
An Introduction to ShortRead

Martin Morgan

Modified: 21 October, 2013. Compiled: October 13, 2015

> library("ShortRead")

The ShortRead package provides functionality for working with FASTQ files from high throughput sequence analysis.
The package also contains functions for legacy (single-end, ungapped) aligned reads; for working with BAM files, please
see the Rsamtools, GenomicRanges, GenomicAlignments and related packages.

1 Sample data

Sample FASTQ data are derived from ArrayExpress record E-MTAB-1147. Paired-end FASTQ files were retrieved and
then sampled to 20,000 records with

> sampler <- FastqSampler('E-MTAB-1147/fastq/ERR127302_1.fastq.gz', 20000)

> set.seed(123); ERR127302_1 <- yield(sampler)

> sampler <- FastqSampler('E-MTAB-1147/fastq/ERR127302_2.fastq.gz', 20000)

> set.seed(123); ERR127302_2 <- yield(sampler)

2 Functionality

Functionality is summarized in Table 1.

Input FASTQ files are large so processing involves iteration in ‘chunks’ using FastqStreamer

> strm <- FastqStreamer("a.fastq.gz")

> repeat {

+ fq <- yield(strm)

+ if (length(fq) == 0)

+ break

+ ## process chunk

+ }

or drawing a random sample from the file

> sampler <- FastqSampler("a.fastq.gz")

> fq <- yield(sampler)

The default size for both streams and samples is 1M records; this volume of data fits easily into memory. Small FASTQ
files can be read in to memory in their entirety using readFastq; we do this for our sample data

> fl <- system.file(package="ShortRead", "extdata", "E-MTAB-1147",

+ "ERR127302_1_subset.fastq.gz")

> fq <- readFastq(fl)

1

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1147/

An Introduction to ShortRead 2

Input
FastqStreamer Iterate through FASTQ files in chunks
FastqSampler Draw random samples from FASTQ files
readFastq Read an entire FASTQ file into memory
writeFastq Write FASTQ objects to a connection (file)

Sequence and quality summary
alphabetFrequency Nucleotide or quality score use per read
alphabetByCycle Nucleotide or quality score use by cycle
alphabetScore Whole-read quality summary
encoding Character / ‘phred’ score mapping

Quality assessment
qa Visit FASTQ files to collect QA statistics
report Generate a quality assessment report

Filtering and trimming
srFilter Pre-defined and bespoke filters
trimTails, etc. Trim low-quality nucleotides
narrow Remove leading / trailing nucleotides
tables Summarize read occurrence
srduplicated, etc. Identify duplicate reads
filterFastq Filter reads from one file to another

Table 1: Key functions for working with FASTQ files

DNAStringSet (Biostrings) Short read sequences
FastqQuality, etc. Quality encodings
ShortReadQ Reads, quality scores, and ids

Table 2: Primary data types in the ShortRead package

The result of data input is an instance of class ShortReadQ (Table 2). This class contains reads, their quality scores,
and optionally the id of the read.

> fq

class: ShortReadQ

length: 20000 reads; width: 72 cycles

> fq[1:5]

class: ShortReadQ

length: 5 reads; width: 72 cycles

> head(sread(fq), 3)

A DNAStringSet instance of length 3

width seq

[1] 72 GTCTGCTGTATCTGTGTCGGCTGTCTCGCGGGACATGAAGTCAATGAAGGCCTGGAATGTCACTACCCCCAG

[2] 72 CTAGGGCAATCTTTGCAGCAATGAATGCCAATGGGTAGCCAGTGGCTTTTGAGGCCAGAGCAGACCTTCGGG

[3] 72 TGGGCTGTTCCTTCTCACTGTGGCCTGACTAAAACCCAGTGGCATTAAGAAAGAGTCACGTTTCCCAAGTCT

> head(quality(fq), 3)

class: FastqQuality

quality:

