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Chapter 1

Introduction

1.1 Scope

This document describes the analysis of Hi-C data with the diffHic package. Differential
interactions are defined as those with significant changes in intensity between conditions.
These are identified in a statistically rigorous manner using the methods in the edgeR package
[Robinson et al., 2010]. Knowledge of edgeR is useful but is not necessary for this guide.

1.2 How to get help

Most questions about individual functions should be answered by the documentation. For
example, if you want to know more about preparePairs, you can bring up the documentation
by typing ?preparePairs or help(preparePairs) at the R prompt. Further detail on the
methods or the theory can be found in the references at the bottom of each help page. The
entire diffHic pipeline is also described in its own publication [Lun and Smyth, 2015].

The authors of the package always appreciate receiving reports of bugs in the package
functions or in the documentation. The same goes for well-considered suggestions for im-
provements. Other questions about how to use diffHic are best sent to the Bioconductor
support site at https://support.bioconductor.org. Please send requests for general as-
sistance and advice to the support site, rather than to the individual authors.

Users posting to the support site for the first time may find it helpful to read the posting
guide at http://www.bioconductor.org/help/support/posting-guide.

1.3 A brief description of Hi-C

The Hi-C protocol was originally developed by Lieberman-Aiden et al. [2009]. It is used
to study chromatin organization by identifying pairwise interactions between two distinct
genomic loci. Briefly, chromatin is cross-linked and digested with a restriction enzyme. This
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releases chromatin complexes into solution, where each complex contains multiple restric-
tion fragments corresponding to interacting loci. Overhangs are filled in with biotin-labelled
nucleotides to form blunt ends. Proximity ligation is performed whereby ligation between
blunt ends in the same complex is favored. The ligated DNA is sonicated, and the sheared
fragments containing ligation junctions are purified by a streptavidin pulldown. These puri-
fied ligation products are then subjected to paired-end sequencing. Mapping of the reads in
each pair can identify the pairs of interacting loci. Of course, some caution is required due
to the presence of non-specific ligation between blunt ends in different complexes.

1.4 Quick start

A typical differential analysis of Hi-C data is described below. For simplicity, assume that
the the BAM files have already been processed into index files in input. Let design contain
the design matrix for this experiment. Also assume that the boundaries of the relevant
restriction fragments are present in fragments. The code itself is split across several steps:

1. converting BAM files to index files

2. counting read pairs into pairs of genomic bins

> require(diffHic)

> param <- pairParam(fragments=fragments)

> data <- squareCounts(input, width=1e6, param=param)

3. filtering out uninteresting bin pairs

> require(edgeR)

> keep <- aveLogCPM(asDGEList(data)) > 0

> data <- data[keep,]

4. normalizing counts between libraries

> y <- asDGEList(data)

> y$offset <- normOffsets(data, type="loess")

5. modelling biological variability

> y <- estimateDisp(y, design)

> fit <- glmQLFit(y, design, robust=TRUE)

6. testing for significant differences between groups

> result <- glmQLFTest(fit)
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In the various examples for this guide, data will be used from three studies. The first
dataset is the smallest and examines the chromatin structure in K562 and GM06990 cell
lines [Lieberman-Aiden et al., 2009]. The second compares interaction intensities between
wild-type and cohesin-deficient murine neural stem cells [Sofueva et al., 2013]. The final
study compares ERG-overexpressing RWPE1 cells with a GFP-expressing control [Rickman
et al., 2012]. Obviously, readers will have to modify the code for their own analyses.

6



Chapter 2

Preparing index files from BAM files

This box will appear at the start of each chapter, describing the objects required from
previous chapters. As we’re starting out here, we don’t really need anything.

2.1 A comment on aligning Hi-C libraries

In a typical Hi-C library, sequencing will occasionally be performed over the ligation junction
between two restriction fragments. This forms a chimeric read that contains sequences from
two distinct genomic loci. Here, correct alignment of the 5′ end of the chimeric read is more
important. This is because the location of the 3′ end is already provided by mapping the 5′

end of the mate read. Direct application of alignment software will not be optimal as only
one mapping location will be usually reported for each read. This means that the 5′ location
will be ignored if the 3′ alignment is superior, e.g., longer or fewer mismatches.

Instead, chimeric alignment can be performed with approaches like iterative mapping
[Imakaev et al., 2012] or read splitting [Seitan et al., 2013]. The latter defines the ligation
signature as the sequence that is obtained after ligation between blunt ends derived from
cleaved restriction sites. For example, the HindIII enzyme cleaves at AAGCTT with a 4 bp
overhang. This yields a signature sequence of AAGCTAGCTT upon ligation of blunt ends. The
ligation signature in each chimeric read is identified with cutadapt [Martin, 2011], and the
read is split into two segments at the center of the signature. Each segment is then aligned
separately to the reference genome using Bowtie2 [Langmead and Salzberg, 2012]. Mapping
by read splitting can be performed in diffHic using a custom Python script, below.

> system.file("python", "presplit_map.py", package="diffHic", mustWork=TRUE)

Users are strongly recommended to synchronize mate pair information and to mark du-
plicate read pairs in the resulting BAM file. This can be achieved using the various tools in
the Picard software suite (http://broadinstitute.github.io/picard).
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2.2 Matching mapped reads to restriction fragments

The Hi-C protocol is based on ligation between restriction fragments. Sequencing of the
ligation product is performed to identify the interacting loci - or, more precisely, the two
restriction fragments containing the interacting loci. The resolution of Hi-C data is inherently
limited by the frequency of restriction sites and the size of the restriction fragments. Thus,
it makes sense to report the read alignment location in terms of the restriction fragment to
which that read was mapped. The boundaries of each restriction fragment can be obtained
with the cutGenome function, as shown below for the human genome after digestion with the
HindIII restriction enzyme (recognition site of AAGCTT, 5′ overhang of 4 bp).

> require(BSgenome.Hsapiens.UCSC.hg19)

> hs.frag <- cutGenome(BSgenome.Hsapiens.UCSC.hg19, "AAGCTT", 4)

> hs.frag

GRanges object with 846225 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] chr1 [ 1, 16011] *
[2] chr1 [16008, 24575] *
[3] chr1 [24572, 27985] *
[4] chr1 [27982, 30433] *
[5] chr1 [30430, 32157] *
... ... ... ...

[846221] chrUn_gl000249 [22854, 25904] *
[846222] chrUn_gl000249 [25901, 31201] *
[846223] chrUn_gl000249 [31198, 36757] *
[846224] chrUn_gl000249 [36754, 36891] *
[846225] chrUn_gl000249 [36888, 38502] *
-------
seqinfo: 93 sequences from hg19 genome

These fragments should be stored in a pairParam object. The constructor below checks
that the fragment ranges are properly ordered. Later, this object will also hold other param-
eters for counting. This simplifies coordination of the various steps in the diffHic pipeline,
as the same pairParam object can be easily passed between different functions.

> hs.param <- pairParam(hs.frag)

> hs.param

Genome contains 846225 restriction fragments across 93 chromosomes
No discard regions are specified
No limits on chromosomes for read extraction
No cap on the read pairs per pair of restriction fragments

The preparePairs function matches the mapping location of each read to a restriction
fragment in the reference genome. Mapping results for paired reads should be provided in
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a name-sorted BAM file. The function converts the read position into an index, pointing to
the matching restriction fragment in hs.frag. The resulting pairs of indices are stored in an
index file using the HDF5 format. The larger index is designated as the “anchor” whereas
the smaller is the “target”. This is demonstrated using Hi-C data from GM06990 cells.

> diagnostics <- preparePairs("SRR027957.bam", hs.param,

+ file="SRR027957.h5", dedup=TRUE, minq=10)

> diagnostics

$pairs
total marked filtered mapped

7068675 103594 1657451 5337797

$same.id
dangling self.circle
423205 135004

$singles
[1] 0

$chimeras
total mapped multi invalid

2297481 1607255 1039918 67813

The function itself returns a list of diagnostics showing the number of read pairs that
are lost for various reasons. Of particular note is the removal of reads that are potential
PCR duplicates with dedup=TRUE. This requires marking of the reads beforehand using an
appropriate program such as Picard’s MarkDuplicates. Filtering on the minimum mapping
quality score with minq is also recommended to remove spurious alignments.

Read pairs mapping to the same restriction fragment provide little information on interac-
tions between fragments [Belton et al., 2012]. Dangling ends are inward-facing read pairs that
are mapped to the same fragment. These are uninformative as they are usually formed from
sequencing of the restriction fragment prior to ligation. Self-circles are outward-facing read
pairs that are formed when two ends of the same restriction fragment ligate to one another.
Interactions within a fragment cannot be easily distinguished from these self-circularization
events. Both structures are removed to avoid confusion in downstream steps.

2.3 Processing of chimeric reads

For preparePairs, chimeric reads are handled by recording two separate alignments for each
read. Hard clipping is used to denote the length trimmed from each sequence in each align-
ment, and to determine which alignment corresponds to the 5′ or 3′ end of the read. Only
the 5′ end(s) will be used to determine the restriction fragment index for that read pair. The
total number of chimeric read pairs will be reported, along with the number where 5′ ends
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or 3′ ends are mapped. Of course, the function will also work if the mapping location is only
given for the 5′ end, though chimeric statistics will not be properly computed.

The proportion of invalid chimeric pairs can then be calculated. Invalid pairs are those
where the 3′ location of a chimeric read disagrees with the 5′ location of the mate. The invalid
proportion can be used as an empirical measure of the mapping error rate - or, at least, the
upper bound thereof, given that error rates are likely to be lower for longer, non-chimeric
alignments. High error rates may be indicative of a fault in the mapping pipeline.

> diagnostics$chimeras[["invalid"]]/diagnostics$chimeras[["multi"]]

[1] 0.06520995

Invalid chimeric pairs can be discarded by setting ichim=FALSE in preparePairs. However,
this is not recommended for routine analyses. Mapping errors for short 3′ ends may result
in apparent invalidity and loss of the (otherwise correct) 5′ alignments.

2.4 Filtering artifactual read pairs

2.4.1 Reprocessing index files for quality control

The prunePairs function removes read pairs that correspond to artifacts in the Hi-C pro-
cedure. The returned vector contains the number of read pairs removed for each artifact.
Values of length, inward and outward correspond to removal by max.frag, min.inward and
min.outward, respectively. Retained read pairs are stored in another index file for later use.

> min.inward <- 1000

> min.outward <- 25000

> prunePairs("SRR027957.h5", hs.param, file.out="SRR027957_trimmed.h5",

+ max.frag=600, min.inward=min.inward, min.outward=min.outward)

total length inward outward retained
4779588 858188 93665 82129 3758098

The max.frag argument removes read pairs where the inferred length of the sequencing
fragment (i.e., the ligation product) is greater than a specified value. The length of the
sequencing fragment is inferred by summing the distance between the mapping location of
the 5′ end of each read and the nearest restriction site on the 3′ end of that read. Excessively
large lengths are indicative of offsite cleavage, i.e., where the restriction enzyme or some
other agent cuts the DNA at a location other than the restriction site. While not completely
uninformative, these are discarded as they are not expected from the Hi-C protocol. The
threshold value can be chosen based on the size selection interval in library preparation, or
by examining the distribution of inferred fragment lengths from getPairData.
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> diags <- getPairData("SRR027957.h5", hs.param)

> hist(diags$length[diags$length < 1000], ylab="Frequency", xlab="Spacing (bp)")

The insert size is defined as the linear distance between two paired reads on the same
chromosome. The min.inward paramater removes inward-facing intra-chromosomal read
pairs where the insert size is less than the specified value. The min.outward parameter
does the same for outward-facing intra-chromosomal read pairs. This is designed to remove
dangling ends or self-circles involving DNA fragments that have not been completely digested
[Jin et al., 2013]. Such read pairs are technical artifacts that are (incorrectly) retained by
preparePairs, as the two reads involved are mapped to different restriction fragments.

2.4.2 Setting size thresholds with strand orientation plots

The strand orientation for a read pair refers to the combination of strands for the an-
chor/target reads. These are stored as flags where setting 0x1 or 0x2 means that the anchor
or target reads, respectively, are mapped on the reverse strand. If different pieces of DNA
were randomly ligated together, one would expect to observe equal proportions of all strand
orientations. This can be tested by examining the distribution of strand orientations for
inter-chromosomal read pairs. Each orientation is equally represented across these read
pairs, which is expected as different chromosomes are distinct pieces of DNA.

11



> intra <- !is.na(diags$insert)

> table(diags$orientation[!intra])

0 1 2 3
750009 746583 746615 746502

This can be repeated for intra-chromosomal read pairs, by plotting the distribution of
insert sizes for each strand orientation [Jin et al., 2013]. The two same-strand distributions
are averaged for convenience. At high insert sizes, the distributions will converge for all
strand orientations. This is consistent with random ligation between two separate restric-
tion fragments. At lower insert sizes, spikes are observed in the ouward- and inward-facing
distributions due to self-circularization and dangling ends, respectively. Thresholds should
be chosen in prunePairs to remove these spikes, as represented by the grey lines.

> llinsert <- log2(diags$insert + 1L)

> intra <- !is.na(llinsert)

> breaks <- seq(min(llinsert[intra]), max(llinsert[intra]), length.out=30)

> inward <- hist(llinsert[diags$orientation==1L], plot=FALSE, breaks=breaks)

> outward <- hist(llinsert[diags$orientation==2L] ,plot=FALSE, breaks=breaks)

> samestr <- hist(llinsert[diags$orientation==0L | diags$orientation==3L],

+ plot=FALSE, breaks=breaks)

> samestr$counts <- samestr$counts/2

> #

> ymax <- max(inward$counts, outward$counts, samestr$counts)/1e6

> xmax <- max(inward$mids, outward$mids, samestr$mids)

> xmin <- min(inward$mids, outward$mids, samestr$mids)

> #

> plot(0,0,type="n", xlim=c(xmin, xmax), ylim=c(0, ymax),

+ xlab=expression(log[2]~"[insert size (bp)]"), ylab="Frequency (millions)")

> lines(inward$mids, inward$counts/1e6, col="darkgreen", lwd=2)

> abline(v=log2(min.inward), col="darkgrey")

> lines(outward$mids, outward$counts/1e6, col="red", lwd=2)

> abline(v=log2(min.outward), col="darkgrey", lty=2)

> lines(samestr$mids, samestr$counts/1e6, col="blue", lwd=2)

> legend("topright", c("inward", "outward", "same"),

+ col=c("darkgreen", "red", "blue"), lwd=2)
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As an aside, the position of the spikes in the above plots can be used to estimate some
fragment lengths. The x-coordinate of the outward-facing spike represents the length of the
DNA fragments after restriction digestion. This is useful as it provides a lower bound on
the spatial resolution of any given Hi-C experiment. The position of the inward-facing spike
represents the length of the fragments after sonication, i.e., those actually used in sequencing.
This should be lower than the size selection thresholds used in library preparation.

2.5 Merging technical replicates

Hi-C experiments often involve deep sequencing as read pairs are sparsely distributed across
the possible interactions. As a result, multiple index files may be generated from multiple
technical replicates of a single Hi-C library. These can be merged together using the merge-

Pairs function prior to downstream processing. This is equivalent to summing the counts
for each pair of restriction fragment indices, and is valid if one assumes Poisson sampling
for each sequencing run [Marioni et al., 2008]. An example is provided below that merges
several technical replicates for a GM06990 library in the Lieberman-Aiden et al. dataset.

> prepped <- preparePairs("SRR027958.bam", hs.param, file="SRR027958.h5",

+ dedup=TRUE, minq=10)

> counted <- prunePairs("SRR027958.h5", hs.param, file.out="SRR027958_trimmed.h5",

+ max.frag=600, min.inward=min.inward, min.outward=min.outward)

> mergePairs(files=c("SRR027957_trimmed.h5", "SRR027958_trimmed.h5"), "merged.h5")
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In addition, any Hi-C dataset that is processed manually by the user can be stored in
an index file using the savePairs function. This takes a dataframe with anchor and target
indices, as well as any additional information that might be useful. The idea is to allow
entry into the diffHic analysis from other pipelines. If the dataset is too large, one can save
chunks at a time before merging them all together with mergePairs.

> anchor.id <- as.integer(runif(100, 1, length(hs.param$fragments)))

> target.id <- as.integer(runif(100, 1, length(hs.param$fragments)))

> dummy <- data.frame(anchor.id, target.id, other.data=as.integer(runif(100, 1, 100)))

> savePairs(dummy, "example.h5", hs.param)

For full compatibility, users should include the alignment positions and lengths as xxx.pos
and xxx.len for both the anchor and target reads (replacing xxx with anchor or target). The
alignment position refers to the 1-based coordinate of the left-most base of the alignment.
The alignment length refers to the span of the alignment relative to the reference, and
should be negative for alignments on the reverse strand. This information will be used in
downstream diffHic functions, such as read counting around blacklisted regions.

2.6 Handling DNase Hi-C experiments

DNase Hi-C is a variant of the standard technique, whereby the DNase I enzyme is used to
fragment the genome instead of restriction enzymes [Ma et al., 2015]. This allows for reso-
lution beyond that of individual restriction fragments. However, cleavage sites for DNase I
cannot be easily predicted to construct param$fragments. Formation of index files is subse-
quently inappropriate, as there are no restriction fragments for reads to be assigned to.

To handle this type of data in diffHic, a workaround is provided using the concept of
“pseudo-fragments”. The genome is partitioned into contiguous and non-overlapping pseudo-
fragments of constant size, using the segmentGenome function. Reads can then be assigned
into each pseudo-fragment in the same manner as that to actual restriction fragments for
standard Hi-C. This is done using the prepPseudoPairs function, which is (almost) equivalent
to running preparePairs with the pseudo-fragment coordinates in param$fragments.

An example of this approach is shown below. For demonstration purposes, the SRR027957
library will be treated as DNase Hi-C sample. The hg19 genome is segmented into 500 bp
pseudo-fragments, and reads are then assigned to each of these pseudo-fragments.

> seg.frags <- segmentGenome(BSgenome.Hsapiens.UCSC.hg19, size=500)

> prepPseudoPairs("SRR027957.bam", pairParam(seg.frags), file="SRR027957.h5",

+ dedup=TRUE, minq=10)

$pairs
total marked filtered mapped

7068675 103594 1657451 5337797
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$singles
[1] 0

$chimeras
total mapped multi invalid

2297481 1656727 1072925 41444

Unlike preparePairs, no diagnostic information regarding self-circles or dangling ends
is reported. Such metrics are based on restriction fragment coordinates, but these are not
experimentally relevant for artificial pseudo-fragments. Similarly, the length of the sequenc-
ing fragment is computed from artificial fragment boundaries and has little meaning. This
means that the length field should be ignored in the output of getPairData. The max.frag

argument should also be set to NA in prunePairs. Metrics for inward- and outward-facing
read pairs are unaffected, as these are computed independently of the fragments.

This pseudo-fragment strategy allows easy passage through the diffHic pipeline. While
some spatial resolution is lost, this is largely irrelevant in downstream steps. For example,
counting across the interaction space will use regions much larger than the pseudo-fragments.
Any loss of resolution from pseudo-fragment assignment is likely to be negligble.

Users should also note that the alignment script described in Section 2.1 is not appropriate
for DNase Hi-C experiments. This approach is based on splitting chimeric reads at the
ligation signature, which is constructed from the recognition site of a restriction enzyme.
The sequence around the ligation junction is not well-defined when DNase I is used for
cleavage. Instead, alignment programs should be used that can directly handle chimeric
reads with arbitrary breakpoints in the genome, e.g., BWA [Li and Durbin, 2010]. A Python
script for iterative mapping [Imakaev et al., 2012] is also provided for this purpose.

> system.file("python", "iter_map.py", package="diffHic", mustWork=TRUE)
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Chapter 3

Counting read pairs into interactions

A different dataset will be used here, so we don’t need anything from the last chapter.
Horses for courses; this dataset’s a lot nicer for detecting differential interactions.

3.1 Overview

Prior to any statistical analysis, the read pairs in a Hi-C library must be summarized into a
count for each interaction. This count is used as an experimental measure of the interaction
intensity. Specifically, each pairwise interaction is parameterized by two genomic intervals
representing the interacting loci. The count for that interaction is defined as the number of
read pairs with one read mapping to each of the intervals. Counting is performed for each
sample in the dataset, such that each interaction is associated with a set of counts.

The interaction space is defined as the genome-by-genome space over which the read pairs
are distributed. Recall that each paired read is assigned to a restriction fragment index. The
interaction space contains all index pairs (x, y) for x, y ∈ [1..N ], where x ≥ y and N is the
number of restriction fragments in the genome. This can be visualized as the triangular
space between y = x, y = 0 and x = N on the Cartesian plane. A rectangular area in the
interaction space represents a pairwise interaction between the genomic intervals spanned
by the two adjacent sides of that rectangle. The number of read pairs in this area is used
as the count for the corresponding interaction. Non-rectangular areas can also represent
interactions, but these are more difficult to interpret and will not be considered here.

The examples shown here will use the Sofueva et al. dataset. Read processing has already
been performed to construct an index file for each library. Some additional work is required
to obtain the restriction fragment coordinates for the HindIII-digested mouse genome.

> require(BSgenome.Mmusculus.UCSC.mm10)

> mm.frag <- cutGenome(BSgenome.Mmusculus.UCSC.mm10, "AAGCTT", 4)

> input <- c("merged_flox_1.h5", "merged_flox_2.h5", "merged_ko_1.h5", "merged_ko_2.h5")
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3.2 Counting into bin pairs

3.2.1 Overview

Here, the genome is partitioned into contiguous non-overlapping bins of constant size. Each
interaction is defined as a pair of these bins. This approach avoids the need for prior knowl-
edge of the loci of interest when summarizing Hi-C counts. Counting of read pairs between
bin pairs can be performed for multiple libraries using the squareCounts function.

> bin.size <- 1e6

> mm.param <- pairParam(mm.frag)

> data <- squareCounts(input, mm.param, width=bin.size, filter=1)

> data

DIList object for 4 libraries with 3319100 pairs across 2739 regions

> head(counts(data))

[,1] [,2] [,3] [,4]
[1,] 83 48 33 19
[2,] 21332 17151 12894 12357
[3,] 20 20 17 6
[4,] 8215 7023 4399 4237
[5,] 14729 12460 8985 8443
[6,] 7 2 3 0

> head(anchors(data))

GRanges object with 6 ranges and 1 metadata column:
seqnames ranges strand | nfrags

<Rle> <IRanges> <Rle> | <integer>
[1] chr1 [3004106, 4000741] * | 389
[2] chr1 [3004106, 4000741] * | 389
[3] chr1 [4000738, 5001375] * | 334
[4] chr1 [4000738, 5001375] * | 334
[5] chr1 [4000738, 5001375] * | 334
[6] chr1 [5001372, 5997485] * | 340
-------
seqinfo: 66 sequences from an unspecified genome

> head(targets(data))

GRanges object with 6 ranges and 1 metadata column:
seqnames ranges strand | nfrags

<Rle> <IRanges> <Rle> | <integer>
[1] chr1 [ 1, 3004109] * | 1
[2] chr1 [3004106, 4000741] * | 389
[3] chr1 [ 1, 3004109] * | 1
[4] chr1 [3004106, 4000741] * | 389
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[5] chr1 [4000738, 5001375] * | 334
[6] chr1 [ 1, 3004109] * | 1
-------
seqinfo: 66 sequences from an unspecified genome

This generates a DIList object that contains the relevant count and coordinate infor-
mation. Each row of the count matrix represents the counts for an interaction, while each
column represents a library. Each interaction is characterized as that between a pair of ge-
nomic intervals - in this case, genomic bins. Again, anchor and target notation is used for
these intervals, whereby the anchor bin is that with the “higher” genomic coordinate.

Bin pairs can also be filtered to remove those with to a count sum below filter. This
removes uninformative bin pairs with very few read pairs, and reduces the memory footprint
of the function. A higher value of filter may be necessary for analyses of large datasets in
limited memory. More sophisticated filtering strategies are discussed in Chapter 4.

3.2.2 Choosing a bin width

The width of the bin is specified in base pairs and determines the spatial resolution of
the analysis. Smaller bins will have greater spatial resolution as adjacent features can be
distinguished in the interaction space. Larger bins will have greater counts as a larger area is
used to collect read pairs. Optimal summarization will not be achieved if bins are too small
or too large to capture the (changes in) intensity of the underlying interactions.

For this analysis, 1 Mbp bins are used to capture broad structural features. This is also
useful for demonstration purposes, as the counts are large enough for clear manifestation of
biases in later chapters. Of course, diffHic is more than capable of handling smaller sizes
(e.g., below 20 kbp) for higher-resolution analyses of looping interactions between specific
elements. In such cases, filter should be increased to avoid excessive memory usage.

> head(regions(data))

GRanges object with 6 ranges and 1 metadata column:
seqnames ranges strand | nfrags

<Rle> <IRanges> <Rle> | <integer>
[1] chr1 [ 1, 3004109] * | 1
[2] chr1 [3004106, 4000741] * | 389
[3] chr1 [4000738, 5001375] * | 334
[4] chr1 [5001372, 5997485] * | 340
[5] chr1 [5997482, 7000260] * | 342
[6] chr1 [7000257, 8000015] * | 349
-------
seqinfo: 66 sequences from an unspecified genome

The boundary of each bin is rounded to the closest restriction site in squareCounts. This
is due to the inherent limits on spatial resolution in a Hi-C experiment. The number of
restriction fragments in each bin is recorded in the nfrags field of the metadata.
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Determination of the ideal bin size is not trivial as the features of interest are not usually
known in advance. Instead, repeated analyses with multiple bin sizes are recommended.
This provides some robustness to the choice of bin size. Sharp interactions can be detected
by pairs of smaller bins while diffuse interactions can be detected by larger bin pairs. See
Section 7.2.5 for more information on consolidating results from multiple bin sizes.

3.3 Counting with pre-defined regions

3.3.1 Connecting counts between pairs of regions

For some studies, prior knowledge about the regions of interest may be available. For exam-
ple, a researcher may be interested in examining interactions between genes. The coordinates
can be obtained from existing annotation, as shown below for the mouse genome. Other pre-
specified regions can also be used, e.g., known enhancers or protein binding sites.

> require(TxDb.Mmusculus.UCSC.mm10.knownGene)

> gene.body <- genes(TxDb.Mmusculus.UCSC.mm10.knownGene)

Counting can be directly performed for these defined regions using the connectCounts

function. Interactions are defined between each pair of regions in the pre-specified set. This
may be easier to interpret than pairs of bins as the interacting regions have some biological
significance. The count matrix and the vector of totals are defined as previously described.

> redata <- connectCounts(input, mm.param, regions=gene.body)

> redata

DIList object for 4 libraries with 12672322 pairs across 23653 regions

Again, anchor and target notation applies whereby the interval with the larger start
coordinate in the genome is defined as the anchor. Note that the anchor may not have a
larger end coordinate if the supplied regions are nested. In addition, each region is rounded
to the nearest restriction site. Resorting is also performed, though the indices of the original
regions can be found in the metadata as original if back-referencing is necessary.

> head(regions(redata))

GRanges object with 6 ranges and 3 metadata columns:
seqnames ranges strand | gene_id nfrags original

<Rle> <IRanges> <Rle> | <character> <integer> <integer>
497097 chr1 [3211067, 3675240] * | 497097 197 15169
19888 chr1 [4286646, 4409818] * | 19888 49 6944
20671 chr1 [4487488, 4498343] * | 20671 2 7332
27395 chr1 [4772601, 4786029] * | 27395 3 12945
18777 chr1 [4802092, 4847111] * | 18777 8 6374
21399 chr1 [4856126, 4899085] * | 21399 16 8019
-------
seqinfo: 66 sequences (1 circular) from mm10 genome
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One obvious limitation of this approach is that interactions involving unspecified regions
will be ignored. This is obviously problematic when searching for novel interacting loci. An-
other issue is that the width of the regions cannot be easily changed. This means that the
compromise between spatial resolution and count size cannot be tuned. For example, inter-
actions will not be detected around smaller genes as the counts will be too small. Conversely,
interactions between distinct loci within a large gene body will not be resolved.

3.3.2 Connecting counts between two sets of regions

The connectCounts function can also be used to identify interactions between two sets of
regions, by specifying a value for the second.regions argument. This only considers inter-
actions between one entry in regions and another in second.regions. This differs from the
standard application of the function, which would consider an interaction between any pair
of entries in regions. If an integer scalar is supplied as second.regions, the second set is
automatically defined as contiguous bins of that size across the genome.

