NULL, the word "inhouse" is used.

• version a string denoting the version. If not given or NULL, current date is used.

• chromInfo it can be one of the following:

– a tab-delimited file with two columns, the first being the chromosome/sequence names
and the second being the chromosome/sequence lengths.

– a BAM file to read the header from and obtain the required information
– a data.frame with one column with chromosome lengths and chromosome names as
rownames.

See the examples below for a metadata example.

Regarding db, this controls the location of the installation database. If the default is used, then there
is no need to provide the local database path to any function that uses the database (e.g. the main
metaseqr2). Otherwise, the user will either have to provide this each time, or the annotation will
have to be downloaded and used on-the-fly.

Value

The function does not return anything. Only the SQLite database is created or updated.

Author(s)

Panagiotis Moulos

Examples

# Dummy database as example
customDir <- file.path(tempdir(),"test_custom")
dir.create(customDir)
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myDb <- file.path(customDir,"testann.sqlite")
chromInfo <- data.frame(length=c(1000L,2000L,1500L),

row.names=c("A","B","C"))

# Build with the metadata list filled (you can also provide a version)
if (.Platform$OS.type == "unix") {

buildCustomAnnotation(
gtfFile=file.path(system.file(package="metaseqR2"),

"dummy.gtf"),
metadata=list(

organism="dummy",
source="dummy_db",
version=1,
chromInfo=chromInfo

),
db=myDb

)

# Try to retrieve some data
myGenes <- loadAnnotation(genome="dummy",refdb="dummy_db",

level="gene",type="gene",db=myDb)
myGenes

}

## Real data!
## Setup a temporary directory to download files etc.
#customDir <- file.path(tempdir(),"test_custom")
#dir.create(customDir)

#myDb <- file.path(customDir,"testann.sqlite")

## Gene annotation dump from Ensembl
#download.file(paste0("ftp://ftp.ensembl.org/pub/release-98/gtf/",
# "dasypus_novemcinctus/Dasypus_novemcinctus.Dasnov3.0.98.gtf.gz"),
# file.path(customDir,"Dasypus_novemcinctus.Dasnov3.0.98.gtf.gz"))

## Chromosome information will be provided from the following BAM file
## available from Ensembl
#bamForInfo <- paste0("ftp://ftp.ensembl.org/pub/release-98/bamcov/",
# "dasypus_novemcinctus/genebuild/Dasnov3.broad.Ascending_Colon_5.1.bam")

## Build with the metadata list filled (you can also provide a version)
#buildCustomAnnotation(
# gtfFile=file.path(customDir,"Dasypus_novemcinctus.Dasnov3.0.98.gtf.gz"),
# metadata=list(
# organism="dasNov3_test",
# source="ensembl_test",
# chromInfo=bamForInfo
# ),
# db=myDb
#)

## Try to retrieve some data



8 combineBonferroni

#dasGenes <- loadAnnotation(genome="dasNov3_test",refdb="ensembl_test",
# level="gene",type="gene",db=myDb)
#dasGenes

combineBonferroni Combine p-values with Bonferroni’s method

Description

This function combines p-values from the various statistical tests supported by metaseqR2 using
the Bonferroni’s method (see reference in the main metaseqr2 help page or in the vignette).

Usage

combineBonferroni(p, zerofix = NULL)

Arguments

p a vector of p-values for each statistical tests).

zerofix NULL (default) or a fixed numeric value between 0 and 1.

Details

The argument zerofix is used to correct for the case of a p-value which is equal to 0 as a result of
internal numerical and approximation procedures. When NULL, random numbers greater than 0 and
less than or equal to 0.5 are used to multiply the offending p-values with the lowest provided non-
zero p-value, maintaining thus a virtual order of significance, avoiding having the same p-values
for two tests and assuming that all zero p-values represent extreme statistical significance. When a
numeric between 0 and 1, this number is used for the above multiplication instead.

Value

A vector of combined p-values.

Author(s)

Panagiotis Moulos

Examples

p <- matrix(runif(300),100,3)
pc <- combineBonferroni(p)
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combineHarmonic Combine p-values using weights

Description

This function combines p-values from the various statistical tests supported by metaseqR using
p-value weights.

Usage

combineHarmonic(p, w, zerofix = NULL)

Arguments

p a p-value matrix (rows are genes, columns are statistical tests).

w a weights vector, must sum to 1.

zerofix NULL (default) or a fixed numeric value between 0 and 1.

Details

The argument zerofix is used to correct for the case of a p-value which is equal to 0 as a result of
internal numerical and approximation procedures. When NULL, random numbers greater than 0 and
less than or equal to 0.5 are used to multiply the offending p-values with the lowest provided non-
zero p-value, maintaining thus a virtual order of significance, avoiding having the same p-values
for two tests and assuming that all zero p-values represent extreme statistical significance. When a
numeric between 0 and 1, this number is used for the above multiplication instead.

Value

A vector of combined p-values.

Author(s)

Panagiotis Moulos

Examples

p <- matrix(runif(300),100,3)
pc <- combineHarmonic(p,w=c(0.2,0.5,0.3))
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combineMaxp Combine p-values using the maximum p-value

Description

This function combines p-values from the various statistical tests supported by metaseqR by taking
the maximum p-value.

Usage

combineMaxp(p)

Arguments

p a p-value matrix (rows are genes, columns are statistical tests).

Value

A vector of combined p-values.

Author(s)

Panagiotis Moulos

Examples

p <- matrix(runif(300),100,3)
pc <- combineMaxp(p)

combineMinp Combine p-values using the minimum p-value

Description

This function combines p-values from the various statistical tests supported by metaseqR by taking
the minimum p-value.

Usage

combineMinp(p)

Arguments

p a p-value matrix (rows are genes, columns are statistical tests).
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Value

A vector of combined p-values.

Author(s)

Panagiotis Moulos

Examples

p <- matrix(runif(300),100,3)
pc <- combineMinp(p)

combineSimes Combine p-values with Simes’ method

Description

This function combines p-values from the various statistical tests supported by metaseqR using the
Simes’ method (see reference in the main metaseqr2 help page or in the vignette).

Usage

combineSimes(p, zerofix = NULL)

Arguments

p a p-value matrix (rows are genes, columns are statistical tests).

zerofix NULL (default) or a fixed numeric value between 0 and 1.

Details

The argument zerofix is used to correct for the case of a p-value which is equal to 0 as a result of
internal numerical and approximation procedures. When NULL, random numbers greater than 0 and
less than or equal to 0.5 are used to multiply the offending p-values with the lowest provided non-
zero p-value, maintaining thus a virtual order of significance, avoiding having the same p-values
for two tests and assuming that all zero p-values represent extreme statistical significance. When a
numeric between 0 and 1, this number is used for the above multiplication instead.

Value

A vector of combined p-values.

Author(s)

Panagiotis Moulos
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Examples

p <- matrix(runif(300),100,3)
pc <- combineSimes(p)

combineWeight Combine p-values using weights

Description

This function combines p-values from the various statistical tests supported by metaseqR using
p-value weights.

Usage

combineWeight(p, w, zerofix = NULL)

Arguments

p a p-value matrix (rows are genes, columns are statistical tests).

w a weights vector, must sum to 1.

zerofix NULL (default) or a fixed numeric value between 0 and 1.

Details

The argument zerofix is used to correct for the case of a p-value which is equal to 0 as a result of
internal numerical and approximation procedures. When NULL, random numbers greater than 0 and
less than or equal to 0.5 are used to multiply the offending p-values with the lowest provided non-
zero p-value, maintaining thus a virtual order of significance, avoiding having the same p-values
for two tests and assuming that all zero p-values represent extreme statistical significance. When a
numeric between 0 and 1, this number is used for the above multiplication instead.

Value

A vector of combined p-values.

Author(s)

Panagiotis Moulos

Examples

p <- matrix(runif(300),100,3)
pc <- combineWeight(p,w=c(0.2,0.5,0.3))
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createSignalTracks Create bigWig signal tracks

Description

This function creates bigWig files to be used for exploring RNA signal in genome browsers. When
strands are separated, a UCSC genome browser trackhub is created to group tracks for the same
sample. A link to the created data is returned.

Usage

createSignalTracks(targets, org, urlBase = NULL,
stranded = FALSE, normTo = 1e+9, exportPath = ".",
hubInfo = list(name = "MyHub", shortLabel = "My hub",
longLabel = "My hub", email = "someone@example.com"),
fasta = NULL, gtf = NULL, forceHub = FALSE,
overwrite = FALSE, rc = NULL)

Arguments

targets a tab-delimited file with the experimental description or the output of readTargets.
See also the sampleList argument in the main metaseqr2 pipeline.

org See the org argument in the main metaseqr2 pipeline.
urlBase a valid URL which is prepended to the created bigWig files.
stranded Separate + and - strands and create separate bigWig files.
normTo the total sum of signal to be used as the normalization target. See also the

trackInfo argument in the main metaseqr2 pipeline.
exportPath path to export tracks.
hubInfo information regarding the track hub created when stranded=TRUE. See also the

trackInfo argument in the main metaseqr2 pipeline.
overwrite overwrite tracks if they exist? Defaults to FALSE.
fasta reference genome in FASTA format for the case of analyzing a custom, non-

directly supported organism. It will be converted to the .2bit format and written
along with a track hub.

gtf a GTF file describing gene models in the case of analyzing a custom, non-
directly supported organism. It will be converted to the .bigBed format and
written along with a track hub.

forceHub when stranded=TRUE, a UCSC Genome Browser trackhub is created, other-
wise only tracklines describing individual tracks. If TRUE, a trackhub is always
created.

rc Fraction of cores to use.

Value

A string with the link(s) to the created tracks.
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Author(s)

Panagiotis Moulos

Examples

dataPath <- system.file("extdata",package="metaseqR2")
targets <- data.frame(samplename=c("C","T"),

filename=file.path(dataPath,c("C.bam","T.bam")),
condition=c("Control","Treatment"),
paired=c("single","single"),stranded=c("forward","forward"))

path <- tempdir()
write.table(targets,file=file.path(path,"targets.txt"),

sep="\t",row.names=FALSE,quote=FALSE)
if (.Platform$OS.type == "unix")

link <- createSignalTracks(file.path(path,"targets.txt"),"mm9")

diagplotAvgFtd Create average False (or True) Discovery curves

Description

This function creates false (or true) discovery curves using a list containing several outputs from
diagplotFtd.

Usage

diagplotAvgFtd(ftdrObj, output = "x11",
path = NULL, draw = TRUE, ...)

Arguments

ftdrObj a list with outputs from diagplotFtd.

output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png", "jpg", "bmp", "pdf" or "ps".

path the path to create output files.

draw boolean to determine whether to plot the curves or just return the calculated
values (in cases where the user wants the output for later averaging for example).
Defaults to TRUE (make plots).

... further arguments to be passed to plot devices, such as parameter from par.

Value

A named list with two members: the first member (avgFtdr) contains a list with the means and the
standard deviations of the averaged ftdrObj and are used to create the plot. The second member
(path) contains the path to the created figure graphic.
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Author(s)

Panagiotis Moulos

Examples

p11 <- 0.001*matrix(runif(300),100,3)
p12 <- matrix(runif(300),100,3)
p21 <- 0.001*matrix(runif(300),100,3)
p22 <- matrix(runif(300),100,3)
p31 <- 0.001*matrix(runif(300),100,3)
p32 <- matrix(runif(300),100,3)
p1 <- rbind(p11,p21)
p2 <- rbind(p12,p22)
p3 <- rbind(p31,p32)
rownames(p1) <- rownames(p2) <- rownames(p3) <-

paste("gene",1:200,sep="_")
colnames(p1) <- colnames(p2) <- colnames(p3) <-

paste("method",1:3,sep="_")
truth <- c(rep(1,40),rep(-1,40),rep(0,20),

rep(1,10),rep(2,10),rep(0,80))
names(truth) <- rownames(p1)
ftdObj1 <- diagplotFtd(truth,p1,N=100,draw=FALSE)
ftdObj2 <- diagplotFtd(truth,p2,N=100,draw=FALSE)
ftdObj3 <- diagplotFtd(truth,p3,N=100,draw=FALSE)
ftdObj <- list(ftdObj1,ftdObj2,ftdObj3)
avgFtdObj <- diagplotAvgFtd(ftdObj)

diagplotBoxplot Boxplots wrapper for the metaseqR2 package

Description

A wrapper over the general boxplot function, suitable for matrices produced and processed with the
metaseqr package. Intended for internal use but can be easily used as stand-alone. It can colors
boxes based on group depending on the name argument.

Usage

diagplotBoxplot(mat, name = NULL, logIt = "auto",
yLim = "default", isNorm = FALSE, output = "x11",
path = NULL, altNames = NULL, ...)

Arguments

mat the count data matrix.

name the names of the samples plotted on the boxplot. See also Details.

logIt whether to log transform the values of mat or not. It can be TRUE, FALSE or
"auto" for auto-detection. Auto-detection log transforms by default so that the
boxplots are smooth and visible.
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yLim custom y-axis limits. Leave the string "default" for default behavior.

isNorm a logical indicating whether object contains raw or normalized data. It is not
essential and it serves only plot annotation purposes.

output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png", "jpg", "bmp", "pdf", "ps" or "json". The latter is cur-
rently available for the creation of interactive volcano plots only when reporting
the output, through the highcharts javascript library (JSON for boxplots not yet
available).

path the path to create output files.

altNames an optional vector of names, e.g. HUGO gene symbols, alternative or comple-
mentary to the unique rownames of mat (which must exist!). It is used only in
JSON output.

... further arguments to be passed to plot devices, such as parameter from par.

Details

Regarding name, if NULL, the function check the column names of mat. If they are also NULL, sample
names are autogenerated. If name="none", no sample names are plotted. If name is a list, it should
be the sampleList argument provided to the manin metaseqr2 function. In that case, the boxes are
colored per group.

Value

The filename of the boxplot produced if it’s a file.

Author(s)

Panagiotis Moulos

Examples

# Non-normalized boxplot
require(DESeq2)
dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplotBoxplot(dataMatrix,sampleList)

# Normalized boxplot
normArgs <- getDefaults("normalization","deseq2")
object <- normalizeDeseq2(dataMatrix,sampleList,normArgs)
diagplotBoxplot(object,sampleList)
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diagplotCor Summarized correlation plots

Description

This function uses the read counts matrix to create heatmap or correlogram correlation plots.

Usage

diagplotCor(mat, type = c("heatmap", "correlogram"),
output = "x11", path = NULL, ...)

Arguments

mat the read counts matrix or data frame.

type create heatmap of correlogram plots.

output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png", "jpg", "bmp", "pdf" or "ps".

path the path to create output files.

... further arguments to be passed to plot devices, such as parameter from par.

Value

The filename of the pairwise comparisons plot produced if it’s a file.

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(2000)
diagplotCor(dataMatrix,type="heatmap")
diagplotCor(dataMatrix,type="correlogram")
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diagplotDeHeatmap Diagnostic heatmap of differentially expressed genes

Description

This function plots a heatmap of the differentially expressed genes produced by the metaseqr work-
flow, useful for quality control, e.g. whether samples belonging to the same group cluster together.

Usage

diagplotDeHeatmap(x, scale = c("asis", "zscore"), con = NULL,
output = "x11", path = NULL, ...)

Arguments

x the data matrix to create a heatmap for.

scale value scale in the heatmap. As provided (scale="asis", default) or Z-scores
(scale="zscore")

con an optional string depicting a name (e.g. the contrast name) to appear in the title
of the volcano plot.

output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png", "jpg", "bmp", "pdf", "ps".

path the path to create output files.

... further arguments to be passed to plot devices, such as parameter from par.

Value

The filenames of the plots produced in a named list with names the whichPlot argument. If
output="x11", no output filenames are produced.

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"
M <- normalizeEdger(dataMatrix,sampleList)
p <- statEdger(M,sampleList,contrast)
diagplotDeHeatmap(dataMatrix[p[[1]]<0.05,])
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diagplotEdaseq Diagnostic plots based on the EDASeq package

Description

A wrapper around the plotting functions availale in the EDASeq normalization Bioconductor pack-
age. For analytical explanation of each plot please see the vignette of the EDASeq package. It is
best to use this function through the main plotting function metaseqrPlot.

Usage

diagplotEdaseq(x, sampleList, covar = NULL,
isNorm = FALSE,
whichPlot = c("meanvar", "meandiff", "gcbias", "lengthbias"),
output = "x11", altNames = NULL, path = NULL, ...)