A BStringSet instance of length 3

width seq

[1] 72 HHHHHHHHHHHHHHHHHHHHEBDBB?B:BBGG<DDAA?AABFEFBDBD@DDECEE3>:?;@@@>?=BAB?##

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html

An Introduction to ShortRead 3

[2] 72 IIIIHIIIGIIIIIIIHIIIIEGBGHIIIIHGIIHIIIIIIIHIIIHIIIIIGIIIEGIIGBGE@DDGGGIG

[3] 72 GGHBHGBGGGHHHHDHHHHHHHHHFGHHHHHHHHHHHHHHHHHHHHHGHFHHHHHHHHHHHHHH8AGDGGG>

The reads are represented as DNAStringSet instances, and can be manipulated with the rich tools defined in the Biostrings
package. The quality scores are represented by a class that represents the quality encoding inferred from the file; the
encoding in use can be discovered with

> encoding(quality(fq))

! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = >

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

? @ A B C D E F G H I J

30 31 32 33 34 35 36 37 38 39 40 41

The primary source of documentation for these classes is ?ShortReadQ and ?QualityScore.

3 Common work flows

3.1 Quality assessment

FASTQ files are often used for basic quality assessment, often to augment the purely technical QA that might be provided
by the sequencing center with QA relevant to overall experimental design. A QA report is generated by creating a vector
of paths to FASTQ files

> fls <- dir("/path/to", "*fastq$", full=TRUE)

collecting statistics over the files

> qaSummary <- qa(fls, type="fastq")

and creating and viewing a report

> browseURL(report(qaSummary))

By default, the report is based on a sample of 1M reads.

These QA facilities are easily augmented by writing custom functions for reads sampled from files, or by explorting the
elements of the object returned from qa(), e.g., for an analysis of ArrayExpress experiment E-MTAB-1147:

> qaSummary

class: FastqQA(10)

QA elements (access with qa[["elt"]]):

readCounts: data.frame(16 3)

baseCalls: data.frame(16 5)

readQualityScore: data.frame(8192 4)

baseQuality: data.frame(1504 3)

alignQuality: data.frame(16 3)

frequentSequences: data.frame(800 4)

sequenceDistribution: data.frame(1953 4)

perCycle: list(2)

baseCall: data.frame(5681 4)

quality: data.frame(44246 5)

perTile: list(2)

readCounts: data.frame(0 4)

medianReadQualityScore: data.frame(0 4)

adapterContamination: data.frame(16 1)

For instance, the count of reads in each lane is summarized in the readCounts element, and can be displayed as

http://bioconductor.org/packages/release/bioc/html/Biostrings.html

An Introduction to ShortRead 4

> head(qaSummary[["readCounts"]])

read filter aligned

ERR127302_1.fastq.gz 29741852 NA NA

ERR127302_2.fastq.gz 29741852 NA NA

ERR127303_1.fastq.gz 32665567 NA NA

ERR127303_2.fastq.gz 32665567 NA NA

ERR127304_1.fastq.gz 31876181 NA NA

ERR127304_2.fastq.gz 31876181 NA NA

> head(qaSummary[["baseCalls"]])

A C G T N

ERR127302_1.fastq.gz 16439860 19641395 19547421 16335620 35704

ERR127302_2.fastq.gz 16238041 20020655 19608896 16060661 71747

ERR127303_1.fastq.gz 16826258 19204659 19448727 16507994 12362

ERR127303_2.fastq.gz 16426991 19822132 19374419 16324978 51480

ERR127304_1.fastq.gz 16279217 19740457 19879137 16089405 11784

ERR127304_2.fastq.gz 15984998 20297064 19812474 15853510 51954

The readCounts element contains a data frame with 1 row and 3 columns (these dimensions are indicated in the
parenthetical annotation of readCounts in the output of qaSummary). The rows represent different lanes. The columns
indicated the number of reads, the number of reads surviving the Solexa filtering criteria, and the number of reads aligned
to the reference genome for the lane. The baseCalls element summarizes base calls in the unfiltered reads.

The functions that produce the report tables and graphics are internal to the package. They can be accessed through
calling ShortRead:::functionName where functionName is one of the functions listed below, organized by report section.

