Upsize your clustering with Clusterize

Erik S. Wright
October 24, 2023

Contents

{1 Introduction to supersize clustering| 1
2 Getting started with Clusterize| 1
3 Optimize your inputs to Clusterize| 2
|4 Visualize the output of Clusterize| 5
|5 Specialize clustering for your goals| 8
|6 Resize to fit within less memory| 11
(7 Finalize your use of Clusterize| 12
1 Introduction to supersize clustering

You may have found yourself in a familiar predicament for many bioinformaticians: you have a lot of sequences and
you need to downsize before you can get going. You may also theorize that this must be an easy problem to solve
—given sequences, output clusters. But what can you utilize to solve this problem? This vignette will familiarize you
with the Clusterize function in the DECIPHER package. Clusterize will revolutionize all your clustering needs!

2

Why Clusterize?:

* Scalability - Clusterize will linearize the search space so that many sequences can be clustered in a reason-
able amount of time.

* Simplicity - Although you can individualize Clusterize, the defaults are straightforward and should meet
most of your needs.

* Accuracy - Clusterize will maximize your ability to extract biologically meaningful results from your se-
quences.

This vignette will summarize the use of Clusterize to cluster DNA, RNA, or protein sequences.

Getting started with Clusterize

To get started we need to load the DECIPHER package, which automatically mobilize a few other required packages.

> library (DECIPHER)

There’s no need to memorize the inputs to Clusterize, because its help page can be accessed through:

> ? Clusterize

3 Optimize your inputs to Clusterize

Clusterize requires that you first digitize your sequences by loading them into memory. For the purpose of this
vignette, we will capitalize on the fact that DECIPHER already includes some built-in sets of sequences.

> # specify the path to your file of sequences:
fas <- "<<path to training FASTA file>>"

>
> # OR use the example DNA sequences:
>

fas <- system.file("extdata",
"50S_ribosomal_protein_L2.fas",
package="DECIPHER")
> # read the sequences into memory
> dna <- readDNAStringSet (fas)

DNAStringSet object of length 317:

> dna
width
[1] 819
[2] 822
[3] 822
[4] 822
[5] 819
[313] 819
[314] 822
[315] 864
[316] 831
[317] 840

seq

ATGGCTTTAAAAAATTTTAATC. .
ATGGGAATACGTAAACTCAAGC. .
ATGGGAATACGTAAACTCAAGC. ..
ATGGGAATACGTAAACTCAAGC. .
ATGGCTATCGTTAAATGTAAGC. .

ATGGCAATTGTTAAATGTAAAC. .
ATGCCTATTCAAAAATGCAAAC. ..
ATGGGCATTCGCGTTTACCGAC. .
ATGGCACTGAAGACATTCAATC. .
ATGGGCATTCGCAAATATCGAC. .

ATTTATTGTAAAAAAAAGAAAA
.CATCATTGAGAGAAGGAAAAAG

CATCATTGAGAGAAGGAAAAAG

.CATCATTGAGAGAAGGAAAAAG
.CATCGTACGTCGTCGTGGTAAA

. TATCGTACGTCGCCGTACTAAA

TATTCGCGATCGTCGCGTCAAG

.GGGTCGCGGTGGTCGTCAGTCT
.AAGCCGCCACAAGCGGAAGAAG
.CAAGACGGCTTCCGGGCGAGGT

names

Rickettsia prowaz...
Porphyromonas gin...
Porphyromonas gin...
Porphyromonas gin...
Pasteurella multo...

Pectobacterium at...
Acinetobacter sp....
Thermosynechococc. ..
Bradyrhizobium ja...
Gloeobacter viola...

The Clusterize algorithm will generalize to nucleotide or protein sequences, so we must choose which we
are going to use. Here, we hypothesize that weaker similarities can be detected between proteins and, therefore, decide
to use the translated coding (amino acid) sequences. If you wish to cluster at high similarity, you could also strategize
that nucleotide sequences would be better because there would be more nucleotide than amino acid differences.

