
segmentSeq: methods for identifying small
RNA loci from high-throughput sequencing
data

Thomas J. Hardcastle

October 21, 2024

1 Introduction
High-throughput sequencing technologies allow the production of large volumes of short
sequences, which can be aligned to the genome to create a set of matches to the genome.
By looking for regions of the genome which to which there are high densities of matches, we
can infer a segmentation of the genome into regions of biological significance. The methods
we propose allows the simultaneous segmentation of data from multiple samples, taking
into account replicate data, in order to create a consensus segmentation. This has obvious
applications in a number of classes of sequencing experiments, particularly in the discovery
of small RNA loci and novel mRNA transcriptome discovery.

We approach the problem by considering a large set of potential segments upon the genome
and counting the number of tags that match to that segment in multiple sequencing exper-
iments (that may or may not contain replication). We then adapt the empirical Bayesian
methods implemented in the baySeq package [1] to establish, for a given segment, the likeli-
hood that the count data in that segment is similar to background levels, or that it is similar
to the regions to the left or right of that segment. We then rank all the potential segments
in order of increasing likelihood of similarity and reject those segments for which there is a
high likelihood of similarity with the background or the regions to the left or right of the
segment. This gives us a large list of overlapping segments. We reduce this list to identify
non-overlapping loci by choosing, for a set of overlapping segments, the segment which has
the lowest likelihood of similarity with either background or the regions to the left or right
of that segment and rejecting all other segments that overlap with this segment. For fuller
details of the method, see Hardcastle et al. [2].

2 Preparation
We begin by loading the segmentSeq package.

> library(segmentSeq)

Note that because the experiments that segmentSeq is designed to analyse are usually massive,
we should use (if possible) parallel processing as implemented by the parallel package. If
using this approach, we need to begin by define a cluster. The following command will use
eight processors on a single machine; see the help page for ’makeCluster’ for more information.
If we don’t want to parallelise, we can proceed anyway with a NULL cluster.

> if(require("parallel"))

+ {

+ numCores <- min(8, detectCores())

+ cl <- makeCluster(numCores)

+ } else {

+ cl <- NULL

+ }

The readGeneric function is able to read in tab-delimited files which have appropriate column
names, and create an alignmentData object. Alternatively, if the appropriate column names
are not present, we can specify which columns to use for the data. In either case, to use this
function we pass a character vector of files, together with information on which data are to be
treated as replicates to the function. We also need to define the lengths of the chromosome
and specifiy the chromosome names as a character. The data here, drawn from text files in
the ’data’ directory of the segmentSeq package are taken from the first million bases of an
alignment to chromosome 1 and the first five hundred thousand bases of an alignment to
chromosome 2 of Arabidopsis thaliana in a sequencing experiment where libraries ‘SL9’ and
‘SL10’ are replicates, as are ‘SL26’ and ‘SL32’. Libraries ‘SL9’ and ‘SL10’ are sequenced from
an Argonaute 6 IP, while ‘SL26’ and ‘SL32’ are an Argonaute 4 IP.

A similar function, readBAM performs the same operation on files in the BAM format. Please
consult the help page for further details.

> datadir <- system.file("extdata", package = "segmentSeq")

> libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

> libnames <- c("SL9", "SL10", "SL26", "SL32")

> replicates <- c("AGO6", "AGO6", "AGO4", "AGO4")

> aD <- readGeneric(files = libfiles, dir = datadir,

+ replicates = replicates, libnames = libnames,

+ polyLength = 10, header = TRUE, gap = 200)

> aD

An object of class "alignmentData"

3149 rows and 4 columns

Slot "libnames":

[1] "SL9" "SL10" "SL26" "SL32"

Slot "replicates":

[1] AGO6 AGO6 AGO4 AGO4

Levels: AGO4 AGO6

Slot "alignments":

GRanges object with 3149 ranges and 2 metadata columns:

seqnames ranges strand | tag multireads

<Rle> <IRanges> <Rle> | <character> <numeric>

[1] >Chr1 265-284 - | AAATGAAGATAAACCATCCA 1

[2] >Chr1 405-427 - | AAGGAGTAAGAATGACAATA.. 1

[3] >Chr1 406-420 - | AAGAATGACAATAAA 1

[4] >Chr1 600-623 + | AAGGATTGGTGGTTTGAAGA.. 1

[5] >Chr1 665-688 + | ATCCTTGTAGCACACATTTT.. 1

...

2

[3145] >Chr1 991569-991589 - | CCGATAAACGCATACTTCCCT 1

[3146] >Chr1 992039-992054 - | AAGGAAATTAGAAAAT 1

[3147] >Chr1 995357-995372 + | AGAGACATGGGCGACA 1

[3148] >Chr1 995493-995507 + | AAACTCGTGAAGAAG 1

[3149] >Chr1 995817-995840 - | AGAGATCAAGTATATAGAAT.. 1

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Slot "data":

Matrix with 3149 rows.

SL9 SL10 SL26 SL32

1 1 0 0 0

2 0 0 0 2

3 0 1 0 0

4 0 1 0 0

5 7 1 0 0

...

3145 1 0 0 0

3146 0 1 0 0

3147 0 1 0 0

3148 0 1 0 0

3149 1 0 0 0

Slot "libsizes":

[1] 1193 1598 1818 1417

Next, we process this alignmentData object to produce a segData object. This segData

object contains a set of potential segments on the genome defined by the start and end
points of regions of overlapping alignments in the alignmentData object. It then evaluates
the number of tags that hit in each of these segments.

> sD <- processAD(aD, cl = cl)

> sD

GRanges object with 1452 ranges and 1 metadata column:

seqnames ranges strand | chunk

<Rle> <IRanges> <Rle> | <Rle>

[1] >Chr1 265-284 * | 1

[2] >Chr1 265-420 * | 1

[3] >Chr1 265-623 * | 1

[4] >Chr1 265-688 * | 1

[5] >Chr1 265-830 * | 1

...

[1448] >Chr1 992039-992054 * | 171

[1449] >Chr1 995357-995372 * | 172

[1450] >Chr1 995357-995507 * | 172

[1451] >Chr1 995493-995507 * | 172

[1452] >Chr1 995817-995840 * | 173

seqinfo: 1 sequence from an unspecified genome; no seqlengths

An object of class "lociData"

1452 rows and 4 columns

3

Slot "replicates"

AGO6 AGO6 AGO4 AGO4

Slot "groups":

list()

Slot "data":

SL9 SL10 SL26 SL32

Slot "annotation":

data frame with 0 columns and 0 rows

Slot "locLikelihoods" (stored on log scale):

Matrix with 0 rows.

<0 x 0 matrix>

We can now construct a segment map from these potential segments.

Segmentation by heuristic methods
A fast method of segmentation can be achieved by exploiting the bimodality of the densities
of small RNAs in the potential segments. In this approach, we assign each potential segment
to one of two clusters for each replicate group, either as a segment or a null based on the
density of sequence tags within that segment. We then combine these clusterings for each
replicate group to gain a consensus segmentation map.

> hS <- heuristicSeg(sD = sD, aD = aD, RKPM = 1000, largeness = 1e8, getLikes = TRUE, cl = cl)

......

Segmentation by empirical Bayesian methods
A more refined approach to the problem uses an existing segment map (or, if not provided, a
segment map defined by the hS function) to acquire empirical distributions on the density of
sequence tags within a segment. We can then estimate posterior likelihoods for each potential
segment as being either a true segment or a null. We then identify all potential segments in
the with a posterior likelihood of being a segment greater than some value ’lociCutoff’ and
containing no subregion with a posterior likelihood of being a null greater than ’nullCutoff’.
We then greedily select the longest segments satisfying these criteria that do not overlap with
any other such segments in defining our segmentation map.

> cS <- classifySeg(sD = sD, aD = aD, cD = hS, cl = cl)

..........

> cS

GRanges object with 65 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] >Chr1 1-264 *
[2] >Chr1 265-839 *
[3] >Chr1 840-967 *

4

[4] >Chr1 968-17054 *
[5] >Chr1 17055-17738 *
...

[61] >Chr1 789508-789548 *
[62] >Chr1 789549-944194 *
[63] >Chr1 944195-944222 *
[64] >Chr1 944223-958610 *
[65] >Chr1 958611-959152 *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

An object of class "lociData"

65 rows and 4 columns

Slot "replicates"

AGO6 AGO6 AGO4 AGO4

Slot "groups":

list()

Slot "data":

AGO6.1 AGO6.2 AGO4.1 AGO4.2

[1,] 0 0 0 0

[2,] 31 29 51 85

[3,] 24 18 14 0

[4,] 2 3 0 0

[5,] 121 120 147 560

60 more rows...