The use of second.regions is particularly useful in cases where there are defined “view-
points” of interest, e.g., 4C-seq, Capture-C. These viewpoints can be specified in regions,
as shown below for a set of mock probe locations for a hypothetical Capture-C experiment
[Hughes et al., 2014]. Specifically, the viewpoint is defined as a 100 kbp bin centred at each
capture probe. The interaction profile across the rest of the genome can then be extracted
by setting second.regions to some bin size. In this case, 100 kbp bins are used.

> probe.loc <- GRanges(c("chr1", "chr2", "chr3"),

+ IRanges(c(1e7, 2e7, 3e7), c(1e7, 2e7, 3e7)))

> viewpoints <- resize(probe.loc, fix="center", width=1e5)

> viewdata <- connectCounts(input, mm.param, regions=viewpoints, second.regions=1e5)

> head(anchors(viewdata))

GRanges object with 6 ranges and 3 metadata columns:
seqnames ranges strand | nfrags is.second original

<Rle> <IRanges> <Rle> | <integer> <logical> <integer>
[1] chr1 [9945397, 10054278] * | 38 0 1
[2] chr1 [9945397, 10054278] * | 38 0 1
[3] chr1 [9945397, 10054278] * | 38 0 1
[4] chr1 [9945397, 10054278] * | 38 0 1
[5] chr1 [9945397, 10054278] * | 38 0 1
[6] chr1 [9945397, 10054278] * | 38 0 1
-------
seqinfo: 66 sequences from an unspecified genome

> head(targets(viewdata))

GRanges object with 6 ranges and 3 metadata columns:
seqnames ranges strand | nfrags is.second original

<Rle> <IRanges> <Rle> | <integer> <logical> <integer>
[1] chr1 [ 1, 3004109] * | 1 1 1
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[2] chr1 [3004106, 3100835] * | 34 1 2
[3] chr1 [3100832, 3194461] * | 30 1 3
[4] chr1 [3194458, 3301641] * | 41 1 4
[5] chr1 [3301638, 3399158] * | 52 1 5
[6] chr1 [3399155, 3501374] * | 39 1 6
-------
seqinfo: 66 sequences from an unspecified genome

As these results demonstrate, interactions are only considered if exactly one interacting
locus is from the specified regions. The identity of the other locus (i.e., from second.regions)
can be determined based on the is.second field in the GRanges object. This approach avoids
loading irrelevant interactions when only specific viewpoints are of interest.

3.4 Counting into single bins

The marginalCounts function counts the number of reads mapped inside each bin. This
effectively treats each Hi-C library as single-end data, to quantify the genomic coverage of
each bin. One can use these “marginal” counts to determine whether there are systematic
differences in coverage between libraries for a given bin. This implies that copy number
variations are present, which may confound detection of differential interactions.

> margin.data <- marginCounts(input, mm.param, width=bin.size)

> margin.data

DIList object for 4 libraries with 2732 pairs across 2739 regions

Each row of the returned DIList contains the marginal read counts for a single genomic
bin. Note that the anchor/target notation is superfluous for marginCounts. This is because
the marginal counts refer to individual bins rather than bin pairs. Nonetheless, a DIList is
still returned for consistency, in which the anchor and target regions are identical.

For this dataset, there are no major changes in coverage for the vast majority of bins.
The most extreme events occur at low abundances and are unlikely to be reliable. This
suggests that a direct comparison of interaction intensities will be valid. Remedial action in
the presence of copy number changes is not trivial and will be discussed in Section 5.4.

> adjc <- cpm(asDGEList(margin.data), log=TRUE, prior.count=5)

> smoothScatter(0.5*(adjc[,1]+adjc[,3]), adjc[,1]-adjc[,3],

+ xlab="A", ylab="M", main="Flox (1) vs. Ko (1)")
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3.5 Additional parameter options

3.5.1 Restricting the input chromosomes

Users can elect to restrict counting to particular chromosomes, by setting a value for the
restrict slot in the pairParam object. This is useful to ensure that only interactions between
relevant chromosomes are loaded. Sequences such as the mitochondrial genome, unassigned
contigs or random chromosome segments can be ignored.

> new.param <- reform(mm.param, restrict=c("chr1", "chr2"))

> new.param

Genome contains 851636 restriction fragments across 66 chromosomes
No discard regions are specified
Read extraction is limited to 2 chromosomes
No cap on the read pairs per pair of restriction fragments

In addition, if restrict is a n-by-2 matrix, count loading will be limited to the read
pairs that are mapped between the n specified pairs of chromosomes. The example below
considers all read pairs mapped between chromosomes 2 and 19. This feature is useful when
memory is limited, as each pair of chromosomes can be loaded and analyzed separately.
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> new.param <- reform(mm.param, restrict=cbind("chr2", "chr19"))

> new.param

Genome contains 851636 restriction fragments across 66 chromosomes
No discard regions are specified
Read extraction is limited to pairs between:

'chr2' and 'chr19'
No cap on the read pairs per pair of restriction fragments

3.5.2 Specifying regions to ignore

Users can also choose to discard alignments that lie within blacklisted regions, using the
discard slot. The aim is to eliminate reads within known repeat regions. Such regions are
problematic, as reads from several repeat units in the real genome may be collated into a
single representative unit in the genome build. This results in a sharp, spurious spike in
interaction intensity. The problem is exacerbated by different repeat copy numbers between
biological conditions, resulting in spurious differential interactions due to changes in coverage.
Removal of reads in these repeats may be necessary to obtain reliable results.

> dummy.repeat <- GRanges("chr1", IRanges(10000, 1000000))

> new.param <- reform(mm.param, discard=dummy.repeat)

> new.param

Genome contains 851636 restriction fragments across 66 chromosomes
1 region specified in which alignments are discarded
No limits on chromosomes for read extraction
No cap on the read pairs per pair of restriction fragments

Coordinates of annotated repeats can be obtained from several different sources. A
curated blacklist of problematic regions is available from the ENCODE project [Consortium,
2012], and can be obtained by following this link. This list is constructed empirically from
the ENCODE datasets and includes obvious offenders like telomeres, microsatellites and
some rDNA genes. Alternatively, repeats can be predicted from the genome sequence using
software like RepeatMasker. These calls are available from the UCSC website (e.g., for
mouse) or they can be extracted from an appropriate masked BSgenome object. Experience
suggests that the ENCODE blacklist is generally preferable. Repeat predictions tend to be
aggressive such that too much of the genome (and interactions therein) will be discarded.

3.5.3 Capping the read pairs per restriction fragment pair

Incomplete removal of PCR duplicates or read pairs in repeat regions may result in spikes
of read pairs within the interaction space. The effect of these artifacts can be mitigated by
capping the number of read pairs associated with each pair of restriction fragments. This is
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done by specifying a value for the cap slot. Diffuse interactions should not be affected, as the
associated read pairs will be distributed sparsely across many fragment pairs. More caution
is required if sharp interactions are present, i.e., interactions between 5 - 10 kbp regions.

> new.param <- reform(mm.param, cap=5)

> new.param

Genome contains 851636 restriction fragments across 66 chromosomes
No discard regions are specified
No limits on chromosomes for read extraction
Cap of 5 on the read pairs per pair of restriction fragments

3.6 Summary

Counting into bin pairs is the most general method for quantifying interaction intensity. It
does not require any prior knowledge regarding the regions of interest. The bin size can be
easily adjusted to obtain the desired spatial resolution. It is also easier/safer to compare
between bin pairs (e.g., during filtering) when each bin is roughly of the same size. Thus,
bin-based counting will be the method of choice for the rest of this guide.

For simplicity, all counting steps will be performed here with the default settings, i.e., no
values for restrict, discard or cap. However, users are encouraged to use non-default values
if it can improve the outcome of their analyses. Non-default values should be recorded in a
single pairParam object for consistent use across all functions in the diffHic pipeline. This
ensures that the same read pairs will always be extracted from each index file.
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Chapter 4

Filtering out uninteresting
interactions

Here, we’ll need the data object that was loaded in the previous chapter. We’ll also
need bin.size and mm.param, as well as the file names in input.

4.1 Overview

4.1.1 Computing the average abundance in a NB model

Filtering is often performed to remove uninteresting features in analyses of high-throughput
experiments. This reduces the severity of the multiplicity correction and increases power
among the remaining tests. The filter statistic should be independent of the p-value under
the null hypothesis, but correlated to the p-value under the alternative [Bourgon et al., 2010].
The aim is to enrich for false nulls without affecting type I error for the true nulls.

Assume that the counts for each bin pair are sampled from the negative binomial (NB)
distribution. In this model, the overall NB mean across all libraries is (probably) an inde-
pendent filter statistic. The log-mean-per-million is known as the average abundance and
can be computed with the aveLogCPM function in edgeR [McCarthy et al., 2012].

> require(edgeR)

> ave.ab <- aveLogCPM(asDGEList(data))

> hist(ave.ab, xlab="Average abundance")
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Any bin pair with an average abundance less than a specified threshold value will be
discarded. At the very least, the threshold should be chosen to filter out bin pairs with
very low absolute counts. This is because these bin pairs will never have sufficient evidence
to reject the null hypothesis. The discreteness of low counts will also interfere with the
asymptotic approximations that are required for downstream statistical modelling. The
example below identifies those bin pairs with an overall NB mean not less than 5.

> count.keep <- ave.ab >= aveLogCPM(5, lib.size=mean(data$totals))

> summary(count.keep)

Mode FALSE TRUE NA's
logical 2433389 885711 0

The count.keep vector is then used to subset the DIList. The resulting dummy object will
contain only the interesting bin pairs for downstream analysis. The same procedure can be
used for any logical or integer vector that specifies the bin pairs to be retained.

> dummy <- data[count.keep,]

This count-based approach is fairly objective yet is still effective, i.e., it removes a large
number of bin pairs that are likely to be uninteresting. However, it will be less useful with
greater sequencing depth where all bin pairs will have higher counts. More sophisticated
strategies can be implemented where the choice of threshold is motivated by some under-
standing of the Hi-C protocol. These strategies will be described in the rest of this chapter.
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4.2 Directly removing low-abundance interactions

The simplest definition of an “uninteresting” interaction is that resulting from non-specific
ligation. These are represented by low-abundance bin pairs where no underlying contact is
present to drive ligation between the corresponding bins. Any changes in the counts for these
bin pairs are uninteresting and are ignored. In particular, the filter threshold can be defined
by mandating some minimum fold change above the level of non-specific ligation.

The magnitude of non-specific ligation can be empirically estimated by assuming that
most inter-chromosomal contacts are not genuine. This is reasonable given that most chro-
mosomes are arranged in self-interacting territories [Bickmore, 2013]. The median abundance
across inter-chromosomal bin pairs is used as the estimate of the non-specific ligation rate.
Here, the threshold is defined as a minimum fold change of 5 above this estimate.

> direct <- filterDirect(data)

> direct$threshold

[1] -3.845944

> direct.keep <- direct$abundances > log2(5) + direct$threshold

> summary(direct.keep)

Mode FALSE TRUE NA's
logical 3159187 159913 0

The direct.keep vector can then be used to filter data, as shown previously. This
approach is named here as “direct” filtering, as the average abundance for each bin pair
is directly compared against a fixed threshold value. In practice, the direct filter can be
combined with count.keep to ensure that the retained bin pairs have large absolute counts.

> direct.keep2 <- direct.keep & count.keep

4.3 Filtering as a function of interaction distance

A more complex filter adjusts the threshold according to the distance between the bins in
each bin pair. In typical Hi-C datasets, larger counts are observed at lower interaction
distances. This is probably driven by non-specific compaction of chromatin into a 3D “glob-
ule” conformation. If such compaction is uninteresting, a concomitantly higher threshold is
necessary to offset the increase in counts for these local interactions [Lin et al., 2012].

In the trended strategy, a trend is fitted to the abundances for all intra-chromosomal
bin pairs using the log-distance as the covariate. The bin size is added to the distance as a
prior, to avoid undefined values upon log-transformation when distances are zero. The fitted
value is then used as the threshold for each bin pair. For inter-chromosomal bin pairs, the
threshold is set to that from the direct filtering approach, for completeness.
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> trended <- filterTrended(data)

The effect of this strategy can be visualized by plotting the interaction distance against
the normalized abundance. A power-law relationship between distance and abundance is
usually observed in Hi-C data [Lieberman-Aiden et al., 2009]. The average abundance (and
thus, the filter threshold) decreases as the distance between the interacting loci increases.

> smoothScatter(trended$log.distance, trended$abundances,

+ xlab="Log-Distance", ylab="Normalized abundance")

> o <- order(trended$log.distance)

> lines(trended$log.distance[o], trended$threshold[o], col="red", lwd=2)

The assumption here is that the majority of interactions are generated by non-specific
packaging of the linear genome. Each bin pair is only retained if its abundance is greater than
the corresponding fitted value at that distance, i.e., above that expected from compaction.
This favors selection of longer-range interactions, compared to the direct filter.

> trend.keep <- trended$abundances > trended$threshold

> summary(trend.keep)

Mode FALSE TRUE NA's
logical 1445284 1873816 0

Of course, the threshold can also be defined at some minimum fold change above the fitted
value. This effectively increases the stringency of the filter. The example below retains bin
pairs with abundances that are two-fold higher than the expected compaction intensity.
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> trend.keep2 <- trended$abundances > trended$threshold + log2(2)

> summary(trend.keep2)

Mode FALSE TRUE NA's
logical 3081407 237693 0

The trended filter can also be combined with count.keep to ensure that the absolute
counts are large. This is particularly important at large distances, where the drop in the
threshold may lead to the inappropriate retention of very low abundance bins.

> trend.keep3 <- trend.keep & count.keep

Note that the distance between bins can also be obtained directly with the getDistance

function. Distances for inter-chromosomal bin pairs are marked as NA. These tend to dominate
the output as they constitute most of the interaction space. Of course, the majority of these
bin pairs will have low counts due to the sparseness of the data.

4.4 Peak-calling in the interaction space

4.4.1 Defining enrichment values for each bin pair

Peaks in the interaction space refer to those bin pairs that have substantially more reads
than their neighbors. The enrichedPairs function computes an enrichment value for each
bin pair, defined as the log-fold change of its abundance against that of its neighbors. Those
bin pairs with high enrichment values can then be retained. This extends the concept of
peak calling on the linear genome to the 2-dimensional interaction space [Rao et al., 2014].

> flank.width <- 5

> enrichments <- enrichedPairs(data, flank=flank.width)

> summary(enrichments)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-11.58000 -0.46120 -0.16740 -0.22830 0.08722 10.32000

More specifically, the function partitions the neighborhood into several different regions
around the target bin pair. The size of the neighborhood is set by flank, and is defined in
terms of bins (actual distance of ∼5 Mbp, in this case). The average abundance across each
region is computed, and the region with the largest abundance is chosen. The enrichment
value is defined as the log-fold change between the abundances of the target bin pair and the
chosen region. Peaks are then defined as those bin pairs with high enrichment values. The
neighborhood regions are designed to capture high-intensity structural features like looping
domains, TADs or banding patterns [Rao et al., 2014]. Any bin pair inside a feature will be
compared to other high-abundance bin pairs from the same feature. This avoids spuriously
high enrichments due to comparisons with bin pairs outside that feature.

29



In this example, an enrichment value above 0.5 is required for retention. This is a modest
threshold that errs on the side of caution, as weak peaks may be DIs and should be retained
for testing. In practice, filtering of enrichment values should be combined with filtering on
absolute abundances. This eliminates low-abundance bin pairs with high enrichment values,
e.g., when the neighborhood is empty. Near-diagonal elements should also be removed, as
these tend to have high enrichment scores without actually being peaks. All of these steps
can be conveniently applied through the filterPeaks wrapper function.

> peak.keep <- filterPeaks(data, enrichments, min.enrich=0.5, min.count=5, min.diag=2L)

> sum(peak.keep)

[1] 90049

4.4.2 Examining some peak-calling diagnostics

This filtering strategy can be evaluated by examining the interaction space around each
putative peak (see Chapter 7.3). Briefly, the color intensity of each “pixel” is proportional to
the number of read pairs between the corresponding loci on each axis. Red boxes mark the
bin pairs retained by filtering, where each side represents a bin. In both examples, the bin
pairs correspond nicely to punctate high-intensity contacts in the interaction space.

Another diagnostic is based on the sparsity of putative peaks. Bin pairs nested within
larger “parent” bin pairs are identified using the boxPairs function. Most of these parents
should contain low numbers (i.e., less than 5) of nested bin pairs. This is because each peak,
by definition, should be isolated in its neighborhood. Larger proportions suggest that more
aggressive filtering on the enrichment score is required, e.g., in the second example.
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> neighborhood <- (2*flank.width + 1) * exptData(data)$width

> boxed <- boxPairs(data[peak.keep], reference=neighborhood)

> out <- tabulate(tabulate(boxed$indices[[1]]))

> setNames(round(c(out[1:5], sum(out[5:length(out)]))/sum(out)*100, 1), c(1:5, ">5"))

1 2 3 4 5 >5
21.7 22.0 18.2 13.3 9.1 24.9

> peak.keep2 <- filterPeaks(data, enrichments, min.enrich=0, min.count=5, min.diag=2L)

> boxed <- boxPairs(data[peak.keep2], reference=neighborhood)

> out <- tabulate(tabulate(boxed$indices[[1]]))

> setNames(round(c(out[1:5], sum(out[5:length(out)]))/sum(out)*100, 1), c(1:5, ">5"))

1 2 3 4 5 >5
5.4 4.3 4.0 3.7 3.7 82.7

Obviously, peak calling assumes that changes in intensity of broad interactions are not
interesting. This may not be appropriate for every study. Indeed, the definition of “broad”
depends on the bin size, whereby a peak called at large bin sizes may be discarded at smaller
sizes. Users should try out the other general filters before proceeding to peak calling, to
check that potentially interesting differences are not discarded by the latter.

4.4.3 Efficient peak calling at high resolution

The enrichedPairs function requires that all bin pairs are loaded into memory, i.e., with
filter=1 during squareCounts. This may not be feasible for high resolution analyses with
small bin sizes, where there is a large number of bin pairs with low counts. In such cases,
it may be more practical to use the neighborCounts function. This re-counts the read pairs
for each bin pair, storing only a limited portion of the interaction space to compute the
enrichment statistic for that bin pair. The need to load all non-empty bin pairs is avoided.
Only bin pairs with count sums greater than or equal to filter are returned, along with
their enrichment values. This reduces memory usage at the cost of some speed.

> en.data <- neighborCounts(input, param, width=1e5, filter=20, flank=5)

> en.data$interaction

DIList object for 4 libraries with 1060845 pairs across 26729 regions

> head(en.data$enrichment)

[1] -4.1027453 0.6462892 -0.7700094 -0.2075542 -1.0503617 -0.9616102
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4.5 Defining filters in special cases

4.5.1 Computing filter thresholds with limited memory

These filtering procedures assume that no filtering has been performed during count loading
with squareCounts, i.e., filter is set to unity. Any pre-filtering that removes low-abundance
bin pairs will lead to overestimation of the filter thresholds. However, it may not be practical
to load counts without pre-filtering. For example, at small bin sizes, too many non-empty
bin pairs may be present to fit into memory. In such cases, several options are available:

� Pick an arbitrary threshold and use it to directly filter on the average abundances.
This is simple but the chosen threshold has no obvious interpretation.

� Load counts for each pair of chromosomes separately, using the restrict argument
as described in Section 3.5.1. Abundances (and distances) can be computed for each
pair and collected, to define the filter threshold without loading all counts into mem-
ory. Counts for each chromosome pair can be reloaded for separate filtering, and the
remaining bin pairs can be aggregated for downstream analysis with c(...). This is
quite slow. Also, when computing abundances, the full library size should be manu-
ally specified in asDGEList. This allows valid comparisons between abundances from
different chromosome pairs. Otherwise, the library size will be different for each pair.

> chr1.data <- squareCounts(input, width=1e5, filter=1,

+ param=reform(mm.param, restrict=cbind("chr1", "chr1")))

> totals <- totalCounts(input, mm.param)

> chr1.ab <- aveLogCPM(asDGEList(chr1.data, lib.size=totals))

� Load counts for larger bin sizes without pre-filtering. This reduces memory usage as
the interaction space is partitioned into fewer bin pairs. Then, perform filtering and
convert the computed filter thresholds into values for the original (smaller) bin sizes.

An example of the third option is shown here. For this section, imagine that a bin size
of 100 kbp is actually of interest, but filter thresholds can only be efficiently computed with
1 Mbp bins. The first task is to load the counts for the smaller bin pairs. A non-unity value
of filter is set in squareCounts to avoid using too much memory.

> new.bin.size <- 1e5

> smaller.data <- squareCounts(input, mm.param, width=new.bin.size, filter=20)

Direct filtering of these smaller bin pairs can be performed using filterDirect, with
assistance from their larger counterparts. Counts for the 1 Mbp bin pairs are supplied as the
reference parameter and are used to estimate the filter threshold. This threshold is then
adjusted for differences in size between the smaller and larger bins. The final value can then
be used to directly filter on the abundances of the smaller bin pairs. Here, a minimum 5-fold
change over the threshold is required for retention of each 100 Mbp bin pair.
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> direct <- filterDirect(smaller.data, reference=data)

> direct$threshold

[1] -5.088111

> small.keep <- direct$abundances > direct$threshold + log2(5)

> summary(small.keep)

Mode FALSE TRUE NA's
logical 425794 635051 0

The same approach can be used for trended filtering of small bin pairs. However, some
extra effort is required here, as the trend is fitted to the abundances and distances of the
larger bin pairs. Interpolation (and, if necessary, extrapolation) of the trend is performed to
the distances of the smaller bin pairs. The interpolated values can then be used to filter on
the abundances of the smaller bin pairs. This entire procedure is done automatically within
filterTrended when a reference argument is supplied, as shown below.

> trended <- filterTrended(smaller.data, reference=data)

> summary(trended$abundances > trended$threshold)

Mode FALSE TRUE NA's
logical 616092 444753 0

Another advantage of this approach is that threshold estimation is more precise with
larger counts. Thus, even if there is enough memory for loading smaller bin pairs with
filter=1, larger bin sizes may still be preferred for computing the filter threshold. Otherwise,
median calculation or trend fitting will be confounded by discreteness at low counts.

4.5.2 Filtering for pre-specified regions

Filtering for pairs of arbitrary regions is complicated by the potential irregularity of the
regions. In particular, there is no guarantee that the supplied regions will cover the entirety of
the interaction space. Filter thresholds may not be estimated accurately if the covered area is
not representative of the rest of the space. At worst, genuine interactions between all specified
regions would preclude direct or trended filtering, which assume that most interactions are
uninteresting. That said, threshold estimation from a subset of the interaction space may
actually be desirable in some cases, e.g., using only the captured regions to compute a
relevant estimate of the non-specific ligation rate in a Capture-C experiment.

Another consideration is that different regions will have different widths. The resulting
areas used for read pair counting will probably be different between region pairs, such that
some will have systematically higher counts than others. Whether or not this is a problem
depends on the user’s perspective. The position of this guide is that it would be inappropriate
to penalize larger areas for having larger counts. As long as there are sufficient counts for
an analysis, the size of the area involved should be irrelevant. Thus, use of aveLogCPM alone
is recommended for calculation of the average abundance when filtering region pairs.
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> summary(aveLogCPM(asDGEList(redata)))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-4.942 -4.939 -4.936 -4.755 -4.786 13.310

4.5.3 Filtering out diagonal elements

Incomplete removal of artifacts (e.g., dangling ends, self-circles) will generally manifest as
increased counts for diagonal bin pairs, i.e., pairs of the same bin. If artifact generation
and/or removal is not consistent between libraries, the behavior of the diagonal elements
will differ markedly from the other bin pairs. This can be diagnosed using MA plots between
libraries, where the diagonal elements show up as a distinct mass that is unconnected to the
rest of the points. Such irregularities cannot be smoothly normalized and should be removed
prior to further analysis, or analyzed separately. Removal can be achieved by generating the
ndiag.keep logical vector for filtering, as shown below.

> ndiag.keep <- filterDiag(data)

> summary(ndiag.keep)

Mode FALSE TRUE NA's
logical 2614 3316486 0

Obviously, this will also remove short-range interactions that might be of interest. Users
are advised to use a smaller bin size to recover these interactions. Short-range interactions
will now be represented by the off-diagonal bin pairs, due to the improved spatial resolution
of smaller bins. Artifacts will still be restricted to diagonal bin pairs, so long as the bins are
larger than ∼25 kbp (see Section 2.4.2). While count sizes will also decrease, this should not
be a major problem as counts should be larger at low interaction distances.

4.6 Summary of the filtering strategies

Each filtering strategy can be tuned by increasing or decreasing the minimum fold change
required for retention. This can be driven by the biological knowledge available to the user,
based on features that are biologically interesting. Even when such knowledge is unavailable,
the filters are still useful as they can guide the user towards a sensible interpretation of the
filter threshold. This would not be possible if the threshold value was chosen arbitrarily.

The choice of filtering method depends on the features that are most likely to be of interest
in each analysis. In general, less aggressive filtering should be performed if these features
are not well defined. Here, a tentative recommendation is provided for direct filtering as the
irrelevance of non-specific ligation is indisputable. On a practical level, the simplicity of the
direct approach is attractive and will be used throughout the rest of the guide.
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> original <- data

> data <- data[direct.keep2,]

The filtered results are assigned back into data. This is mostly for consistency, so that
all operations are performed on data in the rest of this guide. The original unfiltered data
is retained for later use in Section 5.3, but can otherwise be ignored. Direct filtering is also
performed for the smaller bin pairs, and the results stored in smaller.data.

> smaller.data <- smaller.data[small.keep,]
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Chapter 5

Normalization strategies for Hi-C data

Here, we’re using the data object that was filtered in the previous chapter. We’ll also
need the original object, as well as margin.data from Section 3.4. Another human
dataset will be loaded here, so hs.frag from Chapter 2 will be required.

5.1 Normalizing with scaling methods

The simplest approach is to use scaling methods like TMM normalization [Robinson and
Oshlack, 2010]. This accounts for composition biases by assuming that most interactions
do not change between conditions. Normalization factors are computed to scale the library
sizes, yielding effective sizes that can be used in the downstream differential analysis.

> normfacs <- normOffsets(data)

> normfacs

[1] 0.8953459 0.8979718 1.1127467 1.1177640

In practice, this scaling approach is usually too simplistic. More sophisticated approaches
are necessary to handle the complex biases observed in real Hi-C data.

5.2 Removing trended biases between libraries

Trended biases can be generated from uncontrolled differences in library preparation. This
is particularly problematic for Hi-C data, given the complexity of the protocol. Changes in
cross-linking efficiency or ligation specificity can lead to a systematic redistribution of read
pairs throughout the interaction space. For example, reduced specificity may result in more
counts for weak non-specific interactions, and fewer counts for strong genuine interactions.
Such biases may manifest as an abundance-dependent trend in a MA plot between replicates.
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> ab <- aveLogCPM(asDGEList(data))

> o <- order(ab)

> adj.counts <- cpm(asDGEList(data), log=TRUE)

> mval <- adj.counts[,3]-adj.counts[,2]

> smoothScatter(ab, mval, xlab="A", ylab="M", main="KO vs. Flox")

> fit <- loessFit(x=ab, y=mval)

> lines(ab[o], fit$fitted[o], col="red")

Trended biases are problematic as they can inflate the variance estimates or fold-changes
for some bin pairs. They must be eliminated with non-linear normalization prior to further
analysis. The example below is based on a function from the csaw package, adapted from
existing non-linear methods to handle discrete count data. An offset term is computed for
each bin pair in each library, for use in a generalized linear model (GLM). A large offset for
a count is equivalent to downscaling that count relative to the counts of other libraries.