Run Summary : .ppnCount, .df2a, .laneLbl, .plotReadQuality
Read Distribution : .plotReadOccurrences, .freqSequences
Cycle Specific : .plotCycleBaseCall, .plotCycleQuality
Tile Performance : .atQuantile, .colorkeyNames, .plotTileLocalCoords, .tileGeometry, .plotTileCounts, .plotTileQuali-

tyScore
Alignment : .plotAlignQuality
Multiple Alignment : .plotMultipleAlignmentCount
Depth of Coverage : .plotDepthOfCoverage
Adapter Contamination : .ppnCount

3.2 Filtering and trimming

It is straight-forward to create filters to eliminate reads or to trim reads based on diverse characteristics. The basic structure
is to open a FASTQ file, iterate through chunks of the file performing filtering or trimming steps, and appending the
filtered data to a new file.

> myFilterAndTrim <-

+ function(fl, destination=sprintf("%s_subset", fl))

+ {

+ ## open input stream

+ stream <- open(FastqStreamer(fl))

+ on.exit(close(stream))

+

+ repeat {

+ ## input chunk

+ fq <- yield(stream)

+ if (length(fq) == 0)

+ break

+

An Introduction to ShortRead 5

+ ## trim and filter, e.g., reads cannot contain 'N'...

+ fq <- fq[nFilter()(fq)] # see ?srFilter for pre-defined filters

+ ## trim as soon as 2 of 5 nucleotides has quality encoding less

+ ## than "4" (phred score 20)

+ fq <- trimTailw(fq, 2, "4", 2)

+ ## drop reads that are less than 36nt

+ fq <- fq[width(fq) >= 36]

+

+ ## append to destination

+ writeFastq(fq, destination, "a")

+ }

+ }

This is memory efficient and flexible. Care must be taken to coordinate pairs of FASTQ files representing paired-end
reads, to preserve order.

4 Using ShortRead for data exploration

4.1 Data I/O

ShortRead provides a variety of methods to read data into R, in addition to readAligned.

4.1.1 readXStringColumns

readXStringColumns reads a column of DNA or other sequence-like data. For instance, the Solexa files s_N_export.txt
contain lines with the following information:

> ## location of file

> exptPath <- system.file("extdata", package="ShortRead")

> sp <- SolexaPath(exptPath)

> pattern <- "s_2_export.txt"

> fl <- file.path(analysisPath(sp), pattern)

> strsplit(readLines(fl, n=1), "\t")

[[1]]

[1] "HWI-EAS88" "3"

[3] "2" "1"

[5] "451" "945"

[7] "" ""

[9] "CCAGAGCCCCCCGCTCACTCCTGAACCAGTCTCTC" "YQMIMIMMLMMIGIGMFICMFFFIMMHIIHAAGAH"

[11] "NM" ""

[13] "" ""

[15] "" ""

[17] "" ""

[19] "" ""

[21] "" "N"

> length(readLines(fl))

[1] 1000

Column 9 is the read, and column 10 the ASCII-encoded Solexa Fastq quality score; there are 1000 lines (i.e., 1000 reads)
in this sample file.

http://bioconductor.org/packages/release/bioc/html/ShortRead.html

An Introduction to ShortRead 6

Suppose the task is to read column 9 as a DNAStringSet and column 10 as a BStringSet. DNAStringSet is a class
that contains IUPAC-encoded DNA strings (IUPAC code allows for nucleotide ambiguity); BStringSet is a class that
contains any character with ASCII code 0 through 255. Both of these classes are defined in the Biostrings package.
readXStringColumns allows us to read in columns of text as these classes.

Important arguments for readXStringColumns are the dirPath in which to look for files, the pattern of files to
parse, and the colClasses of the columns to be parsed. The dirPath and pattern arguments are like list.files.
colClasses is like the corresponding argument to read.table: it is a list specifying the class of each column to be
read, or NULL if the column is to be ignored. In our case there are 21 columns, and we would like to read in columns 9
and 10. Hence

> colClasses <- rep(list(NULL), 21)

> colClasses[9:10] <- c("DNAString", "BString")

> names(colClasses)[9:10] <- c("read", "quality")