Slot "annotation":

data frame with 0 columns and 65 rows

Slot "locLikelihoods" (stored on log scale):

Matrix with 65 rows.

AGO4 AGO6

1 0.031548 0.034761

2 0.8338 0.9883

3 0.61923 0.85384

4 0.014835 0.019089

5 0.95559 0.84837

...

61 0.66692 0.93945

62 0.0076827 0.024958

63 0.98159 0.86769

64 0.12483 0.018825

65 0.32536 0.99319

Expected number of loci in each replicate group

AGO4 AGO6

29.40546 36.18992

By one of these methods, we finally acquire an annotated lociData object, with the annota-
tions describing the co-ordinates of each segment.

5

We can use this lociData object, in combination with the alignmentData object, to plot the
segmented genome.

> par(mfrow = c(2,1), mar = c(2,6,2,2))

> plotGenome(aD, hS, chr = ">Chr1", limits = c(1, 1e5),

+ showNumber = FALSE, cap = 50)

> plotGenome(aD, cS, chr = ">Chr1", limits = c(1, 1e5),

+ showNumber = FALSE, cap = 50)

1 20001 40001 60001 80001 100001

SL9

SL10

SL26

SL32

1 20001 40001 60001 80001 100001

SL9

SL10

SL26

SL32

Figure 1: The segmented genome (first 105 bases of chromosome 1.

Given the calculated likelihoods, we can filter the segmented genome by controlling on like-
lihood, false discovery rate, or familywise error rate

> loci <- selectLoci(cS, FDR = 0.05)

> loci

GRanges object with 34 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] >Chr1 265-839 *
[2] >Chr1 840-967 *
[3] >Chr1 17739-17909 *

6

[4] >Chr1 17910-18157 *
[5] >Chr1 18158-18553 *
...

[30] >Chr1 758302-758848 *
[31] >Chr1 758849-759196 *
[32] >Chr1 789508-789548 *
[33] >Chr1 944195-944222 *
[34] >Chr1 958611-959152 *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

An object of class "lociData"

34 rows and 4 columns

Slot "replicates"

AGO6 AGO6 AGO4 AGO4

Slot "groups":

list()

Slot "data":

AGO6.1 AGO6.2 AGO4.1 AGO4.2

[1,] 31 29 51 85

[2,] 24 18 14 0

[3,] 16 21 0 17

[4,] 239 173 162 177

[5,] 301 302 1096 349

29 more rows...

Slot "annotation":

data frame with 0 columns and 34 rows

Slot "locLikelihoods" (stored on log scale):

Matrix with 34 rows.

AGO4 AGO6

1 0.8338 0.9883

2 0.61923 0.85384

3 0.6483 0.88199

4 0.98546 0.99732

5 0.98467 0.99843

...

30 0.98027 0.96982

31 0.56102 0.98788

32 0.66692 0.93945

33 0.98159 0.86769

34 0.32536 0.99319

Expected number of loci in each replicate group

AGO4 AGO6

25.33357 32.75701

The lociData objects can now be examined for differential expression with the baySeq pack-
age.

7

First we define the possible models of differential expression on the data. In this case, the
models are of non-differential expression and pairwise differential expression.

> groups(cS) <- list(NDE = c(1,1,1,1), DE = c("AGO6", "AGO6", "AGO4", "AGO4"))

Then we get empirical distributions on the parameter space of the data.

> cS <- getPriors(cS, cl = cl)

Then we get the posterior likelihoods of the data conforming to each model. Since the ‘cS’
object contains null regions as well as true loci, we will use the ‘nullData = TRUE’ option to
distinguish between non-differentially expressed loci and non-expressed regions. By default,
the loci likelihoods calculated earlier will be used to weight the initial parameter fit in order
to detect null data.

> cS <- getLikelihoods(cS, nullData = TRUE, cl = cl)

.

We can examine the highest likelihood non-expressed (‘null’) regions

> topCounts(cS, NULL, number = 3)

seqnames start end width strand AGO6.1 AGO6.2 AGO4.1 AGO4.2

NA.61 >Chr1 789549 944194 154646 * 13 37 29 29

NA.28 >Chr1 372735 423138 50404 * 0 0 0 0

NA.45 >Chr1 552693 587497 34805 * 0 0 0 0

likes FDR. FWER.

NA.61 0.9781566 0.02184336 0.02184336

NA.28 0.9754303 0.02320653 0.04587638

NA.45 0.9753956 0.02367247 0.06935198

The highest likelihood expressed but non-differentially expressed regions

> topCounts(cS, "NDE", number = 3)

seqnames start end width strand AGO6.1 AGO6.2 AGO4.1 AGO4.2 likes

NA.14 >Chr1 77151 77519 369 * 176 147 275 131 0.9307905

NA.56 >Chr1 758302 758848 547 * 167 166 269 134 0.8751151

NA.42 >Chr1 550077 550655 579 * 5 11 0 19 0.8663408

FDR.NDE FWER.NDE

NA.14 0.06920947 0.06920947

NA.56 0.09704717 0.18545113

NA.42 0.10925117 0.29432304

And the highest likelihood differentially expressed regions

> topCounts(cS, "DE", number = 3)

seqnames start end width strand AGO6.1 AGO6.2 AGO4.1 AGO4.2 likes

NA.48 >Chr1 634297 634350 54 * 65 90 12 17 0.9950597

NA.16 >Chr1 238359 238417 59 * 9 9 0 0 0.9914359

NA.13 >Chr1 76799 77150 352 * 6 21 0 0 0.9784148

DE FDR.DE FWER.DE

NA.48 AGO6>AGO4 0.004940330 0.00494033

NA.16 AGO6>AGO4 0.006752209 0.01346211

8

NA.13 AGO6>AGO4 0.011696524 0.03475668

Finally, to be a good citizen, we stop the cluster we started earlier:

> if(!is.null(cl))

+ stopCluster(cl)

Session Info

> sessionInfo()

R version 4.4.1 (2024-06-14)

Platform: x86_64-pc-linux-gnu

Running under: Ubuntu 24.04.1 LTS

Matrix products: default

BLAS: /media/volume/teran2_disk/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so

LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York

tzcode source: system (glibc)

attached base packages:

[1] parallel stats4 stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] segmentSeq_2.39.0 ShortRead_1.63.2

[3] GenomicAlignments_1.41.0 SummarizedExperiment_1.35.4

[5] Biobase_2.65.1 MatrixGenerics_1.17.0

[7] matrixStats_1.4.1 Rsamtools_2.21.2

[9] Biostrings_2.73.2 XVector_0.45.0

[11] BiocParallel_1.39.0 GenomicRanges_1.57.2

[13] GenomeInfoDb_1.41.2 IRanges_2.39.2

[15] S4Vectors_0.43.2 BiocGenerics_0.51.3

[17] baySeq_2.39.0

loaded via a namespace (and not attached):

[1] SparseArray_1.5.45 bitops_1.0-9 jpeg_0.1-10

[4] lattice_0.22-6 digest_0.6.37 evaluate_1.0.1

[7] grid_4.4.1 RColorBrewer_1.1-3 fastmap_1.2.0

9

[10] jsonlite_1.8.9 Matrix_1.7-1 limma_3.61.12

[13] BiocManager_1.30.25 httr_1.4.7 UCSC.utils_1.1.0

[16] codetools_0.2-20 abind_1.4-8 cli_3.6.3

[19] rlang_1.1.4 crayon_1.5.3 BiocStyle_2.33.1

[22] DelayedArray_0.31.14 yaml_2.3.10 S4Arrays_1.5.11

[25] tools_4.4.1 deldir_2.0-4 interp_1.1-6

[28] locfit_1.5-9.10 GenomeInfoDbData_1.2.13 hwriter_1.3.2.1

[31] R6_2.5.1 png_0.1-8 zlibbioc_1.51.2

[34] pwalign_1.1.0 edgeR_4.3.20 Rcpp_1.0.13

[37] statmod_1.5.0 xfun_0.48 knitr_1.48

[40] latticeExtra_0.6-30 htmltools_0.5.8.1 rmarkdown_2.28

[43] compiler_4.4.1

References
[1] Thomas J. Hardcastle and Krystyna A. Kelly. baySeq: Empirical Bayesian Methods For

Identifying Differential Expression In Sequence Count Data. BMC Bioinformatics
(2010).

[2] Thomas J. Hardcastle and Krystyna A. Kelly and David C. Baulcombe. Identifying
small RNA loci from high-throughput sequencing data. Bioinformatics (2012).

10

	1 Introduction
	2 Preparation