> nb.off <- normOffsets(data, type="loess")

> head(nb.off)

[,1] [,2] [,3] [,4]
[1,] 0.1359035 -0.1111409 0.0520197 -0.07678226
[2,] 0.3827167 0.2058267 -0.2489948 -0.33954867
[3,] 0.3021307 0.1516470 -0.1829528 -0.27082491
[4,] 0.3536789 0.1864192 -0.2252649 -0.31483322
[5,] 0.2285073 0.1019900 -0.1225945 -0.20790279
[6,] 0.2932061 0.1455843 -0.1756060 -0.26318443
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In most cases, the above code is sufficient for normalization. However, as previously
mentioned, bin pairs near the diagonal may exhibit irregular behavior relative to the rest of
the interaction space. This manifests in the previous MA plot as a distinct mass of points at
high abundances, preventing smooth normalization of the trended bias. To overcome this,
the near-diagonal bin pairs can be normalized separately from the others.

> neardiag <- filterDiag(data, by.dist=1.5e6)

> nb.off <- matrix(0, nrow=nrow(data), ncol=ncol(data))

> nb.off[neardiag] <- normOffsets(data[neardiag,], type="loess")

> nb.off[!neardiag] <- normOffsets(data[!neardiag,], type="loess")

The MA plot can be examined after adjusting the log-counts with the offsets. Most of
the trend is removed, indicating that non-linear normalization was successful.

> adj.counts <- log2(counts(data) + 0.5) - nb.off/log(2)

> mval <- adj.counts[,3]-adj.counts[,2]

> smoothScatter(ab, mval, xlab="A", ylab="M", main="KO vs. Flox")

> fit <- loessFit(x=ab, y=mval)

> lines(ab[o], fit$fitted[o], col="red")

Filtering on average abundance prior to this normalization step is strongly recommended.
This removes low counts and avoids problems with discreteness. Filtering also improves the
sensitivity of span-based fitting algorithms like LOESS at higher abundances. Otherwise,
the fitted trend will be dominated by the majority of low-abundance bin pairs.

Of course, the non-linear strategy assumes that most bin pairs at each abundance do not
represent differential interactions. Any systematic differences between libraries are assumed
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to be technical in origin and are removed. If this assumption does not hold, genuine dif-
ferences may be lost upon normalization. For example, a global increase in the compaction
of the genome would manifest as an upward trend in the MA plot, as low-abundance distal
interactions are weakened in favor of high-abundance short-range interactions. In such cases,
the simpler scaling strategy described in Section 5.1 may be more appropriate.

5.3 Iterative correction of interaction intensities

While this is not the intended function of the diffHic package, a method is also provided for
the removal of biases between genomic regions. The correctedContact function performs the
iterative correction procedure described by Imakaev et al. [2012] with some modifications.
Briefly, if multiple libraries are used to generate the data object, then correction is performed
using the overall NB mean for each bin pair. Winsorizing through winsor.high is also
performed to mitigate the impact of high-abundance bin pairs.

> corrected <- correctedContact(original, winsor.high=0.02, ignore.low=0.02)

> head(corrected$truth)

[1] 0.45657431 0.43319606 0.14754771 0.15232460 0.26722481 0.03447859

The returned truth contains the “true” contact probability for each bin pair in data.
This is designed to account for differences in sequencibility, mappability, restriction site
frequency, etc. between bins. Comparisons can then be directly performed between the
contact probabilities of different bin pairs. Some NA values will be present due to the removal
of low-abundance bins that do not exhibit stable behavior during correction. The convergence
of the correction procedure can then be checked by examining the maximum fold change to
the truth at each iteration. This should approach unity, i.e., no further change.

> corrected$max

[1] 186.415143 8.018365 2.848421 1.703012 1.324768 1.170795
[7] 1.098713 1.060888 1.039164 1.025852 1.017334 1.011734
[13] 1.007989 1.005459 1.003739 1.002564 1.001760 1.001209
[19] 1.000831 1.000571 1.000392 1.000270 1.000185 1.000127
[25] 1.000088 1.000060 1.000041 1.000028 1.000020 1.000013
[31] 1.000009 1.000006 1.000004 1.000003 1.000002 1.000002
[37] 1.000001 1.000001 1.000001 1.000000 1.000000 1.000000
[43] 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
[49] 1.000000 1.000000

Note that original is used as the input to correctedContact. No filtering should be
performed prior to iterative correction. All non-empty bin pairs are needed as information
is collected across the entire interaction space. The contribution of many bin pairs with low
counts might end up being as substantial as that of a few bin pairs with large counts.
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In addition, normalization from iterative correction can be fed naturally into the DI
analysis via the GLM machinery in edgeR. The log-transformed product of the estimated
genomic biases for both bins in each bin pair can be used as the offset for that bin pair. This is
computed separately for each library by setting average=FALSE, to correct for sample-specific
genomic biases. NA offsets will be obtained for some bin pairs, but these should not be too
problematic given that the affected bin pairs will generally have low counts (as at least one
interacting partner will be of low abundance) and be filtered out during the analysis proper.

> corrected <- correctedContact(original, average=FALSE)

> anchor.bias <- corrected$bias[anchors(original, id=TRUE),]

> target.bias <- corrected$bias[targets(original, id=TRUE),]

> iter.off <- log(anchor.bias * target.bias)

Of course, iterative correction only removes biases between different bins. It is not guar-
anteed to remove (trended) biases between libraries. For example, two replicates could have
the same genomic biases but a different distribution of read pairs in the interaction space,
e.g., due to differences in ligation specificity. The latter would result in a trended bias,
but iterative correction would have no effect due to the identical genomic biases. In short,
normalization within a library is a different problem from normalization between libraries.

5.4 Accounting for copy number variations

5.4.1 Eliminating CNVs with multi-dimensional smoothing

Copy number variations (CNVs) in the interacting regions will also affect the interaction
intensity. These CNV-driven differences in intensities are generally uninteresting and must
be removed to avoid spurious detection. This is done using the normalizeCNV function, based
on multi-dimensional smoothing across several covariates with the locfit package [Loader,
1999]. It requires both bin pair and marginal counts, obtained with the same values of width
and param in squareCounts and marginCounts, respectively.

> cnv.offs <- normalizeCNV(data, margin.data)

> head(cnv.offs)

[,1] [,2] [,3] [,4]
[1,] 0.3849393 -0.24953617 0.05145434 -0.1868574
[2,] 0.3883340 0.15601877 -0.26384559 -0.2805072
[3,] 0.2990999 0.13624039 -0.20061591 -0.2347244
[4,] 0.3509612 0.17525088 -0.24302170 -0.2831904
[5,] 0.2285712 0.08363148 -0.13948501 -0.1727176
[6,] 0.2925324 0.13509101 -0.19407793 -0.2335454

Three covariates are defined for each bin pair. For a pair of libraries, the ratio of marginal
counts for each bin can be used as a proxy for the relative CNV between libraries in that
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bin. Each bin pair will be associated with two of these marginal log-ratios to use as covari-
ates. Note that the marginal counts should be collected with the same parameters as the
interaction counts. The third covariate for each bin pair is that of the average abundance
across all libraries. This will account for any abundance-dependent trends in the biases.

The response for each bin pair is defined as the log-ratio of interaction counts between a
pair of libraries. A locally weighted surface is fitted to the response against all three covari-
ates for all bin pairs. At any combination of covariate values, most bin pairs are assumed
to represent non-differential interactions. Any systematic differences between libraries are
attributed to CNV-driven (or trended) biases and are removed. Specifically, GLM offsets are
returned and can be supplied to the statistical analysis to eliminate the bias.

As with trended biases, filtering by average abundance is strongly recommended prior to
running normalizeCNV. This reduces the computational work required for multi-dimensional
smoothing. Discreteness and domination of the fit by low-abundance bin pairs is also avoided.

5.4.2 Visualizing the effect of CNV removal

To demonstrate, the Rickman et al. dataset is used here as it contains more CNVs. Interac-
tion counts are loaded for each bin pair, and marginal counts are loaded for each bin. Some
filtering is performed to eliminate low-abundance bin pairs, as previously described.

> count.files <- c("merged_erg.h5", "merged_gfp.h5")

> rick.data <- squareCounts(count.files, hs.param, width=1e6)

> rick.marg <- marginCounts(count.files, hs.param, width=1e6)

> rick.data <- rick.data[aveLogCPM(asDGEList(rick.data)) > 0,]

The aim is to plot the log-ratio of the interaction counts of each bin pair, as a function
of the marginal log-ratios of the corresponding bins. This will illustrate the effect of the
CNV on the interaction intensities between the two libraries. As two marginal log-ratios are
present for each bin pair, these are added together for simplicity.

> matched <- matchMargins(rick.data, rick.marg)

> m.adjc <- cpm(asDGEList(rick.marg), log=TRUE)

> sum.madjc <- m.adjc[matched$amatch,] + m.adjc[matched$tmatch,]

> margin.lr <- sum.madjc[,1] - sum.madjc[,2]

Plotting can be performed to determine the effect of normalizeCNV. The presence of a
trend indicates that decreases in copy number result in decreases in interaction intensity.
After normalization, the trend in the interaction log-ratios is removed. Note that increasing
maxk may be necessary to obtain sufficient accuracy in the internal call to locfit.

> before <- cpm(asDGEList(rick.data), log=TRUE)

> after <- log2(counts(rick.data)+0.5) - normalizeCNV(rick.data, rick.marg, maxk=1000)/log(2)

> par(mfrow=c(1,2), cex.axis=1.2, cex.lab=1.4)

> smoothScatter(margin.lr, before[,1]-before[,2], ylim=c(-4, 4), main="Before",
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+ xlab="Sum of marginal log-ratios", ylab="Interaction log-ratio")

> smoothScatter(margin.lr, after[,1]-after[,2], ylim=c(-4, 4), main="After",

+ xlab="Sum of marginal log-ratios", ylab="Interaction log-ratio")
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Chapter 6

Modelling biological variability

In this chapter, the data object is again required. The computed offsets in nb.off will
also be used from the last chapter. Methods from the edgeR package should already be
loaded into the workspace, but if they aren’t, then library(edgeR) will do the job.

6.1 Overview

The differential analysis in diffHic is based on the statistical framework in the edgeR package
[Robinson et al., 2010]. This models the counts for each bin pair with NB distributions. The
NB model is useful as it can naturally accommodate low, discrete counts. It can also consider
extra-Poisson variability between biological replicates of the same condition. Here, biological
replicates refer to Hi-C libraries prepared from independent biological samples.

The magnitude of biological variability is empirically determined from these biological
replicates. Specifically, variability is modelled in edgeR by estimating the NB dispersion
parameter. This is used during testing to reduce the significance of any detected differences
when the counts are highly variable. Similarly, estimation of the quasi-likelihood (QL)
dispersion can be performed to account for heteroskedasticity [Lund et al., 2012].

Dispersion estimation requires the fitting of a GLM to the counts for each bin pair [Mc-
Carthy et al., 2012]. To do so, a design matrix must be specified to describe the experimental
setup. For the Sofueva et al. dataset, a simple one-way layout is sufficient. The code below
specifies two groups of two replicates, where each group corresponds to a genotype. The aim
is to compute the dispersion from the variability in counts within each group.

> design <- model.matrix(~factor(c("flox", "flox", "ko", "ko")))

> colnames(design) <- c("Intercept", "KO")

> design

Intercept KO
1 1 0
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2 1 0
3 1 1
4 1 1
attr(,"assign")
[1] 0 1
attr(,"contrasts")
attr(,"contrasts")$`factor(c("flox", "flox", "ko", "ko"))`
[1] "contr.treatment"

Obviously, more complex designs can be used if necessary. This includes designs with
blocking factors for batch effects, pairing between samples or multiple groups.

It is also necessary to assemble a DGEList object for entry into edgeR. Note the inclusion
of the normalization offsets that were previously computed with the NB-loess method.

> y <- asDGEList(data)

> y$offset <- nb.off

6.2 Estimating the NB dispersion

Estimation of the NB dispersion is performed by maximizing the Cox-Reid adjusted profile
likelihood (APL) [McCarthy et al., 2012] for each bin pair. Of course, when replication is
limited, there is not enough information per bin pair to estimate the dispersion. This is
overcome by computing and sharing APLs across many bin pairs to stablize the estimates.

> y <- estimateDisp(y, design)

> y$common.dispersion

[1] 0.007331746

A more sophisticated strategy is also used whereby an abundance-dependent trend is
fitted to the APLs. This should manifest as a smooth trend in the NB dispersion estimates
with respect to the average abundances of all bin pairs. The aim is to improve modelling
accuracy by empirically modelling any non-NB mean-variance relationships.

> plotBCV(y)
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In most cases, the relationship should be monotonic decreasing as the counts become
more precise with increasing size. Minor deviations are probably due to the imperfect nature
of non-linear normalization. Major increases are indicative of batch effects. For example, a
cluster of outliers indicates that there may be copy number changes between replicates.

6.3 Estimating the QL dispersion

The QL dispersion for each bin pair is estimated from the deviance of the fitted GLM. This
may seem superfluous given that the NB dispersion already accounts for biological variability.
However, the QL dispersion can account for heteroskedasticity between bin pairs, whereas
the NB dispersion cannot. Estimation of the former is performed with the glmQLFit function.

> fit <- glmQLFit(y, design, robust=TRUE)

Again, there is not enough information for each bin pair for precise estimation. Instead,
information is shared between bin pairs using an empirical Bayes (EB) approach. Per-bin-
pair QL estimates are shrunk towards a common trend across all bin pairs. This stabilizes
the QL dispersion estimates and improves precision for downstream applications.

> plotQLDisp(fit)
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The extent of the EB shrinkage is determined by the heteroskedasticity in the data. If the
true dispersions are highly variable, shrinkage to a common value would be inappropriate. On
the other hand, more shrinkage can be performed to increase precision if the true dispersions
are not variable. This variability is quantified as the prior degrees of freedom, for which
smaller values correspond to more heteroskedasticity and less shrinkage.

> summary(fit$df.prior)

Min. 1st Qu. Median Mean 3rd Qu. Max.
18.81 19.83 19.83 19.83 19.83 19.83

It is important to use the robust=TRUE argument in glmQLFit. This protects against any
large positive outliers corresponding to highly variable counts. It also protects against large
negative outliers. These are formed from near-zero deviances when counts are identical,
and are not uncommon when counts are low. In both cases, such outliers would inflate the
apparant heteroskedasticity and increase the estimated prior degrees of freedom.