> aa <- translate (dna)

> aa
AAStringSet
width
[1] 273
[2] 274
[3] 274
[4] 274
[5] 273
[313] 273
[314] 274
[315] 288
[316] 277
[317] 280

object of length 317:
seq

MALKNENPITPSLRELVQVDKT. .
MGIRKLKPTTPGQRHKVIGAEFD. .
MGIRKLKPTTPGQRHKVIGAFD. ..
MGIRKLKPTTPGQRHKVIGAFD. .
MAIVKCKPTSAGRRHVVKIVNP. .

MAIVKCKPTSPGRRHVVKVVNP. .
MPIQKCKPTSPGRRFVEKVVHS. ..
MGIRVYRPYTPGVRQKTVSDFA. .
MALKTENPTTPGQRQLVMVDRS. .
MGIRKYRPMTPGTRQRSGADFA. .

. STKGKKTRKNKRTSKEFIVKKRK
.KGLKTRAPKKHSSKYIIERRKK

KGLKTRAPKKHSSKYITIERRKK

.KGLKTRAPKKHSSKYIIERRKK
. TKGKKTRHNKRTDKF IVRRRGK

. TKGKKTRSNKRTDKEF IVRRRTK

KGYKTRTNKRTTKMIIRDRRVK

. SDALIVRRRKKSSKRGRGGRQS
.KKTRSNKSTNKFILLSRHKRKK
.RKRRKPSSKFIIRRRKTASGRG

names

Rickettsia prowaz...
Porphyromonas gin...
Porphyromonas gin...
Porphyromonas gin...
Pasteurella multo...

Pectobacterium at...
Acinetobacter sp....
Thermosynechococc. ..
Bradyrhizobium ja...
Gloeobacter viola...

1)) \ -~
8 — — ~k _ .k \
f =
rareKmers maxPhase3 FALSE () TRUE
(50) () singleLinkage
40% coverage uﬂl%mrm-r query (cluster representative)
60% coverage target sequence
minCoverage = +50% () then cluster because 60 = 50
minCoverage = -50% then don't cluster because 40 < 50
xe®
XC
\0%96 x\e‘“a
o g
W Y ée"e‘“\ \ GC’QQ e
R\ (s) A\(
oV (@ e o2 A
85.7% (6/7) = = NA()y T
100% (6/6) & g FALSE H
75% (6/8) < Y2 TRUE i
66.7% (6/9) &= w NA() oo
100% (6/6) @ Z FALSE N
316% (6/19) 2= TRUE T
75% (6/8) % u NA() L]
[9]
100% (6/6) £ 2 FALSE T
60% (6/10) & . TRUE .
75% (6/8) % o NA() o
100% (6/6) 2 = FALSE R
35.3% (6/17) = = TRUE T

Figure 1: The most important parameters (in bold) to customize your use of Clusterize.

> seqgs <- aa # could also cluster the nucleotides
> length (segs)

[1] 317

Now you can choose how to parameterize the function, with the main arguments being myXStringSet and cutoff .
In this case, we will initialize cutoff at seq (0.5, 0, —-0.1) to cluster sequences from 50% to 100% similarity
by 10%’s. It is important to recognize that cutoff's can be provided in ascending or descending order and, when
descending, groups at each cutoff will be nested within the previous cutoff’s groups.

We must also choose whether to customize the calculation of distance. The defaults will penalize gaps as single
events, such that each consecutive set of gaps (i.e., insertion or deletion) is considered equivalent to one mismatch.
If you want to standardize the definition of distance to be the same as most other clustering programs then set: pe-
nalizeGapLetterMatches to TRUE (i.e., every gap position is a mismatch), method to "shortest", minCoverage
to 0, and includeTerminalGaps to TRUE. It is possible to rationalize many different measures of distance — see the
DistanceMatrix function for more information about alternative distance parameterizations.