Arguments

x the count data matrix.

sampleList the list containing condition names and the samples under each condition.

covar The covariate to plot counts against. Usually "gc" or "length".

isNorm a logical indicating whether object contains raw or normalized data. It is not
essential and it serves only plot annotation purposes.

whichPlot the EDASeq package plot to generate. See Details.

output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png", "jpg", "bmp", "pdf" or "ps".

altNames optional names, alternative or complementary to the rownames of x. It is used
only in JSON output.

path the path to create output files.

... further arguments to be passed to plot devices, such as parameter from par.

Details

Regarding whichPlot, it can be one or more of "meanvar", "meandiff", "gcbias" or "lengthbias".
Please refer to the documentation of the EDASeq package for details on the use of these plots. The
whichPlot="lengthbias" case is not covered by EDASeq documentation, however it is similar to
the GC-bias plot when the covariate is the gene length instead of the GC content.

Value

The filenames of the plot produced in a named list with names the which.plot argument. If output="x11",
no output filenames are produced.

Author(s)

Panagiotis Moulos
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Examples

dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplotEdaseq(dataMatrix,sampleList,whichPlot="meandiff")

diagplotFiltered Diagnostic plot for filtered genes

Description

This function plots a grid of four graphs depicting: in the first row, the numbers of filtered genes
per chromosome in the first column and per biotype in the second column. In the second row, the
percentages of filtered genes per chromosome related to the whole genome in the first columns and
per biotype in the second column.

Usage

diagplotFiltered(x, y, output = "x11", path = NULL, ...)

Arguments

x an annotation data frame like the ones produced by getAnnotation. x should
be the filtered annotation according to metaseqR’s filters.

y an annotation data frame like the ones produced by getAnnotation. y should
contain the total annotation without the application of any metaseqr filter.

output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png", "jpg", "bmp", "pdf" or "ps".

path the path to create output files.

... further arguments to be passed to plot devices, such as parameter from par.

Value

The filenames of the plots produced in a named list with names the which.plot argument. If
output="x11", no output filenames are produced.

Author(s)

Panagiotis Moulos

Examples

data("mm9GeneData",package="metaseqR2")
y <- mm9GeneCounts[,c(1:6,8,7)]
x <- y[-sample(1:nrow(y),1000),]
diagplotFiltered(x,y)
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diagplotFtd Create False (or True) Positive (or Negative) curves

Description

This function creates false (or true) discovery curves using a matrix of p-values (such a matrix can
be derived for example from the result table of metaseqr2 by subsetting the table to get the p-values
from several algorithms) given a ground truth vector for differential expression.

Usage

diagplotFtd(truth, p, type = "fpc", N = 2000,
output = "x11", path = NULL, draw = TRUE, ...)

Arguments

truth the ground truth differential expression vector. It should contain only zero and
non-zero elements, with zero denoting non-differentially expressed genes and
non-zero, differentially expressed genes. Such a vector can be obtained for ex-
ample by using the makeSimDataSd function, which creates simulated RNA-Seq
read counts based on real data. The elements of truth MUST be named (e.g.
each gene’s name).

p a p-value matrix whose rows correspond to each element in the truth vector.
If the matrix has a colnames attribute, a legend will be added to the plot using
these names, else a set of column names will be auto-generated. p can also be a
list or a data frame. The p-values MUST be named (e.g. each gene’s name).

type what to plot, can be "fpc" for False Positive Curves (default), "tpc" for True
Positive Curves, "fnc" for False Negative Curves or "tnc" for True Negative
Curves.

N create the curves based on the top (or bottom) N ranked genes (default is 2000)
to be used with type="fpc" or type="tpc".

output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png", "jpg", "bmp", "pdf" or "ps".

path the path to create output files.

draw boolean to determine whether to plot the curves or just return the calculated
values (in cases where the user wants the output for later averaging for example).
Defaults to TRUE (make plots).

... further arguments to be passed to plot devices, such as parameter from par.

Value

A named list with two members: the first member (ftdr) contains the values used to create the plot.
The second member (path) contains the path to the created figure graphic.
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Author(s)

Panagiotis Moulos

Examples

p1 <- 0.001*matrix(runif(300),100,3)
p2 <- matrix(runif(300),100,3)
p <- rbind(p1,p2)
rownames(p) <- paste("gene",1:200,sep="_")
colnames(p) <- paste("method",1:3,sep="_")
truth <- c(rep(1,40),rep(-1,40),rep(0,20),

rep(1,10),rep(2,10),rep(0,80))
names(truth) <- rownames(p)
ftdObj <- diagplotFtd(truth,p,N=100)

diagplotMds Multi-Dimensinal Scale plots or RNA-Seq samples

Description

Creates a Multi-Dimensional Scale plot for the given samples based on the count data matrix. MDS
plots are very useful for quality control as you can easily see of samples of the same groups are
clustered together based on the whole dataset.

Usage

diagplotMds(x, sampleList, method = "spearman",
logIt = TRUE, output = "x11", path = NULL, ...)

Arguments

x the count data matrix.

sampleList the list containing condition names and the samples under each condition.

method which correlation method to use. Same as the method parameter in cor function.

logIt whether to log transform the values of x or not.

output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png", "jpg", "bmp", "pdf", "ps" or "json". The latter is cur-
rently available for the creation of interactive volcano plots only when reporting
the output, through the highcharts javascript library.

path the path to create output files.

... further arguments to be passed to plot devices, such as parameter from par.

Value

The filename of the MDS plot produced if it’s a file.
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Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(5000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplotMds(dataMatrix,sampleList)

diagplotNoiseq Diagnostic plots based on the NOISeq package

Description

A wrapper around the plotting functions availale in the NOISeq Bioconductor package. For analyt-
ical explanation of each plot please see the vignette of the NOISeq package. It is best to use this
function through the main plotting function metaseqrPlot.

Usage

diagplotNoiseq(x, sampleList, covars,
whichPlot = c("biodetection", "countsbio", "saturation",
"rnacomp", "readnoise", "biodist"),
output = "x11",
biodistOpts = list(p = NULL, pcut = NULL, name = NULL),
path = NULL, isNorm = FALSE, ...)

Arguments

x the count data matrix.

sampleList the list containing condition names and the samples under each condition.

covars a list (whose annotation elements are ideally a subset of an annotation data frame
produced by getAnnotation) with the following members: data (the data ma-
trix), length (gene length), gc (the gene gc_content), chromosome (a data frame
with chromosome name and co-ordinates), factors (a factor with the experimen-
tal condition names replicated by the number of samples in each experimental
condition) and biotype (each gene’s biotype as depicted in Ensembl-like anno-
tations).

whichPlot the NOISeq package plot to generate. See Details

biodistOpts a list with the following members: p (a vector of p-values, e.g. the p-values of
a contrast), pcut (a unique number depicting a p-value cutoff, required for the
"biodist" case), name (a name for the "biodist" plot, e.g. the name of the
contrast.

output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png", "jpg", "bmp", "pdf" or "ps".
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path the path to create output files.

isNorm a logical indicating whether object contains raw or normalized data. It is not
essential and it serves only plot annotation purposes.

... further arguments to be passed to plot devices, such as parameter from par.

Details

Regarding whichPlot, It can be one or more of "biodetection", "countsbio", "saturation",
"rnacomp", "readnoise" or "biodist". Please refer to the documentation of the NOISeq package
for details on the use of these plots. The whichPlot="saturation" case is modified to be more
informative by producing two kinds of plots.

Value

The filenames of the plots produced in a named list with names the whichPlot argument. If
output="x11", no output filenames are produced.

Note

Please note that in case of "biodist" plots, the behavior of the function is unstable, mostly due
to the very specific inputs this plotting function accepts in the NOISeq package. We have tried to
predict unstable behavior and avoid exceptions through the use of tryCatch but it’s still possible that
you might run onto an error.

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(5000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
lengths <- round(1000*runif(nrow(dataMatrix)))
starts <- round(1000*runif(nrow(dataMatrix)))
ends <- starts + lengths
covars <- list(

data=dataMatrix,
length=lengths,
gc=runif(nrow(dataMatrix)),
chromosome=data.frame(

chromosome=c(rep("chr1",nrow(dataMatrix)/2),
rep("chr2",nrow(dataMatrix)/2)),
start=starts,
end=ends

),
factors=data.frame(class=metaseqR2:::asClassVector(sampleList)),
biotype=c(rep("protein_coding",nrow(dataMatrix)/2),rep("ncRNA",

nrow(dataMatrix)/2))
)
p <- runif(nrow(dataMatrix))
diagplotNoiseq(dataMatrix,sampleList,covars=covars,
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biodistOpts=list(p=p,pcut=0.1,name="A_vs_B"))

diagplotPairs Massive X-Y, M-D correlation plots

Description

This function uses the read counts matrix to create pairwise correlation plots. The upper diagonal
of the final image contains simple scatterplots of each sample against each other (log2 scale) while
the lower diagonal contains mean-difference plots for the same samples (log2 scale). This type of
diagnostic plot may not be interpretable for more than 10 samples.

Usage

diagplotPairs(x, output = "x11", altNames = NULL,
path = NULL, ...)

Arguments

x the read counts matrix or data frame.

output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png", "jpg", "bmp", "pdf" or "ps".

altNames optional names, alternative or complementary to the rownames of x. It is used
only in JSON output.

path the path to create output files.

... further arguments to be passed to plot devices, such as parameter from par.

Value

The filename of the pairwise comparisons plot produced if it’s a file.

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(2000)
diagplotPairs(dataMatrix)
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diagplotRoc Create basic ROC curves

Description

This function creates basic ROC curves using a matrix of p-values (such a matrix can be derived for
example from the result table of metaseqr2 by subsetting the table to get the p-values from several
algorithms) given a ground truth vector for differential expression and a significance level.

Usage

diagplotRoc(truth, p, sig = 0.05, x = "fpr",
y = "tpr", output = "x11", path = NULL,
draw = TRUE, ...)

Arguments

truth the ground truth differential expression vector. It should contain only zero and
non-zero elements, with zero denoting non-differentially expressed genes and
non-zero, differentially expressed genes. Such a vector can be obtained for ex-
ample by using the makeSimDataSd function, which creates simulated RNA-Seq
read counts based on real data.

p a p-value matrix whose rows correspond to each element in the truth vector.
If the matrix has a colnames attribute, a legend will be added to the plot using
these names, else a set of column names will be auto-generated. p can also be a
list or a data frame.

sig a significance level (0 < sig <=1).

x what to plot on x-axis, can be one of "fpr", "fnr", "tpr", "tnr" for False
Positive Rate, False Negative Rate, True Positive Rate and True Negative Rate
respectively.

y what to plot on y-axis, same as x above.

output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png", "jpg", "bmp", "pdf" or "ps".

path the path to create output files.

draw boolean to determine whether to plot the curves or just return the calculated
values (in cases where the user wants the output for later averaging for example).
Defaults to TRUE (make plots).

... further arguments to be passed to plot devices, such as parameter from par.

Value

A named list with two members. The first member is a list containing the ROC statistics: TP (True
Postives), FP (False Positives), FN (False Negatives), TN (True Negatives), FPR (False Positive Rate),
FNR (False Negative Rate), TPR (True Positive Rate), TNR (True Negative Rate), AUC (Area Under
the Curve). The second is the path to the created figure graphic.
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Author(s)

Panagiotis Moulos

Examples

p1 <- 0.001*matrix(runif(300),100,3)
p2 <- matrix(runif(300),100,3)
p <- rbind(p1,p2)
rownames(p) <- paste("gene",1:200,sep="_")
colnames(p) <- paste("method",1:3,sep="_")
truth <- c(rep(1,40),rep(-1,40),rep(0,20),rep(1,10),

rep(2,10),rep(0,80))
names(truth) <- rownames(p)
rocObj <- diagplotRoc(truth,p)

diagplotVenn Venn diagrams when performing meta-analysis

Description

This function uses the R package VennDiagram and plots an up to 5-way Venn diagram depicting
the common and specific to each statistical algorithm genes, for each contrast. Mostly for internal
use because of its main argument which is difficult to construct, but can be used independently if
the user grasps the logic.

Usage

diagplotVenn(pmat, fcmat = NULL, pcut = 0.05,
fcut = 0.5, direction = c("dereg", "up", "down"),
nam = as.character(round(1000 * runif(1))),
output = "x11", path = NULL, altNames = NULL, ...)

Arguments

pmat a matrix with p-values corresponding to the application of each statistical algo-
rithm. See also Details.

fcmat an optional matrix with fold changes corresponding to the application of each
statistical algorithm. See also Details.

pcut if fcmat is supplied, an absolute fold change cutoff to be applied to fcmat to
determine the differentially expressed genes for each algorithm.

fcut a p-value cutoff for statistical significance. Defaults to 0.05.

direction if fcmat is supplied, a keyword to denote which genes to draw in the Venn
diagrams with respect to their direction of regulation. See Details.

nam a name to be appended to the output graphics file (if "output" is not "x11").

output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png", "jpg", "bmp", "pdf" or "ps".
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path the path to create output files. If "path" is not NULL, a file with the intersections
in the Venn diagrams will be produced and written in "path".

altNames an optional named vector of names, e.g. HUGO gene symbols, alternative or
complementary to the unique gene names which are the rownames of pmat. The
names of the vector must be the rownames of pmat.

... further arguments to be passed to plot devices, such as parameter from par.

Details

Regarding pmat, the p-value matrix must have the colnames attribute and the colnames should corre-
spond to the name of the algorithm used to fill the specific column (e.g. if "statistics"=c("deseq","edger",
"nbpseq") then colnames(pmat) <- c("deseq","edger","nbpseq").

Regarding fcmat, the fold change matrix must have the colnames attribute and the colnames should
correspond to the name of the algorithm used to fill the specific column (see the parameter pmat).

Regarding direction, it can be one of "dereg" for the total of regulated genes, where abs(fcmat[,n])>=fcut
(default), "up" for the up-regulated genes where fcmat[,n]>=fcut or "down" for the up-regulated
genes where fcmat[,n]<=-fcut.

Value

The filenames of the plots produced in a named list with names the which.plot argument. If
output="x11", no output filenames are produced.

Author(s)

Panagiotis Moulos

Examples

require(VennDiagram)
p1 <- 0.01*matrix(runif(300),100,3)
p2 <- matrix(runif(300),100,3)
p <- rbind(p1,p2)
rownames(p) <- paste("gene",1:200,sep="_")
colnames(p) <- paste("method",1:3,sep="_")
vennContents <- diagplotVenn(p)

diagplotVolcano (Interactive) volcano plots of differentially expressed genes

Description

This function plots a volcano plot or returns a JSON string which is used to render aninteractive in
case of HTML reporting.
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Usage

diagplotVolcano(f, p, con = NULL, fcut = 1, pcut = 0.05,
altNames = NULL, output = "x11", path = NULL, ...)

Arguments

f the fold changes which are to be plotted on the x-axis.

p the p-values whose -log10 transformation is going to be plotted on the y-axis.

con an optional string depicting a name (e.g. the contrast name) to appear in the title
of the volcano diagplot.

fcut a fold change cutoff so as to draw two vertical lines indicating the cutoff thresh-
old for biological significance.

pcut a p-value cutoff so as to draw a horizontal line indicating the cutoff threshold
for statistical significance.

altNames an optional vector of names, e.g. HUGO gene symbols, alternative or comple-
mentary to the unique names of f or p (one of them must be named!). It is used
only in JSON output.

output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png", "jpg", "bmp", "pdf", "ps" or "json". The latter is cur-
rently available for the creation of interactive volcano plots only when reporting
the output, through the highcharts javascript library.

path the path to create output files.

... further arguments to be passed to plot devices, such as parameter from par.

Value

The filenames of the plots produced in a named list with names the which.plot argument. If
output="x11", no output filenames are produced.

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(5000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"
M <- normalizeEdger(dataMatrix,sampleList)
p <- statEdger(M,sampleList,contrast)
ma <- apply(M[,sampleList$A],1,mean)
mb <- apply(M[,sampleList$B],1,mean)
f <- log2(ifelse(mb==0,1,mb)/ifelse(ma==0,1,ma))
diagplotVolcano(f,p[[1]],con=contrast)
#j <- diagplotVolcano(f,p[[1]],con=contrast,output="json")



30 estimateAufcWeights

downsampleCounts Downsample read counts

Description

This function downsamples the library sizes of a read counts table to the lowest library size, accord-
ing to the methdology used in (Soneson and Delorenzi, BMC Bioinformatics, 2013).

Usage

downsampleCounts(counts)

Arguments

counts the read counts table which is subjected to downsampling.

Details

The downsampling process involves random sampling. For guaranteed reproducibility, be sure to
use set.seed before downsampling. By default, when the metaseqR2 package is loaded, the seed
is set to 42.

Value

The downsampled counts matrix.

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(5000)
D <- downsampleCounts(dataMatrix)

estimateAufcWeights Estimate AUFC weights

Description

This function automatically estimates weights for the "weight" and "dperm_weight" options of
metaseqR2 for combining p-values from multiple statistical tests. It creates simulated dataset based
on real data and then performs statistical analysis with metaseqR2 several times in order to derive
False Discovery Curves. Then, the average areas under the false discovery curves are used to
construct weights for each algorithm, according to its performance when using simulated data.
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Usage

estimateAufcWeights(counts, normalization,
statistics, nsim = 10, N = 10000,
samples = c(3, 3), ndeg = c(500, 500),
top = 500, modelOrg = "mm9", fcBasis = 1.5,
drawFpc = FALSE, rc = NULL,
...)

Arguments

counts the real raw counts table from which the simulation parameters will be esti-
mated. It must not be normalized and must contain only integer counts, without
any other annotation elements and unique gene identifiers as the rownames at-
tribute.

normalization same as normalization in metaseqr2.

statistics same as statistics in metaseqr2.

nsim the number of simulations to perform to estimate the weights. It default to 10.

N the number of genes to produce. See makeSimDataSd.

samples a vector with 2 integers, which are the number of samples for each condition
(two conditions currently supported).

ndeg a vector with 2 integers, which are the number of differentially expressed genes
to be produced. The first element is the number of up-regulated genes while the
second is the number of down-regulated genes.

fcBasis the minimum fold-change for deregulation.

top the top top best ranked (according to p-value) to use, to calculate area under the
false discovery curve.

modelOrg the organism from which the data are derived. It must be one of metaseqr2
supported organisms.

drawFpc draw the averaged false discovery curves? Default to FALSE.

rc the fraction of the available cores to use in a multicore system.

... Further arguments to be passed to estimateSimParams.

Details

The weight estimation process involves a lot of random sampling. For guaranteed reproducibility,
be sure to use set.seed prior to any calculations. By default, when the metaseqR2 package is
loaded, the seed is set to 42.

Value

A vector of weights to be used in metaseqr2 with the weights option.

Author(s)

Panagiotis Moulos
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Examples

require(zoo)
data("mm9GeneData",package="metaseqR2")
weights <- estimateAufcWeights(

counts=as.matrix(mm9GeneCounts[sample(nrow(mm9GeneCounts),1000),9:12]),
normalization="edaseq",
statistics=c("edger","limma"),
nsim=1,N=100,ndeg=c(10,10),top=10,modelOrg=NULL,
rc=0.01,libsizeGt=1e+5

)

estimateSimParams Estimate negative binomial parameters from real data

Description

This function reads a read counts table containing real RNA-Seq data (preferebly with more than
20 samples so as to get as much accurate as possible estimations) and calculates a population of
count means and dispersion parameters which can be used to simulate an RNA-Seq dataset with
synthetic genes by drawing from a negative binomial distribution. This function works in the same
way as described in (Soneson and Delorenzi, BMC Bioinformatics, 2013) and (Robles et al., BMC
Genomics, 2012).

Usage

estimateSimParams(realCounts, libsizeGt = 3e+6,
rowmeansGt = 5,eps = 1e-11, rc = NULL, draw = FALSE)

Arguments

realCounts a text tab-delimited file with real RNA-Seq data. See Details.

libsizeGt a library size below which samples are excluded from parameter estimation (de-
fault: 3000000).

rowmeansGt a row means (mean counts over samples for each gene) below which genes are
excluded from parameter estimation (default: 5).

eps the tolerance for the convergence of optimize function. Defaults to 1e-11.

rc in case of parallel optimization, the fraction of the available cores to use.

draw boolean to determine whether to plot the estimated simulation parameters (mean
and dispersion) or not. Defaults to FALSE (do not draw a mean-dispersion scat-
terplot).
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Details

Regarding realCounts, the file should strictly contain a unique gene name (e.g. Ensembl acces-
sion) in the first column and all other columns should contain read counts for each gene. Each
column must be named with a unique sample identifier. See examples in the ReCount database
http://bowtie-bio.sourceforge.net/recount/.

Also, the parameter estimation involves a lot of random sampling. For guaranteed reproducibility,
be sure to use set.seed prior to any calculations. By default, when the metaseqR2 package is
loaded, the seed is set to 42.

Value

A named list with two members: muHat which contains negative binomial mean estimates and
phiHat which contains dispersion estimates.

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(2000)
parList <- estimateSimParams(dataMatrix,libsizeGt=3e+4)

getAnnotation Annotation downloader

Description

For Ensembl based annotations, this function connects to the EBI’s Biomart service using the pack-
age biomaRt and downloads annotation elements (gene co-ordinates, exon co-ordinates, gene iden-
tifications, biotypes etc.) for each of the supported organisms. For UCSC/RefSeq annotations, it
connects to the respective SQL databases if the package RMySQL is present, otherwise it downloads
flat files and build a temporary SQLite database to make the necessaru build queries. See the help
page of metaseqr2 for a list of supported organisms.

Usage

getAnnotation(org, type, refdb = "ensembl", ver = NULL,
rc = NULL)

Arguments

org the organism for which to download annotation (one of the supported ones).

type "gene", "exon" or "utr". Same as the countType in metaseqr2.

refdb the online source to use to fetch annotation. It can be "ensembl" (default),
"ucsc" or "refseq". In the later two cases, an SQL connection is opened with
the UCSC public databases.

http://bowtie-bio.sourceforge.net/recount/
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ver the version of the annotation to use.

rc Fraction of cores to use. Same as the rc in buildAnnotationDatabase.

Value

A data frame with the canonical (not isoforms!) genes or exons of the requested organism. When
type="genes", the data frame has the following columns: chromosome, start, end, gene_id, gc_content,
strand, gene_name, biotype. When type="exon" the data frame has the following columns: chro-
mosome, start, end, exon_id, gene_id, strand, gene_name, biotype. When type="utr" the data
frame has the following columns: chromosome, start, end, transcript_id, gene_id, strand, gene_name,
biotype. The gene_id and exon_id correspond to Ensembl, UCSC or RefSeq gene, transcript and
exon accessions respectively. The gene_name corresponds to HUGO nomenclature gene names.

Note

The data frame that is returned contains only "canonical" chromosomes for each organism. It does
not contain haplotypes or random locations and does not contain chromosome M.

Author(s)

Panagiotis Moulos

Examples

mm10Genes <- getAnnotation("mm10","gene")

getDefaults Default parameters for several metaseqr functions

Description

This function returns a list with the default settings for each filtering, statistical and normalization
algorithm included in the metaseqR package. See the documentation of the main function and the
documentation of each statistical and normalization method for details.

Usage

getDefaults(what, method = NULL)

Arguments

what a keyword determining the procedure for which to fetch the default settings ac-
cording to method parameter. It can be one of "normalization", "statistics",
"geneFilter", "exonFilter" or "biotypeFilter".

method the supported algorithm included in metaseqR for which to fetch the default
settings. Se Details.
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Details

When what is "normalization", method is one of "edaseq", "deseq", "edger", "noiseq" or
"nbpseq". When what is "statistics", method is one of "deseq", "edger", "noiseq", "limma",
or "nbpseq". When method is "biotypeFilter", what is the input organism (see the main
metaseqr2 help page for a list of supported organisms).

Value

A list with default setting that can be used directly in the call of metaseqr.

Author(s)

Panagiotis Moulos

Examples

normArgsEdaseq <- getDefaults("normalization","edaseq")
statArgsEdger <- getDefaults("statistics","edger")

getInstalledAnnotations

Load a metaseqR2 annotation element

Description

This function returns a data frame with information on locally installed, supported or custom, an-
notations.

Usage

getInstalledAnnotations(obj = NULL)

Arguments

obj NULL or the path to a metaseqR2 SQLite annotation database. If NULL, the func-
tion will try to guess the location of the SQLite database.

Value

The function returns a data.frame object with the installed local annotations.

Author(s)

Panagiotis Moulos
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Examples

db <- file.path(system.file(package="metaseqR2"),
"annotation.sqlite")

if (file.exists(db))
ig <- getInstalledAnnotations(obj=db)

getWeights Get precalculated statistical test weights

Description

This function returns pre-calculated weights for human, chimpanzee, mouse, fruitfly and arabidop-
sis based on the performance of simulated datasets estimated from real data from the ReCount
database (http://bowtie-bio.sourceforge.net/recount/). Currently pre-calculated weights
are available only when all six statistical tests are used and for normalization with EDASeq. For
other combinations, use the estimateAufcWeights function.

Usage

getWeights(org = c("human", "chimpanzee", "mouse",
"fruitfly", "arabidopsis", "rat"))

Arguments

org "human", "chimpanzee", "mouse", "fruitfly", "arabidopsis" or "rat".

Value

A named vector of convex weights.

Author(s)

Panagiotis Moulos

Examples

wh <- getWeights("human")

http://bowtie-bio.sourceforge.net/recount/
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hg19pvalues p-values from human RNA-Seq data with two conditions, four samples

Description

This data set contains p-values calculated with each of the supported statistical testing algorithms
in metaseqR2 for 1000 genes. The purpose of this matrix is to demonstrate the p-value combination
methods as well as be used for a playground for other such methods and with other metaseqR2
facilities.

Format

a matrix with p-values from metaseqR2 supported tests.

Author(s)

Panagiotis Moulos

Source

Giakountis et al. (https://doi.org/10.1016/j.celrep.2016.05.038)

importCustomAnnotation

Import a metaseqR2 custom annotation element

Description

This function creates a local annotation database to be used with metaseqr2 so as to avoid long time
on the fly annotation downloads and formatting.

Usage

importCustomAnnotation(gtfFile, metadata,
level = c("gene", "transcript", "exon"),
type = c("gene", "exon", "utr"))

Arguments

gtfFile a GTF file containing the gene structure of the organism to be imported.

metadata a list with additional information about the annotation to be imported. The same
as in the buildCustomAnnotation man page.

level same as the transLevel in metaseqr2.

type same as the countType in metaseqr2.
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Value

The function returns a GenomicRanges object with the requested annotation.

Author(s)

Panagiotis Moulos

Examples

# Dummy GTF as example
chromInfo <- data.frame(length=c(1000L,2000L,1500L),

row.names=c("A","B","C"))

# Build with the metadata list filled (you can also provide a version)
myGenes <- importCustomAnnotation(

gtfFile=file.path(system.file(package="metaseqR2"),"dummy.gtf"),
metadata=list(

organism="dummy",
source="dummy_db",
version=1,
chromInfo=chromInfo

),
level="gene",type="gene"

)

## Real data!
## Gene annotation dump from Ensembl
#download.file(paste0("ftp://ftp.ensembl.org/pub/release-98/gtf/",
# "dasypus_novemcinctus/Dasypus_novemcinctus.Dasnov3.0.98.gtf.gz"),
# file.path(tempdir(),"Dasypus_novemcinctus.Dasnov3.0.98.gtf.gz"))

## Build with the metadata list filled (you can also provide a version)
#dasGenes <- importCustomAnnotation(
# gtfFile=file.path(tempdir(),"Dasypus_novemcinctus.Dasnov3.0.98.gtf.gz"),
# metadata=list(
# organism="dasNov3_test",
# source="ensembl_test"
# ),
# level="gene",type="gene"
#)

libsizeListMm9 Mouse RNA-Seq data with two conditions, four samples

Description

The library size list for mm9GeneCounts. See the data set description.
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Format

a named list with library sizes.

Author(s)

Panagiotis Moulos

Source

ENCODE (http://genome.ucsc.edu/encode/)

loadAnnotation Load a metaseqR2 annotation element

Description

This function creates loads an annotation element from the local annotation database to be used with
metaseqr2. If the annotation is not found and the organism is supported, the annotation is created
on the fly but not imported in the local database. Use buildAnnotationDatabase for this purpose.

Usage

loadAnnotation(genome, refdb,
level = c("gene", "transcript", "exon"),
type = c("gene", "exon", "utr"), version="auto",
db = file.path(system.file(package = "metaseqR2"),

"annotation.sqlite"), summarized = FALSE,
asdf = FALSE, rc = NULL)

Arguments

genome a metaseqr2 supported organisms or a custom, imported by the user, name. See
also the main metaseqr2 man page.

refdb a metaseqr2 supported annotation source or a custom, imported by the user,
name. See also the main metaseqr2 man page.

level same as the transLevel in metaseqr2.

type same as the countType in metaseqr2.

version same as the version in metaseqr2.

db same as the db in buildAnnotationDatabase.

summarized if TRUE, retrieve summarized, non-overlaping elements where appropriate (e.g.
exons).

asdf return the result as a data.frame (default FALSE).

rc same as the rc in buildAnnotationDatabase.
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Value

The function returns a GenomicRanges object with the requested annotation.

Author(s)

Panagiotis Moulos

Examples

db <- file.path(system.file(package="metaseqR2"),
"annotation.sqlite")

if (file.exists(db))
gr <- loadAnnotation(genome="hg19",refdb="ensembl",

level="gene",type="gene",db=db)

makeSimDataSd Create simulated counts using the Soneson-Delorenzi method

Description

This function creates simulated RNA-Seq gene expression datasets using the method presented in
(Soneson and Delorenzi, BMC Bioinformatics, 2013). For the time being, it creates only simulated
datasets with two conditions.

Usage

makeSimDataSd(N, param, samples = c(5, 5),
ndeg = rep(round(0.1*N), 2), fcBasis = 1.5,
libsizeRange = c(0.7, 1.4), libsizeMag = 1e+7,
modelOrg = NULL, simLengthBias = FALSE)

Arguments

N the number of genes to produce.

param a named list with negative binomial parameter sets to sample from. The first
member is the mean parameter to sample from (muHat) and the second the dis-
persion (phiHat). This list can be created with the estimateSimParams func-
tion.

samples a vector with 2 integers, which are the number of samples for each condition
(two conditions currently supported).

ndeg a vector with 2 integers, which are the number of differentially expressed genes
to be produced. The first element is the number of up-regulated genes while the
second is the number of down-regulated genes.

fcBasis the minimum fold-change for deregulation.
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libsizeRange a vector with 2 numbers (generally small, see the default), as they are multiplied
with libsizeMag. These numbers control the library sized of the synthetic data
to be produced.

libsizeMag a (big) number to multiply the libsizeRange to produce library sizes.

modelOrg the organism from which the real data are derived from. It must be one of the
supported organisms (see the main metaseqr2 help page). It is used to sample
real values for GC content.

simLengthBias a boolean to instruct the simulator to create genes whose read counts is propor-
tional to their length. This is achieved by sorting in increasing order the mean
parameter of the negative binomial distribution (and the dispersion according to
the mean) which will cause an increasing gene count length with the sampling.
The sampled lengths are also sorted so that in the final gene list, shorter genes
have less counts as compared to the longer ones. The default is FALSE.

Details

The simulated data generation involves a lot of random sampling. For guaranteed reproducibility,
be sure to use set.seed prior to any calculations. By default, when the metaseqR2 package is
loaded, the seed is set to 42.

Value

A named list with two members. The first member (simdata) contains the synthetic dataset

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(2000)
## File "bottomly_read_counts.txt" from the ReCount database
#download.file(paste("http://bowtie-bio.sourceforge.net/recount/",
# "countTables/bottomly_count_table.txt",sep=""),
# destfile="~/bottomly_count_table.txt")
N <- 2000
#parList <- estimateSimParams("~/bottomly_read_counts.txt")
parList <- estimateSimParams(dataMatrix,libsizeGt=3e+4)
sim <- makeSimDataSd(N,parList)
synthData <- sim$simdata
trueDeg <- which(sim$truedeg!=0)
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makeSimDataTcc Create simulated counts using TCC package

Description

This function creates simulated RNA-Seq gene expression datasets using the simulateReadCounts
function from the Bioconductor package TCC and it adds simulated annoation elements. For further
information please consult the TCC package documentation.

Usage

makeSimDataTcc(...)

Arguments

... parameters to the simulateReadCounts function.

Value

A list with the following members: simdata holding the simulated dataset complying with metaseqr2
requirements, and simparam holding the simulation parameters (see TCC documentation). Note
that the produced data are based in an Arabidopsis dataset.

Author(s)

Panagiotis Moulos

Examples

if (require(TCC)) {
dd <- makeSimDataTcc(Ngene=1000,PDEG=0.2,

DEG.assign=c(0.9,0.1),
DEG.foldchange=c(5,5),replicates=c(3,3))

head(dd$simdata)
}

metaseqr2 The main metaseqr2 pipeline
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Description

This function is the main metaseqr2 workhorse and implements the main metaseqr2 workflow which
performs data read, filtering, normalization and statistical selection, creates diagnostic plots and
exports the results and a report if requested. The metaseqr2 function is responsible for assembling
all the steps of the metaseqr2 pipeline which i) reads the input gene or exon read count table ii)
performs prelimininary filtering of data by removing chrM and other non-essential information for
a typical differential gene expression analysis as well as a preliminary expression filtering based on
the exon counts, if an exon read count file is provided. iii) performs data normalization with one
of currently widely used algorithms, including EDASeq (Risso et al., 2011), DESeq (Anders and
Huber, 2010), edgeR (Robinson et al., 2010), NOISeq (Tarazona et al., 2012) or no normalization iv)
performs a second stage of filtering based on the normalized gene expression according to several
gene filters v) performs statistical testing with one or more of currently widely used algorithms,
including DESeq (Anders and Huber, 2010), edgeR (Robinson et al., 2010), NOISeq (Tarazona et
al., 2012), limma (Smyth et al., 2005) for RNA-Seq data vi) in the case of multiple statistical testing
algorithms, performs meta-analysis using one of six vailable methods (see the meta.p argument) vii)
exports the resulting differentially expressed gene list in text tab-delimited format viii) creates a set
of diagnostic plots either available in the aforementioned packages or metaseqr2 specific ones and
ix) creates a comprehensive HTML report which summarizes the run information, the results and
the diagnostic plots. Certain diagnostic plots (e.g. the volcano plot) can be interactive with the use
of the external Highcharts (http://www.highcharts.com) JavaScript library for interactive graphs.
Although the inputs to the metaseqr2 workflow are many, in practice, setting only very few of them
and accepting the defaults as the rest can result in quite comprehensible results for mainstream
organisms like mouse, human, fly and rat.

Usage

metaseqr2(counts, sampleList, excludeList = NULL,
fileType = c("auto", "sam", "bam", "bed"),
path = NULL, contrast = NULL, libsizeList = NULL,
embedCols = list(idCol = 4, gcCol = NA, nameCol = NA,

btCol = NA),
annotation = NULL, org = c("hg18", "hg19", "hg38", "mm9",

"mm10", "rn5", "rn6", "dm3", "dm6", "danrer7",
"pantro4", "susscr3", "tair10", "equcab2"),

refdb = c("ensembl", "ucsc", "refseq"), version = "auto",
transLevel = c("gene", "transcript", "exon"),
countType = c("gene", "exon","utr"),
utrOpts = list(frac = 1, minLength = 300, downstream = 50),
exonFilters = list(minActiveExons = list(exonsPerGene = 5,

minExons = 2, frac = 1/5)),
geneFilters = list(length = list(length = 500),

avgReads = list(averagePerBp = 100, quantile = 0.25),
expression = list(median = TRUE, mean = FALSE,

quantile = NA, known = NA, custom = NA),
biotype = getDefaults("biotypeFilter", org[1]),
presence = list(frac = 0.25, minCount = 10,

perCondition = FALSE)),
whenApplyFilter = c("postnorm", "prenorm"),



44 metaseqr2

normalization = c("deseq", "deseq2", "edaseq", "edger",
"noiseq", "nbpseq", "absseq", "dss", "each", "none"),

normArgs = NULL,
statistics = c("deseq", "deseq2", "edger", "noiseq",

"limma", "nbpseq", "absseq", "dss"),
statArgs = NULL,
adjustMethod = sort(c(p.adjust.methods, "qvalue")),
metaP = if (length(statistics) > 1) c("simes",

"bonferroni", "fisher", "dperm_min", "dperm_max",
"dperm_weight", "fperm", "whitlock", "minp", "maxp",
"weight", "pandora", "none") else "none",

weight = rep(1/length(statistics), length(statistics)),
nperm = 10000, pcut = NA, logOffset = 1, pOffset = NULL,
preset = NULL, qcPlots = c("mds", "biodetection",

"countsbio", "saturation", "readnoise","filtered",
"correl", "pairwise", "boxplot", "gcbias",
"lengthbias", "meandiff", "meanvar", "rnacomp",
"deheatmap", "volcano", "biodist", "mastat",
"statvenn", "foldvenn", "deregulogram"),

figFormat = c("png", "jpg", "tiff", "bmp", "pdf", "ps"),
outList = FALSE, exportWhere = NA,
exportWhat = c("annotation", "p_value", "adj_p_value",

"meta_p_value", "adj_meta_p_value", "fold_change",
"stats", "counts","flags"),

exportScale = c("natural", "log2", "log10", "vst",
"rpgm"),

exportValues = c("raw", "normalized"),
exportStats = c("mean", "median", "sd", "mad", "cv",

"rcv"),
exportCountsTable = FALSE,
restrictCores = 0.6, report = TRUE, reportTop = 0.1,
reportTemplate = "default", saveGeneModel = TRUE,
verbose = TRUE, runLog = TRUE,
reportDb = c("dexie", "sqlite"),
localDb = file.path(system.file(package = "metaseqR2"),

"annotation.sqlite"),
offlineReport = TRUE,
createTracks = FALSE, overwriteTracks = FALSE,
trackExportPath = file.path(exportWhere, "tracks"),
trackInfo = list(stranded = FALSE, normTo = 1e+9,

urlBase = "http://www.trackserver.me",
fasta = NULL, gtf = NULL,
hubInfo = list(name = "MyHub", shortLabel = "My hub",
longLabel = "My hub long",
email = "someone@example.com")), .progressFun = NULL,
.exportR2C = FALSE,...)
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Arguments

counts a text tab-delimited file containing gene, exon or 3’UTR counts in one of the
following formats: i) the first column contains unique gene or exon identifiers
and the rest of the columns contain the read counts for each sample. ii) The first
n columns should contain only **gene** annotation elements like chromoso-
mal locations, gene accessions, exon accessions, GC content etc. and the rest
columns should contain gene read counts, iii) counts can also be an .RData file
with previous analysis elements (see Details) and iv) counts can be a list repre-
senting the gene model (see Details). Several restrictions apply im each of the
four cases. See Details for analytical descriptions.

sampleList a list containing condition names and the samples under each condition or a
small tab-delimited file with the experiment description. Not needed when
restoring a previous analysis. See Details for analytical description.

excludeList a list of samples to exclude, in the same (list) format as sampleList above.
path an optional path where all the BED/BAM files are placed, to be prepended to

the BAM/BED file names in the targets file. See Details for further information.
fileType the type of raw input files. It can be "auto" for auto-guessing, "bed" for BED

files, "sam" for SAM files or "bam" for BAM files.
contrast a character vector of contrasts to be tested in the statistical testing step(s) of the

pipeline. Each element of contrast should STRICTLY have the format "Condi-
tionA_vs_ConditionB_vs_...". Special attention is needed as fold change cal-
culations are based on this argument. If it is NULL, no statistical testing of fold
change calculations are performed. See Details for further information.

libsizeList an optional named list where names represent samples (MUST be the same as
the samples in sample.list) and members are the library sizes (the sequencing
depth) for each sample. For example libsize.list <- list(Sample_A1=32456913,
Sample_A2=4346818).

embedCols a named list with column numbers to guide the case of embedded annotation.
See Details for further information.

annotation It can be one of i) NULL (default) to use the existing annotation database or fetch
on the fly, ii) "embedded" if the annotation elements are embedded in the read
counts file (restrictions apply) or iii) a list with a path to a GTF file and certain
required metadata. See Details for a full description.

org the supported organisms by metaseqr2 or a user-named organism which has
been imported to the database. See Details for more information.

refdb the reference annotation repository from which to retrieve annotation elements
to use with metaseqr2. It can be one of "ensembl" (default), "ucsc" or "refseq"
or a user based one (similar to the org argument).

version the version of the annotation to use. See Details.
transLevel perform differential expression analysis at which transcriptional unit, can be one

of "gene" (default), "transcript" for reporting differential expression at the
transcript level or "exon" for exon level.

countType the type of reads inside the counts file. It can be one of "gene", "exon" or "utr"
for Quant-Seq (Lexogen) protocol. This is a very important and mandatory
parameter as it defines the course of the workflow.
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utrOpts a named list with members frac which is the fraction (0-1) of the 3’ UTR region
to count reads in, minLength the minimum acceptable 3’UTR length irrespec-
tive of frac and downstream the number of base pairs to flank the end of the 3’
UTR of transcripts when analyzing Quant-Seq data.

exonFilters a named list whose names are the names of the supported exon filters and its
members the filter parameters. See section "Exon filters" below for details.

geneFilters a named list whose names are the names of the supported gene filters and its
members the filter parameters. See section "Gene filters" below for details.

whenApplyFilter

a character string determining when to apply the exon and/or gene filters, relative
to normalization. It can be "prenorm" to apply apply the filters and exclude
genes from further processing before normalization, or "postnorm" to apply
the filters after normalization (default). See also Details.

normalization the normalization algorithm to be applied on the count data. It can be one
of "edaseq" for EDASeq normalization, "deseq" for the normalization algo-
rithm in the DESq package (default), "edger" for the normalization algorithms
present in the edgeR package "noiseq" for the normalization algorithms present
in the NOISeq package "nbpseq" for the normalization algorithms present in the
NBPSeq package or "none" to not normalize the data (highly unrecommended).
Algorithm specific arguments can be passed through the normArgs argument).

normArgs a named list whose names are the names of the normalization algorithm parame-
ters and its members parameter values. See section "Normalization parameters"
below for details. Leave NULL for the defaults of normalization.

statistics one or more statistical analyses to be performed by the metaseqr2 pipeline. It can
be one or more of "deseq" (default) to conduct statistical test(s) implemented
in the DESeq package, "edger" to conduct statistical test(s) implemented in the
edgeR package, "limma" to conduct the RNA-Seq version of statistical test(s)
implemented in the limma package, "noiseq" to conduct statistical test(s) im-
plemented in the NOISeq package, "nbpseq" to conduct statistical test(s) imple-
mented in the NBPSeq package, "deseq2" to conduct statistical test(s) imple-
mented in the DESeq2 package, "dss" to conduct statistical test(s) implemented
in the DSS package and "absseq" to conduct statistical test(s) implemented in
the ABSSeq package. In any case individual algorithm parameters are controlled
by the contents of the statArgs list. Finally, it can be NA. In this case no testing
is performed and only fold changes are provided if contrast is not NULL.

statArgs a named list whose names are the names of the statistical algorithms used in the
pipeline. Each member is another named list whose names are the algorithm
parameters and its members are the parameter values. See section "Statistics
parameters" below for details. Leave NULL for the defaults of statistics.

adjustMethod the multiple testing p-value adjustment method. It can be one of p.adjust.methods
or "qvalue" from the qvalue Bioconductor package. Defaults to "BH" for Benjamini-
Hochberg correction.

metaP the meta-analysis method to combine p-values from multiple statistical tests .
It can be one of "simes" (default), "bonferroni", "minp", "maxp", "weight",
"pandora", "dperm_min", "dperm_max", "dperm_weight", "fisher", "fperm",
"whitlock" or "none". See Details for a full description.
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weight a vector of weights with the same length as the statistics vector containing a
weight for each statistical test. It should sum to 1. Use with caution with the
dperm_weight parameter! Theoretical background is not yet solid and only
experience shows improved results!

nperm the number of permutations performed to derive the meta p-value when metaP="fperm"
or metaP="dperm". It defaults to 10000.

pcut a p-value cutoff for exporting differentially genes, default is to export all the
non-filtered genes.

logOffset an offset to be added to values during logarithmic transformations in order to
avoid Infinity (default is 1).

pOffset a value between 0 and 1 to multiply potential zero p-values with for the combi-
nation methods including weighting or NULL (default). See also Details.

preset an analysis strictness preset. preset can be one of "all_basic", "all_normal",
"all_full", "medium_basic", "medium_normal", "medium_full", "strict_basic",
"strict_normal" or "strict_full", each of which control the strictness of
the analysis and the amount of data to be exported. For an explanation of the
presets, see the section "Presets" below.

qcPlots a set of diagnostic plots to show/create. It can be one or more of "mds", "biodetection",
"rnacomp", "countsbio", "saturation", "readnoise", "filtered", "boxplot",
"gcbias", "lengthbias", "meandiff", "meanvar", "deheatmap", "volcano",
"mastat", "biodist", "statvenn", "foldvenn". See also Details.

figFormat the format of the output diagnostic plots. It can be one or more of "png", "jpg",
"tiff", "bmp", "pdf", "ps". The native format "x11" (for direct display) is not
provided as an option as it may not render the proper display of some diagnostic
plots in some devices.

outList a logical controlling whether to export a list with the results in the running envi-
ronment.

exportWhere an output directory for the project results (report, lists, diagnostic plots etc.)
exportWhat the content of the final lists. It can be one or more of "annotation", to bind

the annoation elements for each gene, "p_value", to bind the p-values of each
method, "adj_p_value", to bind the multiple testing adjusted p-values, "meta_p_value",
to bind the combined p-value from the meta-analysis, "adj_meta_p_value", to
bind the corrected combined p-value from the meta-analysis, "fold_change",
to bind the fold changes of each requested contrast, "stats", to bind several
statistics calclulated on raw and normalized counts (see the exportStats argu-
ment), "counts", to bind the raw and normalized counts for each sample.

exportScale export values from one or more transformations applied to the data. It can be one
or more of "natural", "log2", "log10", "vst" (Variance Stabilizing Transor-
mation, see the documentation of DESeq package) and "rpgm" which is ratio
of mapped reads per gene model (either the gene length or the sum of exon
lengths, depending on countType argument). Note that this is not RPKM as
reads are already normalized for library size using one of the supported normal-
ization methods. Also, "rpgm" might be misleading when normalization is
other than "deseq".

exportValues It can be one or more of "raw" to export raw values (counts etc.) and "normalized"
to export normalized counts.



48 metaseqr2

exportStats calculate and export several statistics on raw and normalized counts, condition-
wise. It can be one or more of "mean", "median", "sd", "mad", "cv" for the
Coefficient of Variation, "rcv" for a robust version of CV where the median and
the MAD are used instead of the mean and the standard deviation.

exportCountsTable

exports also the calculated read counts table when input is read from bam files
and exports also the normalized count table in all cases. Defaults to FALSE.

restrictCores in case of parallel execution of several subfunctions, the fraction of the available
cores to use. In some cases if all available cores are used (restrictCores=1 and
the system does not have sufficient RAM, the pipeline running machine might
significantly slow down.

report a logical value controlling whether to produce a summary report or not. Defaults
to TRUE.

reportTop a fraction of top statistically significant genes to append to the HTML report.
This helps in keeping the size of the report as small as possible, as appending
the total gene list might create a huge HTML file. Users can always retrieve the
whole gene lists from the report links. Defaults to 0.1 (top 10 genes). Set to NA
or NULL to append all the statistically significant genes to the HTML report.

reportTemplate an HTML template to use for the report. Do not change this unless you know
what you are doing.

saveGeneModel in case of exon analysis, a list with exon counts for each gene will be saved to
the file exportWhere/data/gene_model.RData. This file can be used as input
to metaseqR for exon count based analysis, in order to avoid the time consuming
step of assembling the counts for each gene from its exons

verbose print informative messages during execution? Defaults to TRUE.

runLog write a log file of the metaseqr2 run using package log4r. Defaults to TRUE. The
filename will be auto-generated.

reportDb database system to use for storing the report intereactive graphs. Can be "sqlite"
(default) or "dexie". See Details for further explanation on what should be
used.

localDb the metaseqR2 annotaation database location. See also link{buildAnnotationDatabase}.

offlineReport TRUE (default) to download and include the required JavaScript libraries to prop-
erly view the report offline. Ignored if report=FALSE

.

createTracks option to create normalized bigWig files to display in a genome browser (e.g.
UCSC). Defaults to FALSE.

overwriteTracks

overwrite tracks if they already exist? Defaults to FALSE.
trackExportPath

where to export the bigWig files, defaults to file.path(exportWhere,"tracks").

trackInfo if createTracks=TRUE, a list with additional required information to create the
tracks. See Details for further explanation.

.progressFun a function which updates a Progress object from shiny. This function must
accept a detail argument. See http://shiny.rstudio.com/articles/progress.html
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.exportR2C export additional RData along with saveGeneModel.

... further arguments that may be passed to plotting functions, related to par.

Details

When counts is a tab-delimited file, the following restrictions apply:

• In the case (i) the first cell of each row is a gene or exon accession and the rest are integers
representing the counts for that accession. In that case, the annotation parameter should
strictly be NULL or an external file in GTF format.

• In the case (ii) the annotation parameter can also be "embedded". The ideal embedded an-
notation contains 8 columns, chromosome, gene or exon start, gene or exon end, gene or exon
accession, GC-content (fraction or percentage), strand, HUGO gene symbol and gene biotype
(e.g. "protein_coding" or "ncRNA"). When the annotation parameter is "embedded", cer-
tain of these features are mandatory (co-ordinates and accessions). If they are not present, the
pipeline will not run. If additional elements are not present (e.g. GC content or biotypes),
certain features of metaseqr2 will not be available. For example, EDASeq normalization will
not be performed based on a GC content covariate but based on gene length which is not what
the authors of EDASeq suggest. If biotypes are not present, a lot of diagnostic plots will not
be available. If the HUGO gene symbols are missing, the final annotation will contain only
gene accessions and thus be less comprehensible. Counts can be a data frame satisfying the
above conditions. It is a data frame by default when read2count is used.

• In the case (iii) the .RData file (output of save function contains static input elements (list
containing the gene model (exon counts for each gene), gene and exon annotation to avoid
re-(down)loading and/or gene counts depending on countType). This kind of input facilitates
the re-analysis of the same experiment, using different filtering, normalization and statistical
algorithms. This .RData file is produced when saveGeneModel=TRUE.

• In the case (iv) counts can be a list representing the gene model (exon/UTR counts for each
gene). This .RData file can be generated by setting saveGeneModel=TRUE when performing
data analysis for the first time.

Regarding sampleList it should have the format sampleList <- list(ConditionA=c("Sample_A1",
"Sample_A2","Sample_A3"), ConditionB=c("Sample_B1","Sample_B2"), ConditionC=c("Sample_C1","Sample_C2")).
The names of the samples in list members MUST match the column names containing the read
counts in the counts file. If they do not match, the pipeline will either crash or at best, ignore
several of your samples. Alternative, sampleList can be a small tab-delimited file structured as
follows: the first line of the external tab delimited file should contain column names (names are
not important). The first column MUST contain UNIQUE sample names and the second column
MUST contain the biological condition where each of the samples in the first column should be-
long to. If the counts argument is missing, the sampleList argument MUST be a targets text
tab-delimited file which contains the sample names, the BAM/BED file names and the biological
conditions/groups for each sample/file. The file should be text tab-delimited and structured as fol-
lows: the first line of the external tab delimited file should contain column names (names are not
important). The first column MUST contain UNIQUE sample names. The second column MUST
contain the raw BAM/BED files WITH their full path. Alternatively, the path argument should be
provided. If path is not provided and if the files in the second column of the targets file do not
contain a path to a directory, the current directory is assumed to be the BAM/BED file container.
The third column MUST contain the biological condition where each of the samples in the first
column should belong to.
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Regarding contrast, a valid example based on the sampleList above is contrast <- c("ConditionA_vs_ConditionB",
"ConditionA_vs_ConditionC", "ConditionA_vs_ConditionB_vs_ConditionC"). The first el-
ement of pairwise contrasts (e.g. "ConditionA" above) MUST be the control condition or any
reference that ConditionB is checked against. metaseqr2 uses this convention to properly calculate
fold changes.

Regarding embedCols, this list must contain four members, named idCol, gcCol, nameCol and
btCol, which hold the position in the delimited file with embedded annotation, where unique gene
ids, GC content, gene names and gene biotypes respectively are located. More specifically:

• idCol is an integer denoting the column number in the file (or data frame) provided with the
counts argument, where the unique gene accessions are. Default to 4 which is the standard
feature name column in a BED file.

• gcCol is an integer denoting the column number in the file (or data frame) provided with
the counts argument, where each gene’s GC content is given. If not provided, GC content
normalization provided by EDASeq will not be available.

• nameCol is an integer denoting the column number in the file (or data frame) provided with
the counts argument, where the HUGO gene symbols are given. If not provided, it will not be
available when reporting results. In addition, the "known" gene filter will not be available for
application.

• btCol is an integer denoting the column number in the file (or data frame) provided with the
counts argument, where the gene biotypes are given. If not provided, the "biodetection",
"countsbio", "saturation", "filtered" and "biodist" plots will not be available.

Regarding annotation instructs metaseqr2 where to find the annotation for the given counts file. It
can be one of i) "download" (default) for automatic downloading of the annotation for the organism
specified by the org parameter (using biomaRt), ii) "embedded" if the annotation elements are
embedded in the read counts file or iv) a file specified by the user which should be as similar as
possible to the "download" case, in terms of column structure.

Regarding org, it can be, for human genomes "hg18", "hg19" or "hg38", for mouse genomes
"mm9", "mm10", for rat genomes "rn5" or "rn6", for drosophila genome "dm3" or "dm6", for
zebrafish genome "danrer7", "danrer10" or "danrer11", for chimpanzee genome "pantro4",
"pantro5", for pig genome "susscr3", "susscr11", for Arabidopsis thaliana genome "tair10"
and for Equus caballus genome "equcab2". Finally, it can be "USER_NAMED_ORG" with a custom
organism which has been imported to the annotation database by the user using a GTF file. For
example org="mm10_p1".

Regarding version, this is an integer denoting the version of the annotation to use from the local
annotation database or fetch on the fly. For Ensembl, it corresponds to Ensembl releases, while for
UCSC/RefSeq, it is the date of creation (locally).

Regarding whenApplyFilter, in the case of whenApplyFilter="prenorm", a first normalization
round is applied to a copy of the gene counts matrix in order to derive the proper normalized values
that will constitute the several expression-based filtering cutoffs.

Regarding metaP, for the "fisher" and "fperm" methods, see the documentation of the R pack-
age MADAM. For the "whitlock" method, see the documentation of the survcomp Bioconductor
package. With the "maxp" option, the final p-value is the maximum p-value out of those returned
by each statistical test. This is equivalent to an "intersection" of the results derived from each al-
gorithm so as to have a final list with the common genes returned by all statistical tests. Similarly,
when meta.p="minp", is equivalent to a "union" of the results derived from each algorithm so as
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to have a final list with all the genes returned by all statistical tests. The latter can be used as a
very lose statistical threshold to aggregate results from all methods regardless of their False Positive
Rate. With the "simes" option, the method proposed by Simes (Simes, R. J., 1986) is used. With
the "dperm_min", "dperm.max", "dperm.weight" options, a permutation procedure is initialed,
where nperm permutations are performed across the samples of the normalized counts matrix, pro-
ducing nperm permuted instances of the initital dataset. Then, all the chosen statistical tests are
re-executed for each permutation. The final p-value is the number of times that the p-value of the
permuted datasets is smaller than the original dataset. The p-value of the original dataset is cre-
ated based on the choice of one of dperm.min, dperm.max or dperm.weight options. In case of
dperm.min, the intial p-value vector is consists of the minimum p-value resulted from the applied
statistical tests for each gene. The maximum p-value is used with the dperm.max option. With the
dperm.weight option, the weight weighting vector for each statistical test is used to weight each
p-value according to the power of statistical tests (some might work better for a specific dataset).
Be careful as the permutation procedure usually requires a lot of time. However, it should be the
most accurate. This method will NOT work when there are no replicated samples across biological
conditions. In that case, use meta.p="simes" instead. Finally, there are the "minp", "maxp" and
"weight" options which correspond to the latter three methods but without permutations. Gener-
ally, permutations would be accurate to use when the experiment includes >5 samples per condition
(or even better 7-10) which is rather rare in RNA-Seq experiments. Finally, "pandora" is the same
as "weight" and is added to be in accordance with the main algorithm name.

Regarding pOffset, it is used to correct for the case of a p-value which is equal to 0 as a result of
internal numerical and approximation procedures. When NULL, random numbers greater than 0 and
less than or equal to 0.5 are used to multiply the offending p-values with the lowest provided non-
zero p-value, maintaining thus a virtual order of significance, avoiding having the same p-values
for two tests and assuming that all zero p-values represent extreme statistical significance. When a
numeric between 0 and 1, this number is used for the above multiplication instead.

Regarding qcPlots The "mds" stands for Mutlti-Dimensional Scaling and it creates a PCA-like
plot but using the MDS dimensionality reduction instead. It has been succesfully used for NGS
data (e.g. see the package htSeqTools) and it shows how well samples from the same condition
cluster together. For "biodetection", "countsbio", "saturation", "rnacomp", "readnoise",
"biodist" see the vignette of NOISeq package. The "saturation" case has been rewritten in
order to display more samples in a more simple way. In addition, the "readnoise" plots represent
an older version or the RNA composition plot included in older versions of NOISeq. For "gcbias",
"lengthbias", "meandiff", "meanvar" see the vignette of EDASeq package. "lenghtbias"
is similar to "gcbias" but using the gene length instead of the GC content as covariate. The
"boxplot" option draws boxplots of log2 transformed gene counts. The "filtered" option draws
a 4-panel figure with the filtered genes per chromosome and per biotype, as absolute numbers and
as fractions of the genome. See also the help page of diagplotFiltered. The "deheatmap" op-
tion performs hierarchical clustering and draws a heatmap of differentially expressed genes. In the
context of diagnostic plots, it’s useful to see if samples from the same groups cluster together after
statistical testing. The "volcano" option draws a volcano plot for each contrast and if a report is
requested, an interactive volcano plot is presented in the HTML report. The "venn" option will
draw an up to 5-way Venn diagram depicting the common and specific to each statistical algorithm
genes and for each contrast, when meta-analysis is performed. The "correl" option creates two
correlation graphs: the first one is a correlation heatmap (a correlation matrix which depicts all
the pairwise correlations between each pair of samples in the counts matrix is drawn as a clustered
heatmap) and the second one is a correlogram plot, which summarizes the correlation matrix in
the form of ellipses (for an explanation please see the vignette/documentation of the R package
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corrplot. Set qcPlots=NULL if you don’t want any diagnostic plots created.

Regarding reportDb, contrary with the first version of metaseqR, all graphs in the metaseqR2 report
are interactive with the usage of the JavaScript libraries Highcharts, plotly (heatmaply) and jvenn.js.
However, this adds a great burden regarding rendering the final HTML file and its content, a burden
which becomes heavier by the fact the metaseqR2 report is rendered using knitr and rmarkdown
instead of raw HTML (previously, brew). Therefore, the pre-calculated JSON objects representing
the graphs are stored either in a report-specific IndexedDB (https://javascript.info/indexeddb) flavor
called Dexie (https://dexie.org/) (default) or in an SQLite database and then queried using sql.js
(https://github.com/kripken/sql.js/). Dexie is prefered because it is very efficient and can produce
an independent report that does not need to be served through a web-server and can be viewed
locally. Although Dexie is very efficient, some caution is required as knitr and render from
rmarkdown are not very memory efficient when rendering larger HTML files. A large HTML file
may be produced when analyzing a large dataset with a lot of contrasts that may result in a lot of
tables. In such cases, if the report generation crashes with errors related to memory, try lowering the
reportTop argument. reportTop does not affect the final lists of differentially expressed genes,
only the report tables. The same must be applied also if the report takes too much time to load.
If the report is to be served through a web server like Apache (e.g. when the report is provided
by a facility to end users), reportDb="sqlite" may be preferred as the total report size will be
smaller because of an SQLite database hosting all plots which are queried when required but from
the SQLite database and not from the in-browser database (Dexie). **Note** that when using an
SQLite database, you will **NOT** be able to view the report in any browser other than Microsoft
Edge because of security policies regarding local file access. **Note** also that sql.js is a rather
large JavaScript library (around 2.5MB).

Regarding trackInfo, it is a helper list to guide the bigWig track creation and has the following
members:

• stranded, which can be TRUE or FALSE depending on whether you wish to create stranded
tracks by separating + and - strand reads. In the case of stranded tracks, a UCSC Genome
Brower trackhub is created. Individual tracks can be retrieved from the trackhub.

• normTo, which is a large integer, denoting the total sum of signal to be used as the normaliza-
tion target. It defaults to 1e+9. This means that if for a particular sample the sum of signal is
1.5e+9 (sum(sapply(coverage(x),sum)) == 1.5e+9) then this is linearly scaled to 1e+9.

• urlBase, which is a base url appended to the bigWig files produced (the base path of the
bigDataUrl in UCSC Genome Browser track lines).

• hubInfo, a list with the track hub description in case of stranded tracks. Please see the track
hub specifications at the UCSC Genome Browser site.

• fasta, reference genome in FASTA format for the case of analyzing a custom, non-directly
supported organism. It will be converted to the .2bit format and written along with a track
hub.

• gtf, a GTF file describing gene models in the case of analyzing a custom, non-directly sup-
ported organism. It will be converted to the .bigBed format and written along with a track hub.
Essentially the same as annotation$gtf.

All files (bigWig files, track/trackhub info) are written in the tracks subdirectory of the main path
where the report and the outputs are written.
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Value

If outList is TRUE, a named list whose length is the same as the number of requested contrasts.
Each list member is named according to the corresponding contrast and contains a data frame of
differentially expressed genes for that contrast. The contents of the data frame are defined by
the exportWhat, exportScale, exportStats, exportValues parameters. If report is TRUE, the
output list contains two main elements. The first is described above (the analysis results) and the
second contains the same results but in HTML formatted tables.

Exon filters

The exon filters are a set of filters which are applied after the gene models are assembled from
the read counts of individual exons and before the gene expression is summarized from the exons
belonging to each gene. These filters can be applied when the input read counts file contains exon
reads. It is not applicable when the input file already contains gene counts. Such filters can be
for example "accept genes where all the exons contain more than x reads" or "accept genes where
there is read presence in at least m/n exons, n being the total exons of the gene". Such filters
are NOT meant for detecting differential splicing as also the whole metaseqr2 pipeline, thus they
should not be used in that context. The exonFilters argument is a named list of filters, where the
names are the filter names and the members are the filter parameters (named lists with parameter
name, parameter value). See the usage of the metaseqr2 function for an example of how these
lists are structured. The supported exon filters in the current version are: i) minActiveExons which
implements a filter for demanding m out of n exons of a gene to have a certain read presence with
parameters exonsPerGene, minExons and frac. The filter is described as follows: if a gene has
up to exonsPerGene exons, then read presence is required in at least minExons of them, else read
presence is required in a frac fraction of the total exons. With the default values, the filter instructs
that if a gene has up to 5 exons, read presence is required in at least 2, else in at least 20 exons, in
order to be accepted. More filters will be implemented in future versions and users are encouraged
to propose exon filter ideas to the author by mail. See metaseqr2 usage for the defaults. Set
exonFilters=NULL to not apply any exon filtering.

Gene filters

The gene filters are a set of filters applied to gene expression as this is manifested through the
read presence on each gene and are preferably applied after normalization. These filters can be
applied both when the input file or data frame contains exon read counts and gene read counts.
Such filter can be for example "accept all genes above a certain count threshold" or "accept all
genes with expression above the median of the normalized counts distribution" or "accept all with
length above a certain threshold in kb" or "exclude the ’pseudogene’ biotype from further analysis".
The supported gene filters in the current version, which have the same structure as the exon filters
(named list of lists with filter names, parameter names and parameter arguments) are: i) length
which implements a length filter where genes are accepted for further analysis if they are above
length (its parameter) kb. ii) avg.reads which implements a filter where a gene is accepted for
further analysis if it has more average reads than the quantile of the average count distribution
per averagePerBp base pairs. In summary, the reads of each gene are averaged per averagePerBp
based on each gene’s length (in case of exons, input the "gene’s length" is the sum of the lengths
of exons) and the quantile quantile of the average counts distribution is calculated for each sam-
ple. Genes passing the filter should have an average read count larger than the maximum of the
vector of the quantiles calculated above. iii) expression which implements a filter based on the
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overall expression of a gene. The parameters of this filter are: median, where genes below the
median of the overall count distribution are not accepted for further analysis (this filter has been
used to distinguish between "expressed" and "not expressed" genes in several cases, e.g. (Mokry
et al., NAR, 2011) with a logical as value, mean which is the same as median but using the mean,
quantile which is the same as the previous two but using a specific quantile of the total counts
distribution, known, where in this case, a set of known not-expressed genes in the system under
investigation are used to estimate an expression cutoff. This can be quite useful, as the genes are
filtered based on a "true biological" cutoff instead of a statistical cutoff. The value of this filter is a
character vector of HUGO gene symbols (MUST be contained in the annotation, thus it’s better to
use annotation="download") whose counts are used to build a "null" expression distribution. The
90th quantile of this distribution is then the expression cutoff. This filter can be combined with any
other filter. Be careful with gene names as they are case sensitive and must match exactly ("Pten"
is different from "PTEN"!). iv) biotype where in this case, genes with a certain biotype (MUST
be contained in the annotation, thus it’s better to use annotation="download") are excluded from
the analysis. This filter is a named list of logical, where names are the biotypes in each genome and
values are TRUE or FALSE. If the biotype should be excluded, the value should be TRUE else FALSE.
See the result of get.defaults("biotype.filter","hg19") for an example. Finally, in future
versions there will be support for user-defined filters in the form of a function. v) presence where
in this case, a gene is further considered for statistical testing if frac (x100 for a percentage value)
have more than minCount reads across all samples (perCondition=FALSE) or across the samples
of each condition (perCondition=TRUE).

Normalization parameters

The normalization parameters are passed again as a named list where the names of the members
are the normalization parameter names and the values are the normalization parameter values. You
should check the documentation of the packages EDASeq, DESeq, edgeR, NOISeq and NBPSeq for
the parameter names and parameter values. There are a few exceptions in parameter names: in case
of normalization="edaseq" the only parameter names are within.which and between.which,
controlling the withing lane/sample and between lanes/samples normalization algorithm. In the case
of normalization="nbpseq", there is one additional parameter called main.method which can
take the calues "nbpseq" or "nbsmyth". These values correspond to the two different workflows
available in the NBPSeq package. Please, consult the NBPSeq package documentation for further
details. For the rest of the algorithms, the parameter names are the same as the names used in the
respective packages. For examples, please use the getDefaults function.

Statistics parameters

The statistics parameters as passed to statistical algorithms in metaseqr2, exactly with the same
way as the normalization parametes above. In this case, there is one more layer in list nest-
ing. Thus, statArgs is a named list whose names are the names the algorithms used (see the
statistics parameter). Each member is another named list,with parameters to be used for each
statistical algorithm. Again, the names of the member lists are parameter names and the val-
ues of the member lists are parameter values. You should check the documentations of DESeq,
edgeR, NOISeq, limma and NBPSeq for these parameters. There are a few exceptions in parameter
names: In case of statistics="edger", apart from the rest of the edgeR statistical testing argu-
ments, there is the argument mainMethod which can be either "classic" or "glm", again defining
whether the binomial test or GLMs will be used for statistical testing. For examples, please use
the getDefaults function. When statistics="nbpseq", apart from the rest arguments of the
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NBPSeq functions estimate.disp and estimate.dispersion, there is the argument mainMethod
which can be "nbpseq" or "nbsmyth". This argument determines the parameters to be used by the
estimate.dispersion function or by the estimate.disp function to estimate RNA-Seq count
dispersions. The difference between the two is that they constitute different starting points for the
two workflows in the package NBPSeq. The first worklfow (with mainMethod="nbpseq" and the
estimate.dispersion function is NBPSeq package specific, while the second (with mainMethod="nbsmyth"
and the estimate.disp function is similar to the workflow of the edgeR package. For additional
information regarding the statistical testing in NBPSeq, please consult the documentation of the
NBPSeq package.

Presets

The analysis presets are a set of keywords (only one can be used) that predefine some of the pa-
rameters of the metaseqr2 pipeline. For the time being they are quite simple and they control i) the
strictness of filtering and statistical thresholding with three basic levels ("all", "medium", "strict")
and ii) the data columns that are exported, again in three basic ways ("basic", "normal", "full") con-
trolling the amount of data to be exported. These keywords can be combined with a dot in the middle
(e.g. "all.basic" to define an analysis preset. When using analysis presets, the following argu-
mentsof metaseqr2 are overriden: exonFilters, geneFilters, pcut, exportWhat, exportScale,
exportValues, exonStats. If you want to explicitly control the above arguments, the preset ar-
gument should be set to NULL (default). Following is a synopsis of the different presets and the
values of the arguments they moderate:

• "all_basic": use all genes (do not filter) and export all genes and basic annotation and
statistics elements. In this case, the above described arguments become:

– exonFilters=NULL

– geneFilters=NULL

– pcut=1

– exportWhat=c("annotation","p_value", "adj_p_value","meta_p_value", "adj_meta_p_value","fold_change")

– exportScale=c("natural","log2")

– exportValues=c("normalized")

– exportStats=c("mean")

• "all_normal": use all genes (do not filter) and export all genes and normal annotation and
statistics elements. In this case, the above described arguments become:

– exonFilters=NULL

– geneFilters=NULL

– pcut=1

– exportWhat=c("annotation","p_value", "adj_p_value","meta_p_value", "adj_meta_p_value","fold_change","stats",
"counts")

– exportScale=c("natural","log2")

– exportValues=c("normalized")

– exportStats=c("mean","sd","cv")

• "all_full": use all genes (do not filter) and export all genes and all annotation and statistics
elements. In this case, the above described arguments become:

– exonFilters=NULL

– geneFilters=NULL
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– pcut=1

– exportWhat=c("annotation","p_value", "adj_p_value","meta_p_value", "adj_meta_p_value","fold_change","stats","counts")

– exportScale=c("natural","log2","log10","vst")

– exportValues=c("raw","normalized")

– exportStats=c("mean","median","sd","mad", "cv","rcv")

• "medium_basic": apply a medium set of filters and and export statistically significant genes
and basic annotation and statistics elements. In this case, the above above described arguments
become:

– exonFilters=list(minActiveExons= list(exonsPerGene=5,minExons=2,frac=1/5))

– geneFilters=list(length=list(length=500), avgReads=list(averagePerBp=100,quantile=0.25),
expression=list(median=TRUE,mean=FALSE,quantile=NA, known=NA,custom=NA),
biotype=getDefaults("biotypeFilter",org[1]))

– pcut=0.05

– exportWhat=c("annotation","p_value", "adj_p_value","meta_p_value", "adj_meta_p_value","fold_change")

– exportScale=c("natural","log2")

– exportValues=c("normalized")

– exportStats=c("mean")

• "medium_normal": apply a medium set of filters and export statistically significant genes
and normal annotation and statistics elements. In this case, the above described arguments
become:

– exonFilters=list(minActiveExons= list(exonsPerGene=5,minExons=2,frac=1/5))

– geneFilters=list(length=list(length=500), avgReads=list(averagePerBp=100,quantile=0.25),
expression=list(median=TRUE,mean=FALSE, quantile=NA,known=NA,custom=NA),
biotype=getDefaults("biotypeFilter",org[1]))

– pcut=0.05

– export.what=c("annotation","p_value", "adj_p_value","meta_p_value", "adj_meta_p_value","fold_change",
"stats","counts")

– exportScale=c("natural","log2")

– exportValues=c("normalized")

– exportStats=c("mean","sd","cv")

• "medium_full": apply a medium set of filters and export statistically significant genes and
full annotation and statistics elements. In this case, the above described arguments become:

– exonFilters=list(minActiveExons= list(exonsPerGene=5,minExons=2,frac=1/5))

– geneFilters=list(length=list(length=500), avgReads=list(averagePerBp=100,quantile=0.25),
expression=list(median=TRUE,mean=FALSE, quantile=NA,known=NA,custom=NA),
biotype=getDefaults("biotypeFilter",org[1]))

– pcut=0.05

– exportWhat=c("annotation","p_value", "adj_p_value","meta_p_value", "adj_meta_p_value","fold_change",
"stats","counts")

– exportScale=c("natural","log2","log10", "vst")

– exportValues=c("raw","normalized")

– exportStats=c("mean","median","sd","mad", "cv","rcv")

• "strict_basic": apply a strict set of filters and and export statistically significant genes and
basic annotation and statistics elements. In this case, the above described arguments become:
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– exonFilters=list(minActiveExons= list(exonsPerGene=4,minExons=2,frac=1/4))

– geneFilters=list(length=list(length=750), avgReads=list(averagePerBp=100,quantile=0.5),
expression=list(median=TRUE,mean=FALSE, quantile=NA,known=NA,custom=NA),
biotype=getDefaults("biotypeFilter",org[1]))

– pcut=0.01

– exportWhat=c("annotation","p_value", "adj_p_value","meta.p.value", "adj_meta_p_value","fold_change")

– exportScale=c("natural","log2")

– exportValues=c("normalized")

– exportStats=c("mean")

• "strict_normal": apply a strict set of filters and export statistically significant genes and
normal annotation and statistics elements. In this case, the above described arguments be-
come:

– exonFilters=list(minActiveExons= list(exonsPerGene=4,minExons=2,frac=1/4))

– geneFilters=list(length=list(length=750), avgReads=list(averagePerBp=100,quantile=0.5),
expression=list(median=TRUE,mean=FALSE, quantile=NA,known=NA,custom=NA),
biotype=getDefaults("biotypeFilter",org[1]))

– pcut=0.01

– exportWhat=c("annotation","p_value", "adj_p_value","meta_p_value", "adj_meta_p_value","fold_change",
"stats","counts")

– exportScale=c("natural","log2")

– exportValues=c("normalized")

– exportStats=c("mean","sd","cv")

• "strict_full": apply a strict set of filters and export statistically significant genes and full
annotation and statistics elements. In this case, the above described arguments become:

– exonFilters=list(minActiveExons= list(exonsPerGene=4,minExons=2,frac=1/4))

– geneFilters=list(length=list(length=750), avgReads=list(averagePerBp=100,quantile=0.5),
expression=list(median=TRUE,mean=FALSE, quantile=NA,known=NA,custom=NA),
biotype=getDefaults("biotypeFilter",org[1]))

– pcut=0.01

– exportWhat=c("annotation","p_value", "adj_p_value","meta_p_value", "adj_meta_p_value","fold_change",
"stats","counts")

– exportScale=c("natural","log2","log10", "vst")

– exportValues=c("raw","normalized")

– exportStats=c("mean","median","sd","mad", "cv","rcv")

Note

Currently only gene and exon annotation from Ensembl (http://www.ensembl.org), UCSC and Ref-
Seq are supported. In addition, the user may choose to use own GTF file on the fly or import to
the backend annotation database (see buildAnnotationDatabase). Thus, the unique gene ids in
the counts files should correspond to valid Ensembl, UCSC or RefSeq gene or exon accessions for
the organism of interest, or according to the user’s GTF. If you are not sure about the source of
your counts file or do not know how to produce it, it’s better to start from the original BAM/BED
files (metaseqr2 will use the read2count function to create a counts file). Keep in mind that in the
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case of BED files, the performance will be significantly lower and the overall running time signif-
icanlty higher as the R functions which are used to read BED files to proper structures (Genomi-
cRanges) and calculate the counts are quite slow. An alternative way is maybe the easyRNASeq
package (Delhomme et al, 2012). The read2count function does not use this package but rather
makes use of standard Bioconductor functions to handle NGS data. If you wish to work outside
R, you can work with other popular read counters such as the HTSeq read counter (http://www-
huber.embl.de/users/anders/HTSeq/doc/overview.html). Please also note that in the current version,
the members of the geneFilters and exonFilters lists are not checked for validity so be careful
to supply with correct names otherwise the pipeline will crash or at the best case scenario, will
ignore the filters. Also note that when you are supplying metaseqr2 wtih an exon counts table,
gene annotation is always downloaded so please be sure to have a working internet connection. In
addition to the above, if you have a multiple core system, be very careful on how you are using the
restrictCores argument and generally how many cores you are using with scripts purely written
in R. The analysis with exon read data can very easily cause memory problems, so unless you have
more than 64Gb of RAM available, consider setting restrict.cores to something like 0.2 when work-
ing with exon data. Finally, if you do not wish to download the same annotation again and again
when performing multiple analyses, it is best to use the buildAnnotationDatabase function to
download and store the resulting data frames in local SQLite database and then use these files with
the org, refdb and version options.

Please note that the meta-analysis feature provided by metaseqr2 does not satisfy the strict def-
inition of "meta-analysis", which is the combination of multiple similar datasets under the same
statistical methodology. Instead it is the use of mulitple statistical tests applied to the same data.
For the Simes method, please consult also "Simes, R. J. (1986). "An improved Bonferroni proce-
dure for multiple tests of significance". Biometrika 73 (3): 751–754."

Also, if weight="meta_perm" ideally one would want to create the same set of indices for a given
dataset so as to create reproducible p-values. To achieve this, use the set.seed function prior to
any calculations. When metaseqR2 is loaded, the random seed is set to 42.

Author(s)

Panagiotis Moulos

Examples

# An example pipeline with gene counts
data("mm9GeneData",package="metaseqR2")

result <- metaseqr2(
counts=mm9GeneCounts,
sampleList=sampleListMm9,
contrast=c("adult_8_weeks_vs_e14.5"),
libsizeList=libsizeListMm9,
annotation="embedded",
org="mm9",
countType="gene",
normalization="edger",
statistics="edger",
pcut=0.05,
figFormat="png",
qcPlots="mds",
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exportWhat=c("annotation","p_value","adj_p_value","fold_change"),
exportScale="natural",
exportValues="normalized",
exportStats="mean",
exportWhere=file.path(tempdir(),"test1"),
restrictCores=0.01,
geneFilters=list(

length=list(
length=500

),
avgReads=list(

averagePerBp=100,
quantile=0.25

),
expression=list(

median=TRUE,
mean=FALSE,
quantile=NA,
known=NA,
custom=NA

),
biotype=getDefaults("biotypeFilter","mm9")

),
outList=TRUE

)
head(result$data[["adult_8_weeks_vs_e14.5"]])

metaseqrPlot Diagnostic plots for the metaseqR2 package

Description

This is the main function for producing sructured quality control and informative graphs base on the
results of the various steps of the metaseqR package. The graphs produced span a variety of issues
like good sample reproducibility (Multi-Dimensional Scaling plot, biotype detection, heatmaps.
diagplotMetaseqr, apart from implementing certain package-specific plots, is a wrapper around
several diagnostic plots present in other RNA-Seq analysis packages such as EDASeq and NOISeq.

Usage

metaseqrPlot(object, sampleList, annotation = NULL,
contrastList = NULL, pList = NULL,
thresholds = list(p = 0.05, f = 1),
plotType = c("mds", "biodetection", "countsbio",

"saturation", "readnoise", "rnacomp", "correl",
"pairs", "boxplot", "gcbias", "lengthbias",
"meandiff", "meanvar", "deheatmap", "volcano",
"biodist", "filtered", "mastat", "deregulogram",
"statvenn", "foldvenn"),

isNorm = FALSE, output = "x11", path = NULL, ...)
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Arguments

object a matrix or a data frame containing count data derived before or after the nor-
malization procedure, filtered or not by the metaseqR2’s filters and/or p-value.

sampleList the list containing condition names and the samples under each condition.

annotation a data frame containing annotation elements for each row in object. See also
Details.

contrastList the vector of contrasts as defined in the main help page of metaseqr2.

pList a list of p-values for each contrast as obtained from any of the stat* methods
of the metaseqr package. See also Details.

thresholds a list with the elements "p" and "f" which are the p-value and the fold change
cutoff when diagplotType="volcano".

plotType one or more of the diagnostic plots supported in metaseqR2 package. See also
Details.

isNorm a logical indicating whether object contains raw or normalized data. It is not
essential and it serves only plot annotation purposes.

output one or more R plotting device to direct the plot result to. See Details.

path the path to create output files.

... further arguments to be passed to plot devices, such as parameter from par.

Details

Regarding object, the object can be fed to any of the diagplotMetaseqr plotting systems but not
every plot is meaningful. For example, it’s meaningless to create a "biodist" plot for a count
matrix before normalization or statistical testing.

Regarding annotation, usually, it is a subset of the annotation obtained by getAnnotation or a
subset of possibly embedded annotation with the input counts table. This parameter is optional
and required only when diagplotType is any of "biodetection", "countsbio", "saturation",
"rnacomp", "readnoise", "biodist", "gcbias", "lengthbias" or "filtered".

Regarding contrastList, this parameter is optional and required only when diagplotType is any
of "deheatmap", "volcano" or "biodist". It can also be a named structured list of contrasts as
returned by the internal function metaseqR2:::makeContrastList.

Regarding diagplotType, many of these plots require the presence of additional package, some-
thing that is checked while running the main metaseqr2 function. The supported plots are "mds",
"biodetection", "countsbio", "saturation", "rnacomp", "boxplot", "gcbias", "lengthbias",
"meandiff", "meanvar", "deheatmap", "volcano", "biodist", "filtered", "readnoise", "venn",
"correl", "pairwise". For a brief description of these plots please see the main metaseqr2 help
page.

Regarding pList, this parameter is optional and required only when diagplotType is any of
"deheatmap", "volcano" or "biodist".

Regarding output, supported mechanisms are: "png", "jpg", "bmp", "pdf", "ps" or "json". The
latter is currently available for the creation of interactive volcano plots only when reporting the
output, through the highcharts javascript library. The default plotting ("x11") is not supported due
to instability in certain devices.
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Value

A named list containing the file names of the produced plots. Each list member is names according
to the selected plotting device and is also a named list, whose names are the plot types. The final
contents are the file names in case the plots are written to a physical location (not meaningful for
"x11").

Note

In order to make the best out of this function, you should generally provide the annotation argument
as most and also the most informative plots depend on this. If you don’t know what is inside your
counts table or how many annotation elements you can provide by embedding it, it’s always best to
setup a local databse so as to use predefined annotations that work better with the functions of the
whole package.

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"
metaseqrPlot(dataMatrix,sampleList,plotType=c("mds","boxplot"))

normArgs <- getDefaults("normalization","deseq2")
object <- normalizeDeseq2(dataMatrix,sampleList,normArgs)
metaseqrPlot(object,sampleList,plotType="boxplot")

## More
#p <- statDeseq2(object,sampleList)
#metaseqrPlot(object,sampleList,contrastList=contrast,pList=p,
# plotType="volcano")

metaTest Meta-analysis using several RNA-Seq statistics

Description

This function calculates the combined p-values when multiple statistical algorithms are applied to
the input dataset. It is a helper and it requires very specific arguments so it should not be used
individually
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Usage

metaTest(cpList,
metaP = c("simes", "bonferroni", "fisher", "harmonic",
"dperm_min", "dperm_max", "dperm_weight", "fperm",
"whitlock", "minp", "maxp", "weight", "pandora",
"none"), counts, sampleList, statistics, statArgs,
libsizeList, nperm = 10000,
weight = rep(1/length(statistics), length(statistics)),
pOffset = NULL, rc = NULL)

Arguments

cpList a named list whose names are the contrasts requested from metaseqr2. Each
member is a p-value matrix whose colnames are the names of the statistical tests
applied to the data. See the main metaseqr2 help page.

metaP the p-value combination method to use. See the main metaseqr2 help page.
counts the normalized and possibly filtered read counts matrix. See the main metaseqr2

help page.
sampleList the list containing condition names and the samples under each condition. See

the main metaseqr2 help page.
statistics the statistical algorithms used in metaseqr2. See the main metaseqr2 help page.
statArgs the parameters for each statistical argument. See the main metaseqr2 help page.
libsizeList a list with library sizes. See the main metaseqr2 and the stat* help pages.
nperm the number of permutations (Monte Carlo simulations) to perform.
weight a numeric vector of weights for each statistical algorithm.
pOffset NULL (default) or a fixed numeric value between 0 and 1. See also the main

metaseqr2 man page.
rc the fraction of the available cores to use in a multicore system.

Details

Ideally one would want to create the same set of indices for a given dataset so as to create repro-
ducible p-values. To achieve this, use the set.seed function prior to any calculations.

Value

A named list with combined p-values. The names are the contrasts and the list members are com-
bined p-value vectors, one for each contrast.

Author(s)

Panagiotis Moulos

Examples

cpList <- list(a=matrix(runif(100),50,2))
metaP <- metaTest(cpList,"simes")
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mm9GeneCounts Mouse RNA-Seq data with two conditions, four samples

Description

This data set contains RNA-Seq gene read counts for 3 chromosomes. The data were downloaded
from the ENCODE public repository and are derived from the study of Mortazavi et al., 2008 (Mor-
tazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian
transcriptomes by RNA-Seq. Nat Methods. 2008 Jul;5(7):621-8). In their experiment, the au-
thors studied among others genes expression at two developmental stages of mouse liver cells.
It has two conditions-developmental stages (e14.5, adult_8_weeks) and four samples (e14.5_1,
e14.5_2, a8w_1, a8w_2). It also contains a predefined sampleList and libsizeList named
sampleListMm9 and libsizeListMm9.

Format

a data.frame with gene read counts and some embedded annotation, one row per gene.

Author(s)

Panagiotis Moulos

Source

ENCODE (http://genome.ucsc.edu/encode/)

normalizeAbsseq Normalization based on the ABSSeq package

Description

This function is a wrapper over ABSSeq normalization. It accepts a matrix of gene counts (e.g.
produced by importing an externally generated table of counts to the main metaseqr2 pipeline).

Usage

normalizeAbsseq(geneCounts, sampleList,
normArgs = NULL, output = c("matrix", "native"))
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Arguments

geneCounts a table where each row represents a gene and each column a sample. Each cell
contains the read counts for each gene and sample. Such a table can be produced
outside metaseqr2 and is imported during the basic metaseqr2 workflow.

sampleList the list containing condition names and the samples under each condition.

normArgs a list of DESeq normalization parameters. See the result of getDefaults("normalization",
"deseq") for an example and how you can modify it.

output the class of the output object. It can be "matrix" (default) for versatility with
other tools or "native" for the ABSSeq native S4 object (ABSDataSet). In the
latter case it should be handled with suitable ABSSeq methods.

Value

A matrix or a ABSDataSet with normalized counts.

Author(s)

Dionysios Fanidis

Examples

dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplotBoxplot(dataMatrix,sampleList)

normDataMatrix <- normalizeAbsseq(dataMatrix,sampleList)
diagplotBoxplot(normDataMatrix,sampleList)

normalizeDeseq Normalization based on the DESeq package

Description

This function is a wrapper over DESeq normalization. It accepts a matrix of gene counts (e.g.
produced by importing an externally generated table of counts to the main metaseqr2 pipeline).

Usage

normalizeDeseq(geneCounts, sampleList,
normArgs = NULL, output = c("matrix", "native"))
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Arguments

geneCounts a table where each row represents a gene and each column a sample. Each cell
contains the read counts for each gene and sample. Such a table can be produced
outside metaseqr2 and is imported during the basic metaseqr2 workflow.

sampleList the list containing condition names and the samples under each condition.

normArgs a list of DESeq normalization parameters. See the result of getDefaults("normalization",
"deseq") for an example and how you can modify it.

output the class of the output object. It can be "matrix" (default) for versatility with
other tools or "native" for the DESeq native S4 object (CountDataSet). In the
latter case it should be handled with suitable DESeq methods.

Value

A matrix or a CountDataSet with normalized counts.

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplotBoxplot(dataMatrix,sampleList)

normDataMatrix <- normalizeDeseq(dataMatrix,sampleList)
diagplotBoxplot(normDataMatrix,sampleList)

normalizeDeseq2 Normalization based on the DESeq2 package

Description

This function is a wrapper over DESeq2 normalization. It accepts a matrix of gene counts (e.g.
produced by importing an externally generated table of counts to the main metaseqr2 pipeline).

Usage

normalizeDeseq2(geneCounts, sampleList,
normArgs = NULL, output = c("matrix", "native"))
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Arguments

geneCounts a table where each row represents a gene and each column a sample. Each cell
contains the read counts for each gene and sample. Such a table can be produced
outside metaseqr2 and is imported during the basic metaseqr2 workflow.

sampleList the list containing condition names and the samples under each condition.

normArgs a list of DESeq normalization parameters. See the result of getDefaults("normalization",
"deseq") for an example and how you can modify it.

output the class of the output object. It can be "matrix" (default) for versatility with
other tools or "native" for the DESeq2 native S4 object (DESeqDataSet). In
the latter case it should be handled with suitable DESeq2 methods.

Value

A matrix or a DESeqDataSet with normalized counts.

Author(s)

Dionysios Fanidis

Examples

dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplotBoxplot(dataMatrix,sampleList)

normDataMatrix <- normalizeDeseq2(dataMatrix,sampleList)
diagplotBoxplot(normDataMatrix,sampleList)

normalizeDss Normalization based on the DSS package

Description

This function is a wrapper over ABSSeq normalization. It accepts a matrix of gene counts (e.g.
produced by importing an externally generated table of counts to the main metaseqr2 pipeline).

Usage

normalizeDss(geneCounts, sampleList,
normArgs = NULL, output = c("matrix", "native"))
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Arguments

geneCounts a table where each row represents a gene and each column a sample. Each cell
contains the read counts for each gene and sample. Such a table can be produced
outside metaseqr2 and is imported during the basic metaseqr2 workflow.

sampleList the list containing condition names and the samples under each condition.

normArgs a list of DESeq normalization parameters. See the result of getDefaults("normalization",
"deseq") for an example and how you can modify it.

output the class of the output object. It can be "matrix" (default) for versatility with
other tools or "native" for the DSS native S4 object (SeqCountSet). In the
latter case it should be handled with suitable ABSSeq methods.

Value

A matrix or a SeqCountSet with normalized counts.

Author(s)

Dionysios Fanidis

Examples

dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplotBoxplot(dataMatrix,sampleList)

normDataMatrix <- normalizeDss(dataMatrix,sampleList)
diagplotBoxplot(normDataMatrix,sampleList)

normalizeEdaseq Normalization based on the EDASeq package

Description

This function is a wrapper over EDASeq normalization. It accepts a matrix of gene counts (e.g.
produced by importing an externally generated table of counts to the main metaseqr2 pipeline).

Usage

normalizeEdaseq(geneCounts, sampleList,
normArgs = NULL, geneData = NULL,
output = c("matrix", "native"))
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Arguments

geneCounts a table where each row represents a gene and each column a sample. Each cell
contains the read counts for each gene and sample. Such a table can be produced
outside metaseqr2 and is imported during the basic metaseqr2 workflow.

sampleList the list containing condition names and the samples under each condition.

normArgs a list of EDASeq normalization parameters. See the result of getDefaults("normalization",
"edaseq") for an example and how you can modify it.

geneData an optional annotation data frame (such the ones produced by getAnnotation)
which contains the GC content for each gene and from which the gene lengths
can be inferred by chromosome coordinates.

output the class of the output object. It can be "matrix" (default) for versatility with
other tools or "native" for the EDASeq native S4 object (SeqExpressionSet).
In the latter case it should be handled with suitable EDASeq methods.

Value

A matrix or a SeqExpressionSet with normalized counts.

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplotBoxplot(dataMatrix,sampleList)

lengths <- round(1000*runif(nrow(dataMatrix)))
starts <- round(1000*runif(nrow(dataMatrix)))
ends <- starts + lengths
gc=runif(nrow(dataMatrix))
geneData <- data.frame(

chromosome=c(rep("chr1",nrow(dataMatrix)/2),
rep("chr2",nrow(dataMatrix)/2)),

start=starts,end=ends,gene_id=rownames(dataMatrix),gc_content=gc,
row.names=rownames(dataMatrix)

)
normDataMatrix <- normalizeEdaseq(dataMatrix,sampleList,

geneData=geneData)
diagplotBoxplot(normDataMatrix,sampleList)
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normalizeEdger Normalization based on the edgeR package

Description

This function is a wrapper over edgeR normalization. It accepts a matrix of gene counts (e.g.
produced by importing an externally generated table of counts to the main metaseqr2 pipeline).

Usage

normalizeEdger(geneCounts, sampleList,
normArgs = NULL, output = c("matrix", "native"))

Arguments

geneCounts a table where each row represents a gene and each column a sample. Each cell
contains the read counts for each gene and sample. Such a table can be produced
outside metaseqr2 and is imported during the basic metaseqr2 workflow.

sampleList the list containing condition names and the samples under each condition.

normArgs a list of edgeR normalization parameters. See the result of getDefaults("normalization",
"edger") for an example and how you can modify it.

output the class of the output object. It can be "matrix" (default) for versatility with
other tools or "native" for the edgeR native S4 object (DGEList). In the latter
case it should be handled with suitable edgeR methods.

Value

A matrix or a DGEList with normalized counts.

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplotBoxplot(dataMatrix,sampleList)

normDataMatrix <- normalizeEdger(dataMatrix,sampleList)
diagplotBoxplot(normDataMatrix,sampleList)
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normalizeNbpseq Normalization based on the NBPSeq package

Description

This function is a wrapper over DESeq normalization. It accepts a matrix of gene counts (e.g.
produced by importing an externally generated table of counts to the main metaseqr2 pipeline).

Usage

normalizeNbpseq(geneCounts, sampleList,
normArgs = NULL, libsizeList = NULL,
output = c("matrix", "native"))

Arguments

geneCounts a table where each row represents a gene and each column a sample. Each cell
contains the read counts for each gene and sample. Such a table can be produced
outside metaseqr2 and is imported during the basic metaseqr2 workflow.

sampleList the list containing condition names and the samples under each condition.

normArgs a list of NBPSeq normalization parameters. See the result of getDefaults("normalization",
"nbpseq") for an example and how you can modify it.

libsizeList an optional named list where names represent samples (MUST be the same as
the samples in sampleList) and members are the library sizes (the sequencing
depth) for each sample. If not provided, the default is the column sums of the
geneCounts matrix.

output the class of the output object. It can be "matrix" (default) for versatility with
other tools or "native" for the NBPSeq native S4 object (a specific list). In the
latter case it should be handled with suitable NBPSeq methods.

Value

A matrix with normalized counts or a list with the normalized counts and other NBPSeq specific
parameters.

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplotBoxplot(dataMatrix,sampleList)

normDataMatrix <- normalizeNbpseq(dataMatrix,sampleList)
diagplotBoxplot(normDataMatrix,sampleList)
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normalizeNoiseq Normalization based on the NOISeq package

Description

This function is a wrapper over NOISeq normalization. It accepts a matrix of gene counts (e.g.
produced by importing an externally generated table of counts to the main metaseqr2 pipeline).

Usage

normalizeNoiseq(geneCounts, sampleList,
normArgs = NULL, geneData = NULL, logOffset = 1,
output = c("matrix", "native"))

Arguments

geneCounts a table where each row represents a gene and each column a sample. Each cell
contains the read counts for each gene and sample. Such a table can be produced
outside metaseqr2 and is imported during the basic metaseqr2 workflow.

sampleList the list containing condition names and the samples under each condition.

normArgs a list of NOISeq normalization parameters. See the result of getDefaults("normalization",
"noiseq") for an example and how you can modify it.

geneData an optional annotation data frame (such the ones produced by get.annotation
which contains the GC content for each gene and from which the gene lengths
can be inferred by chromosome coordinates.

logOffset an offset to use to avoid infinity in logarithmic data transformations.

output the class of the output object. It can be "matrix" (default) for versatility with
other tools or "native" for the NOISeq native S4 object (SeqExpressionSet).
In the latter case it should be handled with suitable NOISeq methods.

Value

A matrix with normalized counts.

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplotBoxplot(dataMatrix,sampleList)

lengths <- round(1000*runif(nrow(dataMatrix)))
starts <- round(1000*runif(nrow(dataMatrix)))
ends <- starts + lengths
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gc=runif(nrow(dataMatrix))
geneData <- data.frame(

chromosome=c(rep("chr1",nrow(dataMatrix)/2),
rep("chr2",nrow(dataMatrix)/2)),

start=starts,end=ends,gene_id=rownames(dataMatrix),gc_content=gc,
biotype=rep("protein_coding",nrow(dataMatrix)),
row.names=rownames(dataMatrix)

)
normDataMatrix <- normalizeNoiseq(dataMatrix,sampleList,normArgs=NULL,geneData)
diagplotBoxplot(normDataMatrix,sampleList)

read2count SAM/BAM/BED file reader helper for the metaseqr2 pipeline

Description

This function is a helper for the metaseqr2 pipeline, for reading SAM/BAM or BED files when a
read counts file is not available. It can also be used very easily in an autonomous manner.

Usage

read2count(targets, annotation, fileType = targets$type,
transLevel = "gene", utrOpts = list(frac = 1,
minLength = 300, downstream = 50), interFeature = FALSE,
rc = NULL)

Arguments

targets a named list, the output of readTargets or an existing file with targets. See also
the main metaseqr2 man page.

annotation a GenomicRanges or data.frame with genomic coordinates to use for read
counting. See also getAnnotation.

fileType the type of raw input files. It can be "bed" for BED files or "sam", "bam" for
SAM/BAM files. See the same argument in the main metaseqr2 function for
the case of auto-guessing.

transLevel see the transLevel argument in the main metaseqr2 function.

utrOpts a named list with members frac which is the fraction (0-1) of the 3’ UTR region
to count reads in, minLength the minimum acceptable 3’UTR length irrespec-
tive of frac and downstream the number of base pairs to flank the end of the 3’
UTR of transcripts when analyzing Quant-Seq data.

interFeature see the inter.feature argument in summarizeOverlaps.

rc the fraction of the available cores to use in a multicore system.

Value

A data frame with counts for each sample, ready to be passed to the main metaseqr2 pipeline.
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Author(s)

Panagiotis Moulos

Examples

dataPath <- system.file("extdata",package="metaseqR2")
targets <- data.frame(samplename=c("C","T"),

filename=file.path(dataPath,c("C.bam","T.bam")),
condition=c("Control","Treatment"),
paired=c("single","single"),stranded=c("forward","forward"))

path <- tempdir()
write.table(targets,file=file.path(path,"targets.txt"),

sep="\t",row.names=FALSE,quote=FALSE)
geneData <- loadAnnotation("mm10","ensembl","gene")
myTargets <- readTargets(file.path(path,"targets.txt"))
if (.Platform$OS.type == "unix") {

r2c <- read2count(targets=myTargets,
fileType=myTargets$type,annotation=geneData)

geneCounts <- r2c$counts
libsizeList <- r2c$libsize

}

readTargets Creates sample list and BAM/BED file list from file

Description

Create the main sample list and determine the BAM/BED files for each sample from an external
file.