6.4 Further information

More details on the statistical methods in edgeR can be found, unsurprisingly, in the edgeR
user’s guide. Of course, diffHic is compatible with any statistical framework that accepts a
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count matrix and a matrix of log-link GLM offsets. Advanced users may wish to use methods
from other packages. This author prefers edgeR as it works quite well for routine analyses of
Hi-C data. He also has a chance of being cited when edgeR is involved [Chen et al., 2014].
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Chapter 7

Testing for significant interactions

This chapter brings everything together. We need the fit object from the last chapter,
along with the data object (as usual). We also require the smaller.data object from
Chapter 4. The bin.size and mm.param objects are required from Chapter 3.

7.1 Using the quasi-likelihood F-test

The glmQLFTest function performs a QL F-test for each bin pair to identify significant dif-
ferences. Users should check that the contrast has been specified correctly through the coef

or contrast arguments. In this case, the coefficient of interest refers to the change in the
KO counts over the WT counts. The null hypothesis for each bin pair is that the coefficient
is equal to zero, i.e., there is no change between the WT and KO groups.

> result <- glmQLFTest(fit, coef=2)

> topTags(result)

Coefficient: KO
logFC logCPM F PValue FDR

93599 1.383845 4.179442 231.3377 4.236141e-13 3.898619e-08
84768 1.540143 3.178067 228.1092 4.875924e-13 3.898619e-08
84766 1.540037 2.434434 166.5360 1.084390e-11 5.344619e-07
2541 1.385413 2.998188 160.3312 1.566248e-11 5.344619e-07
58458 1.031684 4.679999 159.2592 1.671102e-11 5.344619e-07
84767 1.203459 3.329989 150.3639 2.905290e-11 7.743229e-07
93501 1.075536 3.856085 146.0326 3.843289e-11 8.779884e-07
84765 1.418007 2.319288 141.4698 5.202048e-11 1.028270e-06
59485 1.054100 4.014325 138.9983 6.150945e-11 1.028270e-06
2542 1.047169 4.103016 138.3497 6.430185e-11 1.028270e-06

More savvy users might wonder why the likelihood ratio test (LRT) was not used here.
Indeed, the LRT is the more obvious test for any inferences involving GLMs. However, the
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QL F-test is preferred as it accounts for the variability and uncertainty of the QL dispersion
estimates [Lund et al., 2012]. This means that it can maintain type I error control in the
presence of heteroskedasticity, whereas the LRT does not.

7.2 Multiplicity correction and the FDR

7.2.1 Overview

Many bin pairs are tested for differences across the interaction space. Correction for mul-
tiple testing is necessary to avoid detection of many spurious differences. For genome-wide
analyses, this correction can be performed by controlling the false discovery rate (FDR) with
the Benjamini-Hochberg (BH) method [Benjamini and Hochberg, 1995]. This provides a
suitable comprimise between specificity and sensitivity. In contrast, traditional methods of
correction (e.g., Bonferroni) are often too conservative.

7.2.2 Direct application of the BH method

The BH method can be applied directly to the p-values for the individual bin pairs. In
this case, the FDR refers to the proportion of detected bin pairs that are false positives.
Significantly specific interactions are defined as those that are detected at an FDR of 5%.

> adj.p <- p.adjust(result$table$PValue, method="BH")

> sum(adj.p <= 0.05)

[1] 4251

These can be saved to file as necessary. Resorting by p-value just makes it easier to parse
the final table, as the most interesting differential interactions are placed at the top.

> ax.d <- anchors(data)

> tx.d <- targets(data)

> results.d <- data.frame(anchor.chr=seqnames(ax.d), anchor.start=start(ax.d),

+ anchor.end=end(ax.d),target.chr=seqnames(tx.d), target.start=start(tx.d),

+ target.end=end(tx.d), result$table, FDR=adj.p)

> o.d <- order(result$table$PValue)

> write.table(results.d[o.d,], file="results.tsv", sep="\t", quote=FALSE, row.names=FALSE)

7.2.3 Independent clustering of adjacent bin pairs

Adjacent bin pairs can be aggregated into larger clusters to reduce redundancy in the inter-
pretation of the results. This is especially useful at smaller bin sizes, where multiple bin pairs
may overlap a single underlying interaction. To demonstrate, a quick-and-dirty differential
analysis of the previously loaded counts for the 100 kbp bin pairs is performed here.
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> y.small <- asDGEList(smaller.data)

> y.small$offset <- normOffsets(smaller.data, type="loess")

> y.small <- estimateDisp(y.small, design)

> fit.small <- glmQLFit(y.small, design, robust=TRUE)

> result.small <- glmQLFTest(fit.small)

The clusterPairs function puts two bin pairs in the same cluster if they are no more
than tol bp apart. Cluster-level p-values are obtained by combining p-values across all bin
pairs in the cluster using Simes’ method [Simes, 1986]. Clusters can then be reported instead
of individual bin pairs. Misinterpretation of the FDR is also mitigated as each interaction is
represented by one cluster with one combined p-value (see Section 7.2.5).

> clustered <- clusterPairs(smaller.data, tol=1, upper=1e6)

> tabcluster <- csaw::combineTests(clustered$indices[[1]], result.small$table)

> head(tabcluster)

nWindows logFC.up logFC.down PValue FDR
1 1 0 1 3.274575e-02 1.404891e-01
2 55 0 0 3.409829e-02 1.451059e-01
3 99 1 10 2.888988e-01 5.425381e-01
4 55 0 6 2.145027e-09 1.964833e-07
5 99 26 4 1.578324e-01 3.882597e-01
6 100 1 14 2.520249e-04 2.751694e-03

In practice, this approach requires aggressive filtering to avoid chaining effects. Oth-
erwise, clustering will be confounded by the density of the interaction space, particularly
at short distances and/or in TADs. Some protection is provided by setting upper to limit
the maximum dimensions of each cluster. Even so, the boundaries of each cluster become
ambiguous and difficult to interpret, e.g., if a whole TAD is absorbed into a cluster.

There is no guarantee that the cluster will form a regular shape in the interaction space.
In clusterPairs, an approximate solution is used whereby the minimum bounding box for
each cluster is reported. This refers to the smallest rectangle in the interaction space that
contains all bin pairs in the cluster. The coordinates of this rectangle can be easily recorded,
whereas it is more difficult to store the detailed shape of the cluster. Identification of the
top-ranking bin pair within each cluster may also be desirable (see Section 7.2.6).

> ax.c <- clustered$anchors

> tx.c <- clustered$targets

> results.c <- data.frame(anchor.chr=seqnames(ax.c), anchor.start=start(ax.c),

+ anchor.end=end(ax.c), target.chr=seqnames(tx.c), target.start=start(tx.c),

+ target.end=end(tx.c), tabcluster)

> o.c <- order(tabcluster$PValue)

> write.table(results.c[o.c,], file="clustered.tsv", sep="\t", quote=FALSE, row.names=FALSE)
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7.2.4 Clustering based on significant bin pairs

The interaction space is often dominated by high-abundance structural features like domains
and compartments. Attempting to cluster on abundance may result in excessive chaining,
yielding very large clusters for which the coordinates are mostly uninformative with respect
to DIs. To avoid this, it may be necessary to cluster on those bin pairs that are significantly
different. These bin pairs are more sparsely distributed throughout the interaction space,
such that the coordinates of the resulting clusters can be easily interpreted.

To demonstrate, the test results for the 1 Mbp bin pairs will be used here. Significant bin
pairs are defined at a FDR threshold of 5%, and clustered together with clusterPairs. Each
cluster represents the coordinates of a DI. This is more useful than reporting the coordinates
for an entire domain if only a portion of the domain is changing. No limits are placed on the
maximum dimensions, as the sparsity of bin pairs should avoid chaining effects.

> threshold <- 0.05

> is.sig <- adj.p <= threshold

> sig.data <- data[is.sig,]

> clustered.sig <- clusterPairs(sig.data, tol=1, upper=NULL)

> head(clustered.sig$anchors)

GRanges object with 6 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] chr1 [ 10000179, 13999307] *
[2] chr1 [ 65001912, 71999866] *
[3] chr1 [ 71003076, 74999308] *
[4] chr1 [107998729, 112002471] *
[5] chr1 [141998437, 151001683] *
[6] chr1 [145998240, 148000612] *
-------
seqinfo: 66 sequences from an unspecified genome

> head(clustered.sig$targets)

GRanges object with 6 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] chr1 [ 5997482, 11998773] *
[2] chr1 [ 59996262, 68997516] *
[3] chr1 [ 66989248, 71999866] *
[4] chr1 [106000326, 112002471] *
[5] chr1 [139996439, 145000108] *
[6] chr1 [121997037, 124999713] *
-------
seqinfo: 66 sequences from an unspecified genome

However, this summarization procedure is not statistically rigorous. Controlling the FDR
across bin pairs does not guarantee control of the FDR over clusters [Lun and Smyth, 2014].
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Instead, an informal estimate of the cluster-level FDR can be obtained with the clusterFDR

function. The idea is to adjust threshold such that the cluster-level FDR lies below some
desired value. All clusters formed at the chosen threshold can then be reported.

> csaw::clusterFDR(clustered.sig$indices[[1]], threshold)

[1] 0.1359846

In general, direct application of the BH method or independent clustering should be
preferred to this ad hoc method. Users should only choose this method if direct application
yields too many redundant results, or if the independent clusters are too large. Some loss of
statistical rigour may be a necessary price to pay for interpretable results.

7.2.5 Merging results from different bin widths

The choice of bin size is not clear when there are both sharp and diffuse changes in the
interaction space. Smaller bins provide greater spatial resolution and can identify sharp
differential interactions that would be lost within larger bin pairs. Conversely, larger bin pairs
provide larger counts and greater power to detect diffuse events. Comprehensive detection
of differential interactions can be achieved by combining analyses from several bin sizes.

To combine the results, the boxPairs function is used to identify all smaller bin pairs
that are nested within each of the larger “parent” bin pairs. Specifically, smaller bin pairs
are nested in a large bin pair if the former has the same ID as the latter in their respective
cons$id vectors. Note that the larger bin size must be an integer multiple of the smaller bin
size(s). This is necessary to simplify the interpretation of the nesting procedure.

> boxed <- boxPairs(larger=data, smaller=smaller.data)

> head(boxed$indices$larger)

[1] 1 2 3 4 5 6

> head(boxed$indices$smaller)

[1] 1 2 2 2 2 2

Each parent bin pair is associated with its own p-value and those of the smaller nested
bin pairs. All of these p-values can be combined into a single p-value for the parent. To do
this, the consolidatePairs function uses a weighted version of Simes’ method [Benjamini
and Hochberg, 1997]. For each bin pair, the weight of the p-value is inversely proportional
to the number of bin pairs of the same size nested in the same parent. This ensures that the
combined p-value calculation is not dominated by smaller, more numerous bin pairs. The
BH method is then applied to the combined p-values to control the FDR across all parents.

> cons <- consolidatePairs(boxed$indices, list(result$table, result.small$table))

> head(cons)
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nWindows logFC.up logFC.down PValue FDR
1 2 0 2 8.879706e-04 2.481617e-02
2 56 0 0 1.860006e-02 1.839412e-01
3 100 1 10 4.962879e-01 8.038695e-01
4 56 0 6 4.290055e-09 1.698702e-06
5 100 26 4 3.156648e-01 6.811437e-01
6 101 1 14 5.040498e-04 1.629924e-02

> sum(cons$FDR <= 0.05)

[1] 7481

Here, the number of detections is greater than that found with large bins alone. This
suggests that the different bin sizes complement each other by detecting features at different
resolutions. Statistics for each of the larger bin pairs can then be stored to file. Reordering
is performed using the combined p-value to promote the strongest changes.

> ax.s <- boxed$anchors

> tx.s <- boxed$targets

> o.s <- order(cons$PValue)

> results.s <- data.frame(anchor.chr=seqnames(ax.s), anchor.start=start(ax.s),

+ anchor.end=end(ax.s), target.chr=seqnames(tx.s), target.start=start(tx.s),

+ target.end=end(tx.s), cons)

> write.table(results.s[o.s,], file="sizecons.tsv", sep="\t", quote=FALSE, row.names=FALSE)

Nesting also reduces redundancy in the results. The set of nested bin pairs will only be
reported once, in the form of the parent bin pair. This limits the potential for misinterpre-
tation of the FDR [Lun and Smyth, 2014]. Similarly, for sparse data, users can also use the
clusterPairs function to replace boxPairs in the above call. This will compute a combined
p-value for each cluster, based on the p-values of the bin pairs of varying sizes in each cluster.
The cluster-level statistics can then be reported for easier interpretation.

7.2.6 Reporting nested bin pairs

It is often convenient to identify the top-ranked bin pair nested within each of the larger
features, i.e., parent bin pairs or clusters. Here, the top-ranked bin pair is identified as
getBestTest as the one with the smallest individual p-value. This means that any high-
resolution changes nested within a large feature can be easily identified. However, keep in
mind that the FDR is computed with respect to the features, not the nested bin pairs.

> small.ids <- boxed$indices$smaller

> inside <- csaw::getBestTest(small.ids, result.small$table)

> ax.n <- anchors(smaller.data[inside$best,])

> tx.n <- targets(smaller.data[inside$best,])

> nested <- data.frame(anchor.start=start(ax.n), anchor.end=end(ax.n),

+ target.start=start(tx.n), target.end=end(tx.n),

+ result.small$table[inside$best,c("logFC", "F")])

> head(nested)
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anchor.start anchor.end target.start target.end logFC F
1 3004106 3100835 1 3004109 -0.7240191 4.559033
4 3100832 3194461 3100832 3194461 0.3960267 10.916939
180 4801990 4899085 3801896 3901860 -1.2225347 7.655951
170 4693997 4801993 4500265 4599273 -0.8968597 45.273688
351 5599281 5695146 3004106 3100835 1.0039041 9.081786
228 5001372 5100850 4801990 4899085 -0.5602828 23.204762

> expanded <- rep(NA, nrow(results.s)) # As some parents do not have nested elements.

> expanded[as.integer(rownames(inside))] <- 1:nrow(inside)

> results.n <- data.frame(results.s, nest=nested[expanded,])

> write.table(results.n[o.s,], file="withnest.tsv", sep="\t", quote=FALSE, row.names=FALSE)

The above code only reports the top-ranked nested bin pair within each large feature. This
may not be sufficient when many internal changes are occurring. An alternative approach
is to store the entirety of the smaller.data in a R save file, along with cons and data. Any
interesting nested changes can then be interactively identified for a given feature.

7.3 Visualization with plaid plots

7.3.1 Using conventional plaid plots

Plaid plots can be used to visualize the distribution of read pairs in the interaction space
[Lieberman-Aiden et al., 2009]. Briefly, each axis is a chromosome segment. Each “pixel”
represents an interaction between the corresponding intervals on each axis. The color of the
pixel is proportional to the number of read pairs mapped between the interacting loci.

> chosen <- o.s[1]

> expanded.a <- resize(ax.s[chosen], fix="center", width=bin.size*5)

> expanded.t <- resize(tx.s[chosen], fix="center", width=bin.size*5)

> bound1 <- 100

> bound3 <- bound1*data$totals[3]/data$totals[1]

> plotPlaid(input[1], first=expanded.a, second=expanded.t, max.count=bound1,

+ width=5e4, param=mm.param, main="Flox")

> rect(start(ax.s[chosen]), start(tx.s[chosen]), end(ax.s[chosen]), end(tx.s[chosen]))

> plotPlaid(input[3], first=expanded.a, second=expanded.t, max.count=bound3,

+ width=5e4, param=mm.param, main="KO")

> rect(start(ax.s[chosen]), start(tx.s[chosen]), end(ax.s[chosen]), end(tx.s[chosen]))

Expansion of the plot boundaries ensures that the context of the interaction can be
determined by examining the features in the surrounding space. It is also possible to tune
the size of the pixels through a parameter that is, rather unsurprisingly, named width. In
this case, the side of each pixel represents a 50 kbp bin, rounded to the nearest restriction
site. The actual bin pair occurs at the center of the plot and is marked by a rectangle.
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The max.count value controls the relative scale of the colors. Any pixel with a larger
count will be set at the maximum color intensity. This ensures that a few high-count regions
do not dominate the plot. A smaller max.count is necessary for smaller libraries so that the
intensity of the colors is comparable. The actual color can be set by specifying col.

In the example above, the differential interaction is driven mainly by the smaller bin
pairs. Changes in intensities are particularly prevalent at the top left and bottom right
corners of the rectangle. By comparison, the fold change for the entire bin pair is a little less
than 30%. This highlights the usefulness of including analyses with smaller bin sizes.

Another example is shown below. The following plots are constructed for the top differ-
ential interaction using only large bins. Because the counts are “averaged” across the area of
the interaction space, the change must be consistent throughout that area (and thus, more
obvious) for detection to be successful. Of course, any sharp changes within each of these
large bin pairs will be overlooked as the smaller bin pairs are not used.

> chosen <- o.d[1]

> expanded.a <- resize(ax.d[chosen], fix="center", width=bin.size*5)

> expanded.t <- resize(tx.d[chosen], fix="center", width=bin.size*5)

> bound1 <- 30

> bound3 <- bound1*data$totals[3]/data$totals[1]

> plotPlaid(input[1], first=expanded.a, second=expanded.t, max.count=bound1,

+ width=5e4, param=mm.param, main="Flox")

> rect(start(ax.d[chosen]), start(tx.d[chosen]), end(ax.d[chosen]), end(tx.d[chosen]))

> plotPlaid(input[3], first=expanded.a, second=expanded.t, max.count=bound3,

+ width=5e4, param=mm.param, main="KO")

> rect(start(ax.d[chosen]), start(tx.d[chosen]), end(ax.d[chosen]), end(tx.d[chosen]))
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7.3.2 Using rotated plaid plots

Alternatively, users may prefer to use rotPlaid to generate rotated plaid plots. These are
more space-efficient and are easier to stack onto other genomic tracks, e.g., for ChIP-seq
data. However, rotated plots are only effective for local interactions within a specified region.
Some more effort is also required in interpretation. In the example below, each colored box
represents an interaction between two bins. The coordinates of each interacting bin can be
identified by extending lines from opposite sides of the box until they intersect the x-axis.

> chosen <- o.s[3]

> example <- tx.s[chosen]

> end(example) <- end(ax.s[chosen])

> nest.mid.a <- (results.n$nest.anchor.start[chosen]+results.n$nest.anchor.end[chosen])/2

> nest.mid.t <- (results.n$nest.target.start[chosen]+results.n$nest.target.end[chosen])/2

> nest.mid <- (nest.mid.a + nest.mid.t)/2

> nest.gap <- nest.mid.a - nest.mid.t

> rotPlaid(input[1], mm.param, region=example, width=2.5e4,

+ main="Flox", max.count=bound1)

> points(nest.mid, nest.gap, cex=7)

> rotPlaid(input[3], mm.param, region=example, width=2.5e4,

+ main="KO", max.count=bound3)

> points(nest.mid, nest.gap, cex=7)
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The circle marks the area of the interaction space that corresponds to the top-ranked
nested bin pair within the chosen larger bin pair. An increase in the interaction intensity is
clearly observed in the KO condition. This sharp change would not be observed with larger
bin pairs, where the final count would be dominated by other (non-differential) areas.

7.3.3 Using differential plaid plots

In some cases, it may be more informative to display the magnitude of the changes across
the interaction space. This can be achieved using the plotDI function, which assigns colors
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to bin pairs according to the size and direction of the log-fold change. Visualization of the
changes is useful as it highlights the DIs, whereas conventional plaid plots are dominated by
high-abundance features like TADs. The latter features may be constant between libraries
and, thus, not of any particular interest. The log-fold changes also incorporate normalization
information, which is difficult to represent on a count-based plaid plot.

> chosen <- o.d[5]

> expanded.a <- resize(ax.d[chosen], fix="center", width=5e7)

> expanded.t <- resize(tx.d[chosen], fix="center", width=5e7)

> colfun <- plotDI(data, result$table$logFC, expanded.a, expanded.t, diag=FALSE)

The example above uses red and blue for positive and negative log-fold changes, respec-
tively. White and near-white regions correspond to those with log-fold change close to zero.
Grey regions mark the parts of the space where no bin pairs are present in data, possi-
bly due to filtering on abundance. As a result, this approach tends to be less useful when
high-abundance bin pairs are more sparsely distributed, e.g., for long-range interactions. A
rotated DI plot can be similarly constructed using the rotDI function.

Both rotDI and plotDI will invisibly return another function that maps log-fold changes
to colors. This can be used to generate a custom color bar, as shown below. A similar
function that maps counts to colors is also returned by plotPlaid and rotPlaid.

> logfc <- -20:20/10

> plot(0,0,type="n", axes=FALSE, xlab="", ylab="", xlim=range(logfc), ylim=c(0,1))

> rect(logfc - 0.05, 0, logfc + 0.05, 1, col=colfun(logfc), border=NA)

> axis(1, cex.axis=1.2)

> mtext("logFC", side=1, line=3, cex=1.4)
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Chapter 8

Conventional feature detection

This chapter is a bit odd, so there’s not much required from previous chapters. In
particular, we’ll only need the input and mm.param objects from Chapter 3.

8.1 Overview

Even though the diffHic package focuses on detecting DIs, some routines are also implemented
for conventional analyses of Hi-C data. This includes the correctedContact function for
iterative correction [Imakaev et al., 2012], and the enrichedPairs function for peak calling
[Rao et al., 2014]. The following chapter presents some more functions that are designed
to identify compartments and domains in the interaction space. These methods tend to be
rather ad hoc from a statistical perspective, so more care is required in interpretation.

8.2 Identifying open and closed compartments

Contact frequencies in the interaction space of higher organisms typically exhibit a checker-
board pattern. This indicates that all sites on the genome must belong in one of two compart-
ments, where loci in the same compartment interact more frequently than those in different
compartments [Lieberman-Aiden et al., 2009]. The “open” compartment is associated with
genes and active transcription, while the “closed” compartment is gene-poor. Identification
of the loci in each compartment can be achieved with the compartmentalize function. In the
example below, compartments are identified using bins at 500 kbp resolution.

> data <- squareCounts(input, width=5e5, filter=1, param=mm.param)

> output <- compartmentalize(data, centers=2)

Briefly, the compartmentalize function constructs a symmetric matrix of contact frequen-
cies for each chromosome. Each row or column of the matrix represents a bin, and each entry
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of the matrix represents the contact frequency – in this case, the average abundance across
input libraries. Frequencies are normalized to remove distance-dependent trends and cover-
age biases between bins. The normalized matrix is then used in k-means clustering [Lajoie
et al., 2015], where the bins (rows) are clustered based on similarities in their interaction
profiles. All bins in the same cluster belong to the same compartment, as indicated by the
cluster identifier in the returned compartment vector for each chromosome. The name of each
entry in the vector refers to the index of regions(data) corresponding to that bin. Bins with
NA entries correspond to low-coverage centromeres or telomeres that are filtered out.

> head(output$chr2$compartment, 20)

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
NA 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

By default, two clusters are identified in each chromosome that correspond to the open
and closed compartments. More clusters can be specified by increasing centers, though
the interpretation of the resulting compartments becomes more difficult. The function also
returns the contact matrix for each chromosome. Users can then apply their own clustering
algorithms on this matrix, if k-means is not satisfactory. Alternatively, the contact matrix
can be used for visualization with image, as shown below for chromosome 5. The red/blue
bar at the top of the plot indicates the genomic intervals in either compartment.

> par(xpd=TRUE)

> color.range <- c(-5, 5)

> temp <- output$chr5$matrix

> temp[temp < color.range[1]] <- color.range[1]

> temp[temp > color.range[2]] <- color.range[2]

> image(temp, zlim=color.range)

> current <- output$chr5$compartment

> stretches <- rle(current)

> ends <- cumsum(stretches$lengths) - 0.5

> starts <- ends - stretches$lengths

> not.na <- !is.na(stretches$values)

> rect(starts[not.na]/(nrow(temp)-1), 1.05, ends[not.na]/(nrow(temp)-1), 1.1,

+ col=c("black", "blue", "green")[stretches$values[not.na]])
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Compartments can be identified at higher spatial resolution by using a lower width in
squareCounts. To avoid running out of memory, users should reform the parameter object
to restrict counting to intra-chromosomal bin pairs. However, be aware that small counts
may compromise the effectiveness of the normalization scheme. High resolution may also be
unnecessary given that compartments are usually quite large, e.g., 1 - 10 Mbp in size.

8.3 Identifying topological and other domains

High intensity triangles are often observed on the diagonal of the intra-chromosomal interac-
tion space. These correspond to topologically associating domains (TADs) where loci within
each domain interact more frequently than those between domains. Such domains are pro-
posed to control genomic behavior by limiting the scope for interactions and restraining the
spread of chromatin marks [Nora et al., 2013]. At higher resolutions, small domains may
also be formed due to looping between specific genomic elements [Rao et al., 2014].
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To identify these domains, Dixon et al. [2012] introduced a directionality statistic for
each genomic locus. A region at the start of a domain will interact preferentially with
“upstream” regions in the same domain, compared to “downstream” regions in a different
domain. Conversely, the region at the end of each domain will interact preferentially with
the downstream regions compared to upstream regions. This results in a characteristic
pattern of positive directionality statistics at the start of the domain, followed by negative
values at the end. These patterns can be extracted to identify the domain boundaries.

Directionality calculations are performed using the output of the domainDirections func-
tion. In the example below, the genome is first partitioned into 100 kbp bins. For each bin,
the total number of read pairs mapped between that bin and its closest span upstream neigh-
bors is counted. This is repeated for its closest span downstream neighbors. The genomic
coordinates of each bin is returned along with the total count in either direction. If multiple
libraries are specified in input, the average of the total counts is returned.

> finder <- domainDirections(input, mm.param, width=1e5, span=10)

> finder

GRanges object with 26729 ranges and 3 metadata columns:
seqnames ranges strand | nfrags

<Rle> <IRanges> <Rle> | <integer>
[1] chr1 [ 1, 3004109] * | 1
[2] chr1 [3004106, 3100835] * | 34
[3] chr1 [3100832, 3194461] * | 30
[4] chr1 [3194458, 3301641] * | 41
[5] chr1 [3301638, 3399158] * | 52
... ... ... ... ... ...

[26725] chrUn_GL456393 [ 1, 55711] * | 4
[26726] chrUn_GL456394 [ 1, 24323] * | 7
[26727] chrUn_GL456396 [ 1, 21240] * | 4
[26728] chrUn_JH584304 [ 1, 104610] * | 24
[26729] chrUn_JH584304 [104607, 114452] * | 1

Up Down
<numeric> <numeric>

[1] 44.9072835755743 0
[2] 1153.7903395063 23.6121406225251
[3] 839.361014665285 202.885540336862
[4] 1491.96297784165 398.783690086507
[5] 1799.7091232015 797.048016491232
... ... ...

[26725] 0 0
[26726] 0 0
[26727] 0 0
[26728] 0 0
[26729] 0 0
-------
seqinfo: 66 sequences from an unspecified genome
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The total counts can be used to calculate the directionality index defined by Dixon et al.
However, a simpler alternative is to compute the log-fold change between the up/down counts
for each bin. A large prior count is used to avoid spuriously large changes at low counts.
The computed values seem to follow a Gaussian distribution, as shown for chromosome 1.

> prior.c <- 10

> directionality <- log2((finder$Up + prior.c)/(finder$Down + prior.c))

> onchr1 <- as.logical(seqnames(finder)=="chr1")

> chr1.dir <- directionality[onchr1]

> hist(chr1.dir, breaks=100)

Domain identification involves fitting a hidden Markov model (HMM) to the directionali-
ties across each chromosome. Three states are used – upstream bias, no bias and downstream
bias, corresponding to the start, middle and end of a domain with positive, near-zero and
negative directionalities, respectively. The aim is to identify the most likely state for each
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bin in the fitted model. HMM fitting can be performed in R using the depmixS4 package, as
shown below. Note that the normality of the log-fold changes allows simple modelling with
a single Gaussian distribution, instead the mixture of Gaussians used by Dixon et al.

> require(depmixS4)

> mod <- depmix(chr1.dir~1, family=gaussian(), nstates=3,

+ ntimes=sum(onchr1), trstart = runif(9))

> fm <- fit(mod, emc=em.control(rand=FALSE), verbose=FALSE)

Examination of the response parameters suggests that state 1 represents upstream bias,
state 2 represents downstream bias and state 3 represents no bias. The transition probabil-
ities also indicate that a direct transition from upstream to downstream states is unlikely,
as is the downstream to no bias transition. This is consistent with the expected model of
“upstream bias → no bias → downstream bias” state transitions for each domain.