We can further personalize the inputs as desired. The main function argument to emphasize is processors, which
controls whether the function is parallelized on multiple computer threads (if DECIPHER) was built with OpenMP
enabled). Setting processors to a value greater than 1 will speed up clustering considerably, especially for large size
clustering problems. Once we are ready, it’s time to run Clusterize and wait for the output to materialize!

> clusters <- Clusterize(seqgs, cutoff=seq(0.5, 0, -0.1), processors=1l)

Partitioning sequences by 4-mer similarity:

Time difference of 0.04 secs

Sorting by relatedness within 5 groups:
iteration 47 of up to 47 (100.0% stability)
Time difference of 1.15 secs

Clustering sequences by 4-mer similarity:

Time difference of 0.17 secs

Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 4-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%

> class (clusters)
[1] "data.frame"
> colnames (clusters)

[1] "cluster_0_5" "cluster_0_4" "cluster_0_3" "cluster_0_2" "cluster_0_1"
[6] "cluster_0O"

> str(clusters)

'data.frame': 317 obs. of 6 variables:
$ cluster_0_5: int 4 1 1 1 4 4 4 3 3 3

S cluster_0_4: int 1 25 25 25 2 2 2 9 9 9
$ cluster_0_3: int 49 1 1 1 43 43 44 31 31 31
$ cluster_0_2: int 1 71 71 71 12 12 10 29 29 29
$ cluster_0_1: int 90 1 1 1 72 72 74 51 51 51
$ cluster_0 : int 2 102 102 102 24 24 22 46 46 46
> apply (clusters, 2, max) # number of clusters per cutoff
cluster_0_5 cluster_0_4 cluster_0_3 cluster_0_2 cluster_0_1 cluster_0
4 25 49 71 90 102
> apply (clusters, 2, function(x) which.max (table(x))) # max sizes
cluster_0_5 cluster_0_4 cluster_0_3 cluster_0_2 cluster_0_1 cluster_0
3 10 28 37 42 55

Notice that Clusterize will characterize the clustering based on how many clustered pairs came from re-
latedness sorting versus rare k-mers, and Clusterize will predict the effectiveness of clustering. Depending on
the input sequences, the percentage of clusters originating from relatedness sorting will equalize with the number
originating from rare k-mers, but more commonly clusters will originate from one source or the other. The clustering
effectiveness formalizes the concept of “inexact” clustering by approximating the fraction of possible sequence pairs

that were correctly clustered together. You can incentivize a higher clustering effectiveness by increasing maxPhase3
at the expense of (proportionally) longer run times.
We can now realize our objective of decreasing the number of sequences. Here, we will prioritize keeping only

the longest diverse se

> o <- orde

> aalo]
AAStringSet
width
274
274
274
276
278
277
277
274
274
274
> dnalo]
DNAStringSe
width
822
822
822
828
834
831
831
822
822
822

4 Visualize t

quences.

r (clusters[[2]],

object of length 25:
seq

MGIRKLKPTTPGORHKVIGAFDK. .
MGIRKLKPTTPGQRHKVIGAFDK. .
MAVRKLKPTTPGQRHKIIGTFEE. ..
MALVKTKPTSPGRRSMVKVVNPD. .
MGIRKYKPTTPGRRGSSVADFVE. ..

MALKHENPITPGQRQLVIVDRSE. .
MALKHENPITPGQRQLVIVDRSE. ..
MAIVKCKPTSAGRRHVVKVVNAD. .
MAIVKCKPTSAGRRHVVKVVNAD. ..
MATIVKCKPTSPGRREVVKVVNQE. .

t object of length 25:
seq

ATGGGAATACGTAAACTCAAGCC. .
ATGGGAATACGTAAACTCAAGCC. .
ATGGCAGTACGTAAATTAAAGCC. .
ATGGCACTCGTCAAGACCAAGCC. .
ATGGGAATCCGCAAGTACAAGCC. ..

