cellCellSimulate
functionscTensor 2.6.0
Here, we explain the way to generate CCI simulation data.
scTensor has a function cellCellSimulate
to generate the simulation data.
The simplest way to generate such data is cellCellSimulate
with default parameters.
suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
This function internally generate the parameter sets by newCCSParams
,
and the values of the parameter can be changed, and specified as the input of cellCellSimulate
by users as follows.
# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
## ..@ nGene : num 1000
## ..@ nCell : num [1:3] 50 50 50
## ..@ cciInfo:List of 4
## .. ..$ nPair: num 500
## .. ..$ CCI1 :List of 4
## .. .. ..$ LPattern: num [1:3] 1 0 0
## .. .. ..$ RPattern: num [1:3] 0 1 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI2 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 1 0
## .. .. ..$ RPattern: num [1:3] 0 0 1
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI3 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 0 1
## .. .. ..$ RPattern: num [1:3] 1 0 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## ..@ lambda : num 1
## ..@ seed : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
nPair=500, # Total number of L-R pairs
# 1st CCI
CCI1=list(
LPattern=c(1,0,0), # