Contents

library(MungeSumstats)

MungeSumstats now offers high throughput query and import functionality to data from the MRC IEU Open GWAS Project.

1 Find GWAS datasets

#### Search for datasets ####
metagwas <- MungeSumstats::find_sumstats(traits = c("parkinson","alzheimer"), 
                                         min_sample_size = 1000)
head(metagwas,3)
ids <- (dplyr::arrange(metagwas, nsnp))$id  
##          id               trait group_name year    author
## 1 ieu-a-298 Alzheimer's disease     public 2013   Lambert
## 2   ieu-b-2 Alzheimer's disease     public 2019 Kunkle BW
## 3 ieu-a-297 Alzheimer's disease     public 2013   Lambert
##                                                                                                                                                                                                                                                                                                                    consortium
## 1                                                                                                                                                                                                                                                                                                                        IGAP
## 2 Alzheimer Disease Genetics Consortium (ADGC), European Alzheimer's Disease Initiative (EADI), Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE), Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer's Disease Consortium (GERAD/PERADES),
## 3                                                                                                                                                                                                                                                                                                                        IGAP
##                 sex population     unit     nsnp sample_size       build
## 1 Males and Females   European log odds    11633       74046 HG19/GRCh37
## 2 Males and Females   European       NA 10528610       63926 HG19/GRCh37
## 3 Males and Females   European log odds  7055882       54162 HG19/GRCh37
##   category                subcategory ontology mr priority     pmid sd
## 1  Disease Psychiatric / neurological       NA  1        1 24162737 NA
## 2   Binary Psychiatric / neurological       NA  1        0 30820047 NA
## 3  Disease Psychiatric / neurological       NA  1        2 24162737 NA
##                                                                      note ncase
## 1 Exposure only; Effect allele frequencies are missing; forward(+) strand 25580
## 2                                                                      NA 21982
## 3                Effect allele frequencies are missing; forward(+) strand 17008
##   ncontrol     N
## 1    48466 74046
## 2    41944 63926
## 3    37154 54162

2 Import full results

You can supply import_sumstats() with a list of as many OpenGWAS IDs as you want, but we’ll just give one to save time.

datasets <- MungeSumstats::import_sumstats(ids = "ieu-a-298",
                                           ref_genome = "GRCH37")

2.1 Summarise results

By default, import_sumstats results a named list where the names are the Open GWAS dataset IDs and the items are the respective paths to the formatted summary statistics.

print(datasets)
## $`ieu-a-298`
## [1] "/tmp/RtmpXyoUgm/ieu-a-298.tsv.gz"

You can easily turn this into a data.frame as well.

results_df <- data.frame(id=names(datasets), 
                         path=unlist(datasets))
print(results_df)
##                  id                             path
## ieu-a-298 ieu-a-298 /tmp/RtmpXyoUgm/ieu-a-298.tsv.gz

3 Import full results (parallel)

Optional: Speed up with multi-threaded download via axel.

datasets <- MungeSumstats::import_sumstats(ids = ids, 
                                           vcf_download = TRUE, 
                                           download_method = "axel", 
                                           nThread = max(2,future::availableCores()-2))

4 Further functionality

See the Getting started vignette for more information on how to use MungeSumstats and its functionality.

5 Session Info

utils::sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] MungeSumstats_1.6.0 BiocStyle_2.26.0   
## 
## loaded via a namespace (and not attached):
##   [1] fs_1.5.2                                   
##   [2] bitops_1.0-7                               
##   [3] matrixStats_0.62.0                         
##   [4] bit64_4.0.5                                
##   [5] filelock_1.0.2                             
##   [6] progress_1.2.2                             
##   [7] httr_1.4.4                                 
##   [8] GenomeInfoDb_1.34.0                        
##   [9] googleAuthR_2.0.0                          
##  [10] GenomicFiles_1.34.0                        
##  [11] tools_4.2.1                                
##  [12] bslib_0.4.0                                
##  [13] utf8_1.2.2                                 
##  [14] R6_2.5.1                                   
##  [15] DBI_1.1.3                                  
##  [16] BiocGenerics_0.44.0                        
##  [17] tidyselect_1.2.0                           
##  [18] prettyunits_1.1.1                          
##  [19] bit_4.0.4                                  
##  [20] curl_4.3.3                                 
##  [21] compiler_4.2.1                             
##  [22] cli_3.4.1                                  
##  [23] Biobase_2.58.0                             
##  [24] xml2_1.3.3                                 
##  [25] DelayedArray_0.24.0                        
##  [26] rtracklayer_1.58.0                         
##  [27] bookdown_0.29                              
##  [28] sass_0.4.2                                 
##  [29] rappdirs_0.3.3                             
##  [30] stringr_1.4.1                              
##  [31] digest_0.6.30                              
##  [32] Rsamtools_2.14.0                           
##  [33] rmarkdown_2.17                             
##  [34] R.utils_2.12.1                             
##  [35] XVector_0.38.0                             
##  [36] BSgenome.Hsapiens.1000genomes.hs37d5_0.99.1
##  [37] pkgconfig_2.0.3                            
##  [38] htmltools_0.5.3                            
##  [39] MatrixGenerics_1.10.0                      
##  [40] highr_0.9                                  
##  [41] dbplyr_2.2.1                               
##  [42] fastmap_1.1.0                              
##  [43] BSgenome_1.66.0                            
##  [44] rlang_1.0.6                                
##  [45] RSQLite_2.2.18                             
##  [46] jquerylib_0.1.4                            
##  [47] BiocIO_1.8.0                               
##  [48] generics_0.1.3                             
##  [49] jsonlite_1.8.3                             
##  [50] BiocParallel_1.32.0                        
##  [51] dplyr_1.0.10                               
##  [52] R.oo_1.25.0                                
##  [53] VariantAnnotation_1.44.0                   
##  [54] RCurl_1.98-1.9                             
##  [55] magrittr_2.0.3                             
##  [56] GenomeInfoDbData_1.2.9                     
##  [57] Matrix_1.5-1                               
##  [58] Rcpp_1.0.9                                 
##  [59] S4Vectors_0.36.0                           
##  [60] fansi_1.0.3                                
##  [61] lifecycle_1.0.3                            
##  [62] R.methodsS3_1.8.2                          
##  [63] stringi_1.7.8                              
##  [64] yaml_2.3.6                                 
##  [65] SummarizedExperiment_1.28.0                
##  [66] zlibbioc_1.44.0                            
##  [67] BiocFileCache_2.6.0                        
##  [68] grid_4.2.1                                 
##  [69] blob_1.2.3                                 
##  [70] parallel_4.2.1                             
##  [71] crayon_1.5.2                               
##  [72] lattice_0.20-45                            
##  [73] Biostrings_2.66.0                          
##  [74] GenomicFeatures_1.50.0                     
##  [75] hms_1.1.2                                  
##  [76] KEGGREST_1.38.0                            
##  [77] knitr_1.40                                 
##  [78] pillar_1.8.1                               
##  [79] GenomicRanges_1.50.0                       
##  [80] rjson_0.2.21                               
##  [81] SNPlocs.Hsapiens.dbSNP155.GRCh37_0.99.22   
##  [82] codetools_0.2-18                           
##  [83] biomaRt_2.54.0                             
##  [84] stats4_4.2.1                               
##  [85] XML_3.99-0.12                              
##  [86] glue_1.6.2                                 
##  [87] evaluate_0.17                              
##  [88] data.table_1.14.4                          
##  [89] BiocManager_1.30.19                        
##  [90] png_0.1-7                                  
##  [91] vctrs_0.5.0                                
##  [92] assertthat_0.2.1                           
##  [93] cachem_1.0.6                               
##  [94] xfun_0.34                                  
##  [95] restfulr_0.0.15                            
##  [96] gargle_1.2.1                               
##  [97] tibble_3.1.8                               
##  [98] GenomicAlignments_1.34.0                   
##  [99] AnnotationDbi_1.60.0                       
## [100] memoise_2.0.1                              
## [101] IRanges_2.32.0                             
## [102] ellipsis_0.3.2