ATGGCACTCAAGCATTTTAATCC. .
ATGGCACTCAAGCATTTTAATCC. .
ATGGCTATTGTTAAATGTAAGCC. .
ATGGCTATTGTTAAATGTAAGCC. ..
ATGGCAATCGTTAAATGCAAACC. .

he output of Clusterize

width (seqgs),
> o0 <- of[!duplicated(clusters([[2]])]

decreasing=TRUE) #

.KGLKTRAPKKHSSKYIIERRKK
.KGLKTRAPKKHSSKYITIERRKK

KGLKTRAPKKQSSKYITIERRKK

.KGYRTRSNKRTTSMIVQRRHKR

TRSPKKASNKYIVRRRKTNKKR

.KKTRSNKATDKEF IMRSRHQRKK

KKTRSNKATDKEF IMRSRHQRKK

. TKGYKTRSNKRTDKYIVRRRNK

TKGYKTRSNKRTDKYIVRRRNK

.PTKGAKTRGNKRTDKMIVRRRK

.CATCATTGAGAGAAGGAAAAAG
.CATCATTGAGAGAAGGAAAAAG
.CATTATTGAGAGAAGAAAAAAG
.CGTGCAACGCCGTCACAAGCGT

CCGCAAGACGAACAAGAAGCGC

. TTCGCGCCATCAGCGCAAGAAG
. TTCGCGCCATCAGCGCAAGAAG
.CATCGTACGTCGTCGTAATAAG

CATCGTACGTCGTCGTAATAAG

AATGATCGTCCGTCGTICGCAAG

40% cutoff

names

Porphyromonas gin...
Porphyromonas gin...
Bacteroides theta...
Ralstonia solanac...
Streptomyces coel...

Brucella melitens...
Brucella sp. NF 2653
Vibrio cholerae PS15
Vibrio cholerae H...
Pseudomonas syrin...

names

Porphyromonas gin...
Porphyromonas gin...
Bacteroides theta...
Ralstonia solanac...
Streptomyces coel...

Brucella melitens...
Brucella sp. NF 2653
Vibrio cholerae PS15
Vibrio cholerae H...
Pseudomonas syrin...

We can scrutinize the clusters by selecting them and looking at their multiple sequence alignment:

> t <- tabl
> t <- sort
> head(t)

3 4 1
138 111 55
> w <- whic
> AlignSegs
AAStringSet

e(clusters[[1]])
(t, decreasing=TRUE)

2

13
h(clusters[[1]]
(segs[w], verbose=FALSE)

object of length 138:

width seq

== names (t[1]))

select the clusters at a cutoff

names

g w N

[134]
[135]
[136]
[137]
[138]

290
290
290
290
290
290
290
290
290
290

VGIKKYKPTT-NGRRNMTASDEF. .
VGIKKYKPTT-NGRRNMTASDEF'. .
VGIKKYKPTT-NGRRNMTASDEF. .
VGIKKYKPTT-NGRRNMTASDEF'. .
VGIKKYKPTT-NGRRNMTASDEF. .

MATIKKIISRSNSGIHNATVIDE. .
MAIKKIISRSNSGIHNATVIDEF..
MAIRKLNPTT-NGTRNMSILDY. .
MPVKKIVNRSNSGIHHKISIDY..
MATKKYKSTT-NGRRNMTTIDY. .

. NKKARSNKLIVRGRRPGKH——-—
. NKKARSNKLIVRGRRPGKH——-—
. NKKARSNKLIVRGRRPGKH-—-
. NKKARSNKLIVRGRRPGKH—-—-
. NKKARSNKLIVRGRRPGKH-——

.NMKKHSTNLITIRNRKGEQY———
.NMKKHSTNLIIRNRKGEQY—-—-
.DNKKSSTKLIIRRRKES———K=*
.NNKKSSTQLIIRRRNSK————%
.NTKKTSEKLIVRKRSNK—-——K=*

It’s possible to utilize the heatmap function to view the clustering results.
As can be seen in Figure 2] Clusterize will organize its clusters such that each new cluster is within the
previous cluster when cutoff is provided in descending order. We can also see that sequences from the same species
tend to cluster together, which is an alternative way to systematize sequences without clustering.

Lactobacillus pla...
Lactobacillus pla...
Lactobacillus pla...
Lactobacillus pla...
Lactobacillus pla...

Mycoplasma
Mycoplasma
Mycoplasma
Mycoplasma
Mycoplasma

genita...
genita...
pulmonis
gallis...
mycoid. ..

aligned_seqgs <- AlignSegs (seqgs, verbose=FALSE)

d <- DistanceMatrix (aligned_segs,
tree <- Treeline (myDistMatrix=d, method="UPGMA",

cluster 0 5

cluster 0 _4
cluster 0_3
cluster 0 _2
cluster 0 1

Figure 2: Visualization of the clustering.

verbose=FALSE)

verbose=FALSE)
heatmap (as.matrix (clusters), scale="column", Colv=NA, Rowv=tree)

Rickettsia parkeri str
Brucella sp. NF 265!
Agrobacterium sp. A
Sinorhizobium melilc
Rhodopseudomonas
Haemophilus influen
Haemophilus influen
Haemophilus influen
Vibrio parahaemoilyt
Vibrio cholerae 039!
Pseudomonas syrin
Pseudomonas aeru¢
Pseudomonas aeru¢
Xanthomonas axonc
Xanthomonas axonc
Coxiella burnetii RS/
Neisseria meningitid
Buchnera aphidicola
Wigglesworthia glos
Lactobacillus plantai

Lactol
Lacto

bacillus H
coccus la

ohnso

ctis s

Bacillus cereus BAG
Bacillus cereus AH6
Oceanobacillus ihey
Clostridium perfringe
Thermus thermophil
Corynebacterium gl
Corynebacterium dif
Streptomyces coelic
Synechocystis sp. P
Prochlorococcus ma
Ereponema denticole
0l

cluster 0

elia burgdorferi !
Helicobacter py! ori <
Helicobacter pylori F
Helicobacter pylori
Helicobacter pylori C
Helicobacter pyl ori F
elicobacter pylori +
elicobacter pylori C
elicobacter pylori E
elicobacter pylori C
elicobacter pylori F
elicobacter pylori F
elicobacter pylori F
Helicobacter hepatic
Campylobacter jejun
Campylobacter |ejun
Campylobacter e'ur_w
u urealyti
Mycoplasma mycoid

Aquifex aeolicus VF!

5 Specialize clustering for your goals

The most common use of clustering is to categorize sequences into groups sharing similarity above a threshold and
pick one representative sequence per group. These settings empitomize this typical user scenario:

cutoff

Partitioning sequences by 5-me

> cl <- Clusterize (dna,

=0.2,

r similarity:

invertCenters=TRUE, processors=1)

Time difference of 0.09 secs

Sorting by relatedness within
iteration 1 of up to 158 (100.

Time difference of 0.31 secs

Clustering sequences by 9-mer

1 group:

0% stability)

similarity:

Time difference of 1.4 secs

Clusters via relatedness sorti
Clusters via rare 5-mers: 100%

ng: 100% (0% exclusively)
(0% exclusively)
100%

Estimated clustering effectiveness:
> w <— which(cl < 0 &
> dna[w]
DNAStringSet object of length 77:

width

819
822
837
825
828
831
843
822

864
840

seq

ATGGCTTTAAAAAATTTTAATCC. .
ATGGGAATACGTAAACTCAAGCC. .
GTGGGTATTAAGAAGTATAAACC. .
ATGCCATTGATGAAGTTCAAACC. .
ATGGGTATTCGTAATTATCGGCC. .

ATGGCACTTAAGCAGTTTAATCC. .
ATGTTTAAGAAATATCGACCTGT. .
ATGCCTATTCAAAAATGCAAACC. .
ATGGGCATTCGCGTTTACCGACC. .
ATGGGCATTCGCAAATATCGACC. .