We use the class of the type of sequence (e.g., DNAString or BString), rather than the class of the set that we will
create (e.g., DNAStringSet or BStringSet). Applying names to colClasses is not required, but makes subsequent
manipulation easier. We are now ready to read our file

> cols <- readXStringColumns(analysisPath(sp), pattern, colClasses)

> cols

$read

A DNAStringSet instance of length 1000

width seq

[1] 35 CCAGAGCCCCCCGCTCACTCCTGAACCAGTCTCTC

[2] 35 AGCCTCCCTCTTTCTGAATATACGGCAGAGCTGTT

[3] 35 ACCAAAAACACCACATACACGAGCAACACACGTAC

[4] 35 AATCGGAAGAGCTCGTATGCCGGCTTCTGCTTGGA

[5] 35 AAAGATAAACTCTAGGCCACCTCCTCCTTCTTCTA

...

[996] 35 GTGGCAGCGGTGAGGCGGCGGGGGGGGGTTGTTTG

[997] 35 GTCGGAGGTCAGCAAGCTGTAGTCGGTGTAAAGCT

[998] 35 GTCATAAATTGGACAGTGTGGCTCCAGTATTCTCA

[999] 35 ATCTACATTAAGGTCAATTACAATGATAAATAAAA

[1000] 35 TTCTCAGCCATTCAGTATTCCTCAGGTGAAAATTC

$quality

A BStringSet instance of length 1000

width seq

[1] 35 YQMIMIMMLMMIGIGMFICMFFFIMMHIIHAAGAH

[2] 35 ZXZUYXZQYYXUZXYZYYZZXXZZIMFHXQSUPPO

[3] 35 LGDHLILLLLLLLIGFLLALDIFDILLHFIAECAE

[4] 35 JJYYIYVSYYYYYYYYSDYYWVUYYNNVSVQQELQ

[5] 35 LLLILIIIDLLHLLLLLLLLLLLALLLLHLLLLEL

...

[996] 35 ZZZZZZZYZZYUYZYUYZKYUDUZIYYODJGUGAA

[997] 35 ZZZZZZZZZZZZZZZZZZYZZYXXZYSSXXUUHHQ

[998] 35 ZZZZZZZZZZZZZZZYZZZZYZZZZYZZXZUUUUS

[999] 35 ZZZZZZZZZZZYXZYZYZZYZYZZXKZSYXUUNUN

[1000] 35 ZZZZZZZZZZZZZZYZZZZZZZZYYSYSZXUUUUU

The file has been parsed, and appropriate data objects were created.

A feature of readXStringColumns and other input functions in the ShortRead package is that all files matching pattern

in the specified dirPath will be read into a single object. This provides a convenient way to, for instance, parse all tiles
in a Solexa lane into a single DNAStringSet object.

An Introduction to ShortRead 7

There are several advantages to reading columns as XStringSet objects. These are more compact than the corresponding
character representation:

> object.size(cols$read)

50840 bytes

> object.size(as.character(cols$read))

94280 bytes

They are also created much more quickly. And the DNAStringSet and related classes are used extensively in ShortRead,
Biostrings, BSgenome and other packages relevant to short read technology.

4.2 Sorting

Short reads can be sorted using srsort, or the permutation required to bring the short read into lexicographic order can
be determined using srorder. These functions are different from sort and order because the result is independent of
the locale, and they operate quickly on DNAStringSet and BStringSet objects.

The function srduplicated identifies duplicate reads. This function returns a logical vector, similar to duplicated.
The negation of the result from srduplicated is useful to create a collection of unique reads. An experimental scenario
where this might be useful is when the sample preparation involved PCR. In this case, replicate reads may be due to
artifacts of sample preparation, rather than differential representation of sequence in the sample prior to PCR.