Usage

readTargets(input, path = NULL)

Arguments

input a tab-delimited file or a YAML file specifically structured. See Details.

path an optional path where all the BED/BAM files are placed, to be prepended to
the BAM/BED file names in the targets file.

Details

Regarding the input file, this can be a simple text tab-delimited file or a YAML file describing the
data to be analyzed.

Regarding the tab-delimited version, its columns must be structured as follows: the first line of the
external tab delimited file should contain column names (names are not important). The first column
MUST contain UNIQUE sample names. The second column MUST contain the raw BAM/BED
files WITH their full path. Alternatively, the path argument should be provided (see below). The
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third column MUST contain the biological condition where each of the samples in the first column
should belong to. There is an optional fourth column which should contain the keywords "single"
for single-end reads, "paired" for paired-end reads or "mixed" for BAM files that contain both
single- and paired-end reads (e.g. after a mapping procedure with two round of alignment). If this
column is not provided, single-end reads will be assumed. There is an optional fifth column which
stranded read assignment. It should contain the keywords "forward" for a forward (5’->3’) strand
library construction protocol, "reverse" for a reverse (3’->5’) strand library construction protocol,
or "no" for unstranded/unknown protocol. If this column is not provided, unstranded reads will be
assumed.

Regarding the YAML version, the same instructions apply, but this time instead of columns, the
data are provided as a YAML array under a keyword/top-level field representing the respective
header in the tab-delimited version. Alternatively, the aforementioned structure can be nested under
a root level named strictly either targets or metaseqR2_targets. The latter can be especially
useful when incorporating the metaseqR2 pipeline in a wider pipeline including various analyses
and described using a workflow language such as CWL.

Value

A named list with four members. The first member is a named list whose names are the conditions of
the experiments and its members are the samples belonging to each condition. The second member
is like the first, but this time the members are named vectors whose names are the sample names
and the vector elements are full path to BAM/BED files. The third member is like the second,
but instead of filenames it contains information about single- or paired-end reads (if available).
The fourth member is like the second, but instead of filenames it contains information about the
strandedness of the reads (if available). The fifth member is the guessed type of the input files
(SAM/BAM or BED). It will be used if not given in the main read2count function.

Author(s)

Panagiotis Moulos

Examples

dataPath <- system.file("extdata",package="metaseqR2")
targets <- data.frame(samplename=c("C","T"),

filename=file.path(dataPath,c("C.bam","T.bam")),
condition=c("Control","Treatment"),
paired=c("single","single"),stranded=c("forward","forward"))

path <- tempdir()

# Tab delimited case
write.table(targets,file=file.path(path,"targets.txt"),

sep="\t",row.names=FALSE,quote=FALSE)
theList <- readTargets(file.path(path,"targets.txt"),path=path)
sampleList <- theList$samples
bamfileList <- theList$files

# YAML case
require(yaml)
write_yaml(as.list(targets),file.path(path,"targets.yml"))
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theYList <- readTargets(file.path(path,"targets.yml"),path=path)
identical(theList,theYList) # TRUE

# YAML case with nested targets
write_yaml(list(targets=as.list(targets)),

file.path(path,"targets2.yml"))
theYList2 <- readTargets(file.path(path,"targets2.yml"),path=path)
identical(theYList,theYList2) # TRUE

sampleListMm9 Mouse RNA-Seq data with two conditions, four samples

Description

The sample list for mm9GeneCounts. See the data set description.

Format

a named list with condition and sample names.

Author(s)

Panagiotis Moulos

Source

ENCODE (http://genome.ucsc.edu/encode/)

statAbsseq Statistical testing with ABSSeq

Description

This function is a wrapper over DESeq statistical testing. It accepts a matrix of normalized gene
counts or an S4 object specific to each normalization algorithm supported by metaseqR2.

Usage

statAbsseq(object, sampleList, contrastList = NULL,
statArgs = NULL)
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Arguments

object a matrix or an object specific to each normalization algorithm supported by
metaseqR2, containing normalized counts. See also Details.

sampleList the list containing condition names and the samples under each condition.
contrastList vector of contrasts as defined in the main help page of metaseqr2. See also

Details.
statArgs a list of DESeq statistical algorithm parameters. See the result of getDefaults("statistics",

"deseq") for an example and how you can modify it. It is not required when
the input object is already a CountDataSet from DESeq normalization as the
dispersions are already estimated.

Details

Regarding object, apart from matrix (also for NOISeq), the object can be a SeqExpressionSet
(EDASeq), CountDataSet (DESeq), DGEList (edgeR), DESeqDataSet (DESeq2), SeqCountSet
(DSS) or ABSDataSet (ABSSeq).

Regarding contrastList it can also be a named structured list of contrasts as returned by the
internal function metaseqR2:::makeContrastList.

Value

A named list of p-values, whose names are the names of the contrasts.

Author(s)

Dionysios Fanidis

Examples

require(ABSSeq)
dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"
normDataMatrix <- normalizeAbsseq(dataMatrix,sampleList)
p <- statAbsseq(normDataMatrix,sampleList,contrast)

statDeseq Statistical testing with DESeq

Description

This function is a wrapper over DESeq statistical testing. It accepts a matrix of normalized gene
counts or an S4 object specific to each normalization algorithm supported by metaseqR2.

Usage

statDeseq(object, sampleList, contrastList = NULL,
statArgs = NULL)
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Arguments

object a matrix or an object specific to each normalization algorithm supported by
metaseqR2, containing normalized counts. See also Details.

sampleList the list containing condition names and the samples under each condition.

contrastList vector of contrasts as defined in the main help page of metaseqr2. See also
Details.

statArgs a list of DESeq statistical algorithm parameters. See the result of getDefaults("statistics",
"deseq") for an example and how you can modify it. It is not required when
the input object is already a CountDataSet from DESeq normalization as the
dispersions are already estimated.

Details

Regarding object, apart from matrix (also for NOISeq), the object can be a SeqExpressionSet
(EDASeq), CountDataSet (DESeq), DGEList (edgeR), DESeqDataSet (DESeq2), SeqCountSet
(DSS) or ABSDataSet (ABSSeq).

Regarding contrastList it can also be a named structured list of contrasts as returned by the
internal function metaseqR2:::makeContrastList.

Value

A named list of p-values, whose names are the names of the contrasts.

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(1000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"
normDataMatrix <- metaseqR2:::newCountDataSet(dataMatrix,

c("A","A","B","B","B"))
normDataMatrix <- normalizeDeseq(dataMatrix,sampleList)
p <- statDeseq(normDataMatrix,sampleList,contrast)

statDeseq2 Statistical testing with DESeq2

Description

This function is a wrapper over DESeq statistical testing. It accepts a matrix of normalized gene
counts or an S4 object specific to each normalization algorithm supported by metaseqR2.
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Usage

statDeseq2(object, sampleList, contrastList = NULL,
statArgs = NULL)

Arguments

object a matrix or an object specific to each normalization algorithm supported by
metaseqR2, containing normalized counts. See also Details.

sampleList the list containing condition names and the samples under each condition.

contrastList vector of contrasts as defined in the main help page of metaseqr2. See also
Details.

statArgs a list of DESeq statistical algorithm parameters. See the result of getDefaults("statistics",
"deseq") for an example and how you can modify it. It is not required when
the input object is already a CountDataSet from DESeq normalization as the
dispersions are already estimated.

Details

Regarding object, apart from matrix (also for NOISeq), the object can be a SeqExpressionSet
(EDASeq), CountDataSet (DESeq), DGEList (edgeR), DESeqDataSet (DESeq2), SeqCountSet
(DSS) or ABSDataSet (ABSSeq).

Regarding contrastList it can also be a named structured list of contrasts as returned by the
internal function metaseqR2:::makeContrastList.

Value

A named list of p-values, whose names are the names of the contrasts.

Author(s)

Dionysios Fanidis

Examples

require(DESeq2)
dataMatrix <- metaseqR2:::exampleCountData(1000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"
normDataMatrix <- normalizeDeseq2(dataMatrix,sampleList)
p <- statDeseq2(normDataMatrix,sampleList,contrast)
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statDss Statistical testing with DSS

Description

This function is a wrapper over DESeq statistical testing. It accepts a matrix of normalized gene
counts or an S4 object specific to each normalization algorithm supported by metaseqR2.

Usage

statDss(object, sampleList, contrastList = NULL,
statArgs = NULL)

Arguments

object a matrix or an object specific to each normalization algorithm supported by
metaseqR2, containing normalized counts. See also Details.

sampleList the list containing condition names and the samples under each condition.

contrastList vector of contrasts as defined in the main help page of metaseqr2. See also
Details.

statArgs a list of DESeq statistical algorithm parameters. See the result of getDefaults("statistics",
"deseq") for an example and how you can modify it. It is not required when
the input object is already a CountDataSet from DESeq normalization as the
dispersions are already estimated.

Details

Regarding object, apart from matrix (also for NOISeq), the object can be a SeqExpressionSet
(EDASeq), CountDataSet (DESeq), DGEList (edgeR), DESeqDataSet (DESeq2), SeqCountSet
(DSS) or ABSDataSet (ABSSeq).

Regarding contrastList it can also be a named structured list of contrasts as returned by the
internal function metaseqR2:::makeContrastList.

Value

A named list of p-values, whose names are the names of the contrasts.

Author(s)

Dionysios Fanidis
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Examples

require(DSS)
dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"
normDataMatrix <- normalizeDss(dataMatrix,sampleList)
p <- statDss(normDataMatrix,sampleList,contrast)

statEdger Statistical testing with edgeR

Description

This function is a wrapper over edgeR statistical testing. It accepts a matrix of normalized gene
counts or an S4 object specific to each normalization algorithm supported by metaseqR2.

Usage

statEdger(object, sampleList, contrastList = NULL,
statArgs = NULL)

Arguments

object a matrix or an object specific to each normalization algorithm supported by
metaseqR2, containing normalized counts. See also Details.

sampleList the list containing condition names and the samples under each condition.

contrastList vector of contrasts as defined in the main help page of metaseqr2. See also
Details.

statArgs a list of edgeR statistical algorithm parameters. See the result of getDefaults("statistics",
"edger") for an example and how you can modify it.

Details

Regarding object, apart from matrix (also for NOISeq), the object can be a SeqExpressionSet
(EDASeq), CountDataSet (DESeq), DGEList (edgeR), DESeqDataSet (DESeq2), SeqCountSet
(DSS) or ABSDataSet (ABSSeq).

Regarding contrastList it can also be a named structured list of contrasts as returned by the
internal function metaseqR2:::makeContrastList.

Value

A named list of p-values, whose names are the names of the contrasts.

Author(s)

Panagiotis Moulos
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Examples

require(edgeR)
dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"
normDataMatrix <- normalizeEdger(dataMatrix,sampleList)
p <- statEdger(normDataMatrix,sampleList,contrast)

statLimma Statistical testing with limma

Description

This function is a wrapper over limma statistical testing. It accepts a matrix of normalized gene
counts or an S4 object specific to each normalization algorithm supported by metaseqR2.

Usage

statLimma(object, sampleList, contrastList = NULL,
statArgs = NULL)

Arguments

object a matrix or an object specific to each normalization algorithm supported by
metaseqR2, containing normalized counts. See also Details.

sampleList the list containing condition names and the samples under each condition.

contrastList vector of contrasts as defined in the main help page of metaseqr2. See also
Details.

statArgs a list of edgeR statistical algorithm parameters. See the result of getDefaults("statistics",
"limma") for an example and how you can modify it.

Details

Regarding object, apart from matrix (also for NOISeq), the object can be a SeqExpressionSet
(EDASeq), CountDataSet (DESeq), DGEList (edgeR), DESeqDataSet (DESeq2), SeqCountSet
(DSS) or ABSDataSet (ABSSeq).

Regarding contrastList it can also be a named structured list of contrasts as returned by the
internal function metaseqR2:::makeContrastList.

Value

A named list of p-values, whose names are the names of the contrasts.

Author(s)

Panagiotis Moulos
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Examples

require(limma)
dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"
normDataMatrix <- normalizeEdger(dataMatrix,sampleList)
p <- statLimma(normDataMatrix,sampleList,contrast)

statNbpseq Statistical testing with NBPSeq

Description

This function is a wrapper over NBPSeq statistical testing. It accepts a matrix of normalized gene
counts or an S4 object specific to each normalization algorithm supported by metaseqR2.

Usage

statNbpseq(object, sampleList, contrastList = NULL,
statArgs = NULL, libsizeList = NULL)

Arguments

object a matrix or an object specific to each normalization algorithm supported by
metaseqR2, containing normalized counts. See also Details.

sampleList the list containing condition names and the samples under each condition.

contrastList vector of contrasts as defined in the main help page of metaseqr2. See also
Details.

statArgs a list of NBPSeq statistical algorithm parameters. See the result of getDefaults("statistics",
"nbpseq") for an example and how you can modify it. It is not required when
the input object is already a list from NBPSeq normalization as the dispersions
are already estimated.

libsizeList an optional named list where names represent samples (MUST be the same as
the samples in sampleList) and members are the library sizes (the sequencing
depth) for each sample. If not provided, the default is the column sums of the
object matrix.

Details

Regarding object, apart from matrix (also for NOISeq), the object can be a SeqExpressionSet
(EDASeq), CountDataSet (DESeq), DGEList (edgeR), DESeqDataSet (DESeq2), SeqCountSet
(DSS) or ABSDataSet (ABSSeq).

Regarding contrastList it can also be a named structured list of contrasts as returned by the
internal function metaseqR2:::makeContrastList.



statNoiseq 83

Value

A named list of p-values, whose names are the names of the contrasts.

Note

There is currently a problem with the NBPSeq package and the workflow that is specific to the
NBPSeq package. The problem has to do with function exporting as there are certain functions
which are not recognized from the package internally. For this reason and until it is fixed, only the
Smyth workflow will be available with the NBPSeq package.

Author(s)

Panagiotis Moulos

Examples

require(NBPSeq)
dataMatrix <- metaseqR2:::exampleCountData(2000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"
normDataMatrix <- normalizeNbpseq(dataMatrix,sampleList)
p <- statNbpseq(normDataMatrix,sampleList,contrast)

statNoiseq Statistical testing with NOISeq

Description

This function is a wrapper over NOISeq statistical testing. It accepts a matrix of normalized gene
counts or an S4 object specific to each normalization algorithm supported by metaseqR2.

Usage

statNoiseq(object, sampleList, contrastList = NULL,
statArgs = NULL, geneData = NULL, logOffset = 1)

Arguments

object a matrix or an object specific to each normalization algorithm supported by
metaseqR2, containing normalized counts. See also Details.

sampleList the list containing condition names and the samples under each condition.

contrastList vector of contrasts as defined in the main help page of metaseqr2. See also
Details.

statArgs a list of edgeR statistical algorithm parameters. See the result of getDefaults("statistics",
"noiseq") for an example and how you can modify it.
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geneData an optional annotation data frame (such the ones produced by get.annotation
which contains the GC content for each gene and from which the gene lengths
can be inferred by chromosome coordinates.

logOffset a number to be added to each element of data matrix in order to avoid Infinity
on log type data transformations.

Details

Regarding object, apart from matrix (also for NOISeq), the object can be a SeqExpressionSet
(EDASeq), CountDataSet (DESeq), DGEList (edgeR), DESeqDataSet (DESeq2), SeqCountSet
(DSS) or ABSDataSet (ABSSeq).

Regarding contrastList it can also be a named structured list of contrasts as returned by the
internal function metaseqR2:::makeContrastList.

Value

A named list of NOISeq q-values, whose names are the names of the contrasts.

Author(s)

Panagiotis Moulos

Examples

dataMatrix <- metaseqR2:::exampleCountData(1000)
sampleList <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"
lengths <- round(1000*runif(nrow(dataMatrix)))
starts <- round(1000*runif(nrow(dataMatrix)))
ends <- starts + lengths
gc=runif(nrow(dataMatrix))
biotype=rep("protein_coding",nrow(dataMatrix))
geneData <- data.frame(

chromosome=c(rep("chr1",nrow(dataMatrix)/2),
rep("chr2",nrow(dataMatrix)/2)),

start=starts,end=ends,gene_id=rownames(dataMatrix),
gc_content=gc,biotype=biotype

)
normArgs <- metaseqR2:::getDefaults("normalization","noiseq")
normDataMatrix <- normalizeNoiseq(dataMatrix,sampleList,normArgs,

geneData)
p <- statNoiseq(normDataMatrix,sampleList,contrast,

geneData=geneData)
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