'duplicated(cl))
select cluster representatives

(negative cluster

ATTTATTGTAAAAAAAAGAAAA
.CATCATTGAGAGAAGGAAAAAG
. TGGTCGCCGTCCAGGCAAACAC
.CATCGTCCGCGATCGTAGGGGC
.GATTGTCCGCCGTCGCACCAAA

. TACGCGTCATCAGCGCAAGAAA
.CGTGAAACGTCGAAGGAAGAAG
. TATTCGCGATCGTCGCGTCAAG
.GGGTCGCGGTGGTCGTCAGTCT
.CAAGACGGCTTCCGGGCGAGGT

numbers)

names

Rickettsia prowaz...
Porphyromonas gin...
Lactobacillus pla...
Xanthomonas vesic...
Synechocystis sp....

Bartonella hensel...
Candidatus Protoc...
Acinetobacter sp....
Thermosynechococc. ..
Gloeobacter viola...

By default, Clusterize will cluster sequences with linkage to the representative sequence in each group,
but it is also possible to tell Clusterize to minimize the number of clusters by establishing linkage to any sequence
in the cluster (i.e., single-linkage). This is often how we conceptualize natural groupings and, therefore, may better

match alternative classification systems such as taxonomy:

> c2

<— Clusterize (dna,

cutoff=0.2,

singleLinkage=TRUE, processors=1)

Partitioning sequences by 5-mer similarity:

Time difference of 0.08 secs

Sorting by relatedness within 1 group:

iteration 112 of up to 158 (100.0% stability)
Time difference of 20.25 secs

Clustering sequences by 9-mer similarity:

Time difference of 0.49 secs

Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 5-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%

> max (abs(cl)) # center-linkage

(11 77

> max (c2) # single-linkage (fewer clusters, but broader clusters)
(11 77

It is possible to synthesize a plot showing a cross tabulation of taxonomy and cluster number. We may idealize
the clustering as matching taxonomic labels (3)), but this is not exactly the case.

> genus <- sapply(strsplit (names(dna), " "), “[7, 1)
> t <- table(genus, c2[[1]])
> heatmap (sgrt(t), scale="none", Rowv=NA, col=hcl.colors (100))

Xanthomonas
Wolbachia
Vibrio
Treponema
Thermotoga
Thermoanaerobacter
Synechococcus
Streptococcus
Sinorhizobium
Rickettsia
Rhodopirellula
Pseudomonas
Porphyromonas
Pectobacterium
Onion

Nostoc
Neisseria
Mycobacterium
Lactococcus
Helicobacter
Gloeobacter
Fusobacterium
Desulfovibrio
Coxiella
Clostridium
Chlorobium
Chlamydia
Candidatus
Buchnera
Bradyrhizobium
Bifidobacterium
Bartonella
Bacillus
Anabaena
Acinetobacter

Figure 3: Another visualization of the clustering.

10

6 Resize to fit within less memory

What should you do if you have more sequences than you can cluster on your midsize computer? If there are far
fewer clusters than sequences (e.g., cutoff is high) then it is likely possible to resize the clustering problem. This is
accomplished by processing the sequences in batches that miniaturize the memory footprint and are at least as large
as the final number of clusters. The number of sequences processed per batch is critical to atomize the problem
appropriately while limiting redundant computations. Although not ideal from a speed perspective, the results will not
jeopardize accuracy relative to as if there was sufficient memory available to process all sequences in one batch.

>
>
>
>

}

batchSize <- 2e2 # normally a large number (e.g., le6 or le7)

o0 <- order (width (seqgs), decreasing=TRUE) # process largest to smallest
c3 <- integer (length(segs)) # cluster numbers

repeat {

m <- which(c3 < 0) # existing cluster representatives
m <- m[!duplicated(c3[m])] # remove redundant sequences
if (length(m) >= batchSize)

stop ("batchSize is too small")

w <— head(c(m, o[c3[o] == 0L]), batchSize)
if (lany(c3[w] == 0L)) {
if (any(c3[-w] == 0L))

stop ("batchSize is too small")
break # done
}
m <- m[match (abs(c3[-w]), abs(c3[m]))]
c3[w] <- Clusterize(segs|[w], cutoff=0.05, invertCenters=TRUE) [[1]]
c3[-w] <- ifelse(is.na(c3[m]), 0L, abs(c3[m]))