4.3 Summarizing read occurrence

The tables function summarizes read occurrences, for instance,

> tbls <- tables(fq)

> names(tbls)

[1] "top" "distribution"

> tbls$top[1:5]

CTATTCTCTACAAACCACAAAGACATTGGAACACTATACCTATTATTCGGCGCATGAGCTGGAGTCCTAGGC

7

GTTTGGTCTAGGGTGTAGCCTGAGAATAGGGGAAATCAGTGAATGAAGCCTCCTATGATGGCAAATACAGCT

7

CGATAACGTTGTAGATGTGGTCGTTACCTAGAAGGTTGCCTGGCTGGCCCAGCTCGGCTCGAATAAGGAGGC

6

CTAGCATTTACCATCTCACTTCTAGGAATACTAGTATATCGCTCACACCTCATATCCTCCCTACTATGCCTA

6

CACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAAGTATTTAGCTGACTCG

5

> head(tbls$distribution)

nOccurrences nReads

1 1 19291

2 2 247

3 3 34

4 4 18

5 5 3

6 6 2

An Introduction to ShortRead 8

The top component returned by tables is a list tallying the most commonly occurring sequences in the short reads.
Knowledgeable readers will recognize the top-occurring read as a close match to one of the manufacturer adapters.

The distribution component returned by tables is a data frame that summarizes how many reads (e.g., 19291) are
represented exactly 1 times.

4.4 Finding near matches to short sequences

Facilities exist for finding reads that are near matches to specific sequences, e.g., manufacturer adapter or primer se-
quences. srdistance reports the edit distance between each read and a reference sequence. srdistance is implemented
to work efficiently for reference sequences whose length is of the same order as the reads themselves (10’s to 100’s of
bases). To find reads close to the most common read in the example above, one might say

> dist <- srdistance(sread(fq), names(tbls$top)[1])[[1]]

> table(dist)[1:10]

dist

0 4 6 10 14 18 20 21 31 32

7 1 3 1 3 1 4 1 3 11

‘Near’ matches can be filtered, e.g.,

> fqSubset <- fq[dist>4]

A different strategy can be used to tally or eliminate reads that consist predominantly of a single nucleotide. alpha-

betFrequency calculates the frequency of each nucleotide (in DNA strings) or letter (for other string sets) in each read.
Thus one could identify and eliminate reads with more than 30 adenine nucleotides with

> countA <- alphabetFrequency(sread(fq))[,"A"]

> fqNoPolyA <- fq[countA < 30]

alphabetFrequency, which simply counts nucleotides, is much faster than srdistance, which performs full pairwise
alignment of each read to the subject.

Users wanting to use R for whole-genome alignments or more flexible pairwise aligment are encouraged to investigate
the Biostrings package, especially the PDict class and matchPDict and pairwiseAlignment functions.

5 Legacy support for early file formats

The ShortRead package contains functions and classes to support early file formats and ungapped alignments. Help pages
are flagged as ‘legacy’; versions of ShortRead prior to 1.21 (Bioconductor version 2.13) contain a vignette illustrating
common work flows with these file formats.

6 sessionInfo

> toLatex(sessionInfo())

� R version 3.2.2 (2015-08-14), x86_64-pc-linux-gnu
� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils
� Other packages: Biobase 2.30.0, BiocGenerics 0.16.0, BiocParallel 1.4.0, Biostrings 2.38.0, GenomeInfoDb 1.6.0,

GenomicAlignments 1.6.0, GenomicRanges 1.22.0, IRanges 2.4.0, Rsamtools 1.22.0, S4Vectors 0.8.0,
ShortRead 1.28.0, SummarizedExperiment 1.0.0, XVector 0.10.0

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html

An Introduction to ShortRead 9

� Loaded via a namespace (and not attached): BiocStyle 1.8.0, RColorBrewer 1.1-2, bitops 1.0-6,
futile.logger 1.4.1, futile.options 1.0.0, grid 3.2.2, hwriter 1.3.2, lambda.r 1.1.7, lattice 0.20-33,
latticeExtra 0.6-26, tools 3.2.2, zlibbioc 1.16.0

	1 Sample data
	2 Functionality
	3 Common work flows
	3.1 Quality assessment
	3.2 Filtering and trimming

	4 Using ShortRead for data exploration
	4.1 Data I/O
	4.1.1 readXStringColumns

	4.2 Sorting
	4.3 Summarizing read occurrence
	4.4 Finding near matches to short sequences

	5 Legacy support for early file formats
	6 sessionInfo