> summary(fm)

Initial state probabilties model
pr1 pr2 pr3
1 0 0

Transition matrix
toS1 toS2 toS3

fromS1 7.286879e-01 1.336788e-06 2.713108e-01
fromS2 2.828607e-01 7.171393e-01 8.624896e-11
fromS3 9.436352e-08 1.760013e-01 8.239986e-01

Response parameters
Resp 1 : gaussian

Re1.(Intercept) Re1.sd
St1 0.651285032 0.5440686
St2 -0.654282230 0.5210010
St3 -0.008543609 0.2944410

The most likely state for each bin can be determined by extracting the Viterbi path.
Each pattern of “up → none → down” represents the interval of a single domain.

> all.states <- posterior(fm)$state

> head(all.states, n=50)

[1] 1 1 1 1 1 1 1 3 3 3 3 2 2 2 2 2 1 1 1 1 1 3 3 3 3 3 3 3 2 2 2 2 2 1 1 1 1 3
[39] 3 2 2 2 2 2 2 1 3 3 3 3

The performance of this approach can be visually assessed with a (rotated) plaid plot. The
red, yellow and orange intervals mark the start, end and center of each domain, respectively.
These match up well with the characteristic triangle patterns in the interaction space.
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> colors <- c("red", "yellow", "orange")

> rotPlaid(input[3], mm.param, GRanges("chr1", IRanges(10e6, 20e6)),

+ width=1e5, max.count=50)

> rect(start(finder[onchr1]), 0, end(finder[onchr1]), 1e5,

+ col=colors[all.states], border=NA)

As an aside, nesting of domains is often observed in real data [Filippova et al., 2014].
The HMM approach will only report a single set of small domains, and will not report the
larger domains in which those small domains are nested. Additional effort will be required
to identify the nesting structure. One possibility is to compute the total contacts between
the reported domains, and to use this as a similarity measure for heirarchical clustering.
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Chapter 9

Epilogue

Congratulations on getting to the end. As a reward for your efforts, here is a poem:

I once had a friend named Björk,
With him I would always talk,
But he was a pig,
So when he got big,
We killed him and ate his pork.

9.1 Data sources

All datasets are publicly available from the NCBI Gene Expression Omnibus (GEO). The
Lieberman-Aiden et al. dataset was obtained using the GEO accession number GSE18199.
The Sofueva et al. dataset was obtained using the GEO accession GSE49017. Finally,
the Rickman et al. dataset was obtained with the accession GSE37752. All libraries were
processed as described in Chapter 2. For some datasets, multiple technical replicates are
available for each library. These were merged together prior to read pair counting.

Scripts for alignment and processing of these libraries can be accessed with the com-
mands below. These scripts assume that the relevant Sequence Read Archive files have been
downloaded. Some software packages are also required - read sra2bam.sh for more details.

> system.file('doc', 'sra2bam.sh', package="diffHic")

> system.file('doc', 'bam2hdf.R', package="diffHic")

9.2 Session information

> sessionInfo()
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R version 3.2.0 (2015-04-16)
Platform: x86_64-unknown-linux-gnu (64-bit)
Running under: CentOS release 6.4 (Final)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods base

other attached packages:
[1] depmixS4_1.3-2
[2] Rsolnp_1.15
[3] truncnorm_1.0-7
[4] MASS_7.3-43
[5] nnet_7.3-10
[6] TxDb.Mmusculus.UCSC.mm10.knownGene_3.1.3
[7] GenomicFeatures_1.21.16
[8] AnnotationDbi_1.31.17
[9] Biobase_2.29.1
[10] BSgenome.Mmusculus.UCSC.mm10_1.4.0
[11] BSgenome.Hsapiens.UCSC.hg19_1.4.0
[12] BSgenome_1.37.4
[13] rtracklayer_1.29.16
[14] Biostrings_2.37.5
[15] XVector_0.9.1
[16] edgeR_3.11.7
[17] limma_3.25.15
[18] diffHic_1.1.17
[19] GenomicRanges_1.21.18
[20] GenomeInfoDb_1.5.12
[21] IRanges_2.3.18
[22] S4Vectors_0.7.13
[23] BiocGenerics_0.15.6

loaded via a namespace (and not attached):
[1] futile.logger_1.4.1 bitops_1.0-6
[3] futile.options_1.0.0 tools_3.2.0
[5] zlibbioc_1.15.0 biomaRt_2.25.1
[7] statmod_1.4.21 RSQLite_1.0.0
[9] rhdf5_2.13.5 lattice_0.20-33
[11] csaw_1.3.13 DBI_0.3.1
[13] locfit_1.5-9.1 grid_3.2.0
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[15] XML_3.98-1.3 BiocParallel_1.3.48
[17] lambda.r_1.1.7 Rsamtools_1.21.15
[19] GenomicAlignments_1.5.12 splines_3.2.0
[21] SummarizedExperiment_0.3.3 KernSmooth_2.23-15
[23] RCurl_1.95-4.7

9.3 References

J. M. Belton, R. P. McCord, J. H. Gibcus, N. Naumova, Y. Zhan, and J. Dekker. Hi-C: a
comprehensive technique to capture the conformation of genomes. Methods, 58(3):268–276,
Nov 2012.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. Roy. Statist. Soc. B, pages 289–300, 1995.

Y. Benjamini and Y. Hochberg. Multiple hypotheses testing with weights. Scand. J. Stat.,
24:407–418, 1997.

W. A. Bickmore. The spatial organization of the human genome. Annu. Rev. Genomics
Hum. Genet., 14:67–84, 2013.

R. Bourgon, R. Gentleman, and W. Huber. Independent filtering increases detection power
for high-throughput experiments. Proc. Natl. Acad. Sci. U.S.A., 107(21):9546–9551, May
2010.

Y. Chen, A. T. L. Lun, and G. K. Smyth. Differential expression analysis of complex RNA-
seq experiments using edgeR. In S. Datta and D. S. Nettleton, editors, Statistical Analysis
of Next Generation Sequence Data. Springer, New York, 2014.

ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human
genome. Nature, 489(7414):57–74, Sep 2012.

J. R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. S. Liu, and B. Ren.
Topological domains in mammalian genomes identified by analysis of chromatin interac-
tions. Nature, 485(7398):376–380, May 2012.

D. Filippova, R. Patro, G. Duggal, and C. Kingsford. Identification of alternative topological
domains in chromatin. Algorithms Mol. Biol., 9:14, 2014.

J. R. Hughes, N. Roberts, S. McGowan, D. Hay, E. Giannoulatou, M. Lynch, M. De Gobbi,
S. Taylor, R. Gibbons, and D. R. Higgs. Analysis of hundreds of cis-regulatory landscapes
at high resolution in a single, high-throughput experiment. Nat. Genet., 46(2):205–212, Feb
2014.

69



M. Imakaev, G. Fudenberg, R. P. McCord, N. Naumova, A. Goloborodko, B. R. Lajoie,
J. Dekker, and L. A. Mirny. Iterative correction of Hi-C data reveals hallmarks of chromo-
some organization. Nat. Methods, 9(10):999–1003, Oct 2012.

F. Jin, Y. Li, J. R. Dixon, S. Selvaraj, Z. Ye, A. Y. Lee, C. A. Yen, A. D. Schmitt,
C. A. Espinoza, and B. Ren. A high-resolution map of the three-dimensional chromatin
interactome in human cells. Nature, 503(7475):290–294, Nov 2013.

B. R. Lajoie, J. Dekker, and N. Kaplan. The Hitchhiker’s guide to Hi-C analysis: practical
guidelines. Methods, 72:65–75, Jan 2015.

B. Langmead and S. L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nat. Methods,
9(4):357–359, Apr 2012.

H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows-Wheeler trans-
form. Bioinformatics, 26(5):589–595, Mar 2010.

E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling,
I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bernstein, M. A.
Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, and
J. Dekker. Comprehensive mapping of long-range interactions reveals folding principles of
the human genome. Science, 326(5950):289–293, Oct 2009.

Y. C. Lin, C. Benner, R. Mansson, S. Heinz, K. Miyazaki, M. Miyazaki, V. Chandra,
C. Bossen, C. K. Glass, and C. Murre. Global changes in the nuclear positioning of genes
and intra- and interdomain genomic interactions that orchestrate B cell fate. Nat. Immunol.,
13(12):1196–1204, Dec 2012.

C. Loader. Local Regression and Likelihood. Statistics and Computing. Springer New
York, 1999. ISBN 9780387987750. URL http://books.google.com.au/books?id=

D7GgBAfL4ngC.

A. T. Lun and G. K. Smyth. De novo detection of differentially bound regions for ChIP-seq
data using peaks and windows: controlling error rates correctly. Nucleic Acids Res., May
2014.

A. T. L. Lun and G. K. Smyth. diffHic: a Bioconductor package package to detect differ-
ential genomic interactions in Hi-C data. BMC Bioinformatics, 16:258, 2015.

S. P. Lund, D. Nettleton, D. J. McCarthy, and G. K. Smyth. Detecting differential expres-
sion in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat.
Appl. Genet. Mol. Biol., 11(5), 2012.

70

http://books.google.com.au/books?id=D7GgBAfL4ngC
http://books.google.com.au/books?id=D7GgBAfL4ngC


W. Ma, F. Ay, C. Lee, G. Gulsoy, X. Deng, S. Cook, J. Hesson, C. Cavanaugh, C. B. Ware,
A. Krumm, J. Shendure, C. A. Blau, C. M. Disteche, W. S. Noble, and Z. Duan. Fine-scale
chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes.
Nat. Methods, 12(1):71–78, Jan 2015.

J. C. Marioni, C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad. RNA-seq: an as-
sessment of technical reproducibility and comparison with gene expression arrays. Genome
Res., 18(9):1509–1517, Sep 2008.

M. Martin. Cutadapt removes adapter sequences from high-throughput sequencing reads.
EMBnet.journal, 17(1):10–12, 2011.

D. J. McCarthy, Y. Chen, and G. K. Smyth. Differential expression analysis of multifactor
RNA-Seq experiments with respect to biological variation. Nucleic Acids Res., 40(10):
4288–4297, May 2012.

E. P. Nora, J. Dekker, and E. Heard. Segmental folding of chromosomes: a basis for
structural and regulatory chromosomal neighborhoods? Bioessays, 35(9):818–828, Sep
2013.

S. S. Rao, M. H. Huntley, N. C. Durand, E. K. Stamenova, I. D. Bochkov, J. T. Robinson,
A. L. Sanborn, I. Machol, A. D. Omer, E. S. Lander, and E. L. Aiden. A 3D Map of the
Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell, 159
(7):1665–1680, Dec 2014.

D. S. Rickman, T. D. Soong, B. Moss, J. M. Mosquera, J. Dlabal, S. Terry, T. Y. MacDonald,
J. Tripodi, K. Bunting, V. Najfeld, F. Demichelis, A. M. Melnick, O. Elemento, and M. A.
Rubin. Oncogene-mediated alterations in chromatin conformation. Proc. Natl. Acad. Sci.
U.S.A., 109(23):9083–9088, Jun 2012.

M. D. Robinson and A. Oshlack. A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biol., 11(3):R25, 2010.

M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics, 26(1):139–
140, Jan 2010.

V. C. Seitan, A. J. Faure, Y. Zhan, R. P. McCord, B. R. Lajoie, E. Ing-Simmons, B. Lenhard,
L. Giorgetti, E. Heard, A. G. Fisher, P. Flicek, J. Dekker, and M. Merkenschlager. Cohesin-
based chromatin interactions enable regulated gene expression within preexisting architec-
tural compartments. Genome Res., 23(12):2066–2077, Dec 2013.

R. J. Simes. An improved Bonferroni procedure for multiple tests of significance.
Biometrika, 73(3):751–754, 1986.

71



S. Sofueva, E. Yaffe, W. C. Chan, D. Georgopoulou, M. Vietri Rudan, H. Mira-Bontenbal,
S. M. Pollard, G. P. Schroth, A. Tanay, and S. Hadjur. Cohesin-mediated interactions
organize chromosomal domain architecture. EMBO J., 32(24):3119–3129, Dec 2013.

72


	Introduction
	Scope
	How to get help
	A brief description of Hi-C
	Quick start

	Preparing index files from BAM files
	A comment on aligning Hi-C libraries
	Matching mapped reads to restriction fragments
	Processing of chimeric reads
	Filtering artifactual read pairs
	Reprocessing index files for quality control
	Setting size thresholds with strand orientation plots

	Merging technical replicates
	Handling DNase Hi-C experiments

	Counting read pairs into interactions
	Overview
	Counting into bin pairs
	Overview
	Choosing a bin width

	Counting with pre-defined regions
	Connecting counts between pairs of regions
	Connecting counts between two sets of regions

	Counting into single bins
	Additional parameter options
	Restricting the input chromosomes
	Specifying regions to ignore
	Capping the read pairs per restriction fragment pair

	Summary

	Filtering out uninteresting interactions
	Overview
	Computing the average abundance in a NB model

	Directly removing low-abundance interactions
	Filtering as a function of interaction distance
	Peak-calling in the interaction space
	Defining enrichment values for each bin pair
	Examining some peak-calling diagnostics
	Efficient peak calling at high resolution

	Defining filters in special cases
	Computing filter thresholds with limited memory
	Filtering for pre-specified regions
	Filtering out diagonal elements

	Summary of the filtering strategies

	Normalization strategies for Hi-C data
	Normalizing with scaling methods
	Removing trended biases between libraries
	Iterative correction of interaction intensities
	Accounting for copy number variations
	Eliminating CNVs with multi-dimensional smoothing
	Visualizing the effect of CNV removal


	Modelling biological variability
	Overview
	Estimating the NB dispersion
	Estimating the QL dispersion
	Further information

	Testing for significant interactions
	Using the quasi-likelihood F-test
	Multiplicity correction and the FDR
	Overview
	Direct application of the BH method
	Independent clustering of adjacent bin pairs
	Clustering based on significant bin pairs
	Merging results from different bin widths
	Reporting nested bin pairs

	Visualization with plaid plots
	Using conventional plaid plots
	Using rotated plaid plots
	Using differential plaid plots


	Conventional feature detection
	Overview
	Identifying open and closed compartments
	Identifying topological and other domains

	Epilogue
	Data sources
	Session information
	References