Partitioning sequences by 3-mer similarity:

Time difference of 0.02 secs

Sorting by relatedness within 6 groups:

iteration 1 of up to 25 (100.0% stability)

Time difference of 0.02 secs

Clustering sequences by 4-mer similarity:

Time difference of 0.14 secs

Clusters via relatedness sorting: 100% (0% exclusively)

o)

Clusters via rare 3-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%

Partitioning sequences by 3-mer similarity:

Time difference of 0.03 secs

Sorting by relatedness within 4 groups:

11

iteration 1 of up to 46 (100.0% stability)
Time difference of 0.03 secs

Clustering sequences by 4-mer similarity:

Time difference of 0.29 secs

Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 3-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%

> table(abs(c3)) # cluster sizes

1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21

1111 1 2 1 1 1 1 2 1 3 1 1 1 1 7 3 1 1
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

156 3 2 1 3 3 6 1 1 2 7 2 1 1 1 8 3 117
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
751 1 1 3 4 112 1 1 111 3 1 1 1 1 1 1 5 &6
79 80 81 82 83 84 85 86 87 88 89 90 91

11 11713 ¢ 3 1 1 1 1 1 1

7 Finalize your use of Clusterize

Notably, Clusterize is a stochastic algorithm, meaning it will randomize which sequences are selected during
pre-sorting. Even though the clusters will typically stabilize with enough iterations, you can set the random number

seed (before every run) to guarantee reproducibility of the clusters:

> set.seed(123) # initialize the random number generator
> clusters <- Clusterize(seqgs, cutoff=0.1, processors=1)

Partitioning sequences by 4-mer similarity:

22 23 24 25 26

1

1

3

1

1

48 49 50 51 52

3

2

2

2

3

74 75 76 77 78

3

3

2

1

1

Time difference of 0.02 secs

Sorting by relatedness within 5 groups:
iteration 1 of up to 47 (100.0% stability)
Time difference of 0.02 secs

Clustering sequences by 4-mer similarity:

Time difference of 0.26 secs
Clusters via relatedness sorting: 100% (0% exclusively)

Clusters via rare 4-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%

12

> set.seed(NULL) # reset the seed

Now you know how to utilize Clusterize to cluster sequences. To publicize your results for others to
reproduce, make sure to provide your random number seed and version number:

¢ R version 4.3.1 (2023-06-16), x86_64-pc—-1linux—gnu

* Running under: Ubuntu 22.04.3 LTS

* Matrix products: default

* BLAS: /home/biocbuild/bbs-3.18-bioc/R/1ib/1ibRblas. so

e LAPACK: /usr/1lib/x86_64-1linux—gnu/lapack/liblapack.so0.3.10.0
* Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

 Other packages: BiocGenerics 0.48.0, Biostrings 2.70.0, DECIPHER 2.30.0, GenomelnfoDb 1.38.0,
IRanges 2.36.0, RSQLite 2.3.1, S4Vectors 0.40.0, XVector 0.42.0

* Loaded via a namespace (and not attached): DBI 1.1.3, GenomelnfoDbData 1.2.11, RCurl 1.98-1.12, bit 4.0.5,
bit64 4.0.5, bitops 1.0-7, blob 1.2.4, cachem 1.0.8, cli 3.6.1, compiler 4.3.1, crayon 1.5.2, fastmap 1.1.1,
memoise 2.0.1, pkgconfig 2.0.3, rlang 1.1.1, tools 4.3.1, vctrs 0.6.4, zlibbioc 1.48.0

13

	Introduction to supersize clustering
	Getting started with Clusterize
	Optimize your inputs to Clusterize
	Visualize the output of Clusterize
	Specialize clustering for your goals
	Resize to fit within less memory
	Finalize your use of Clusterize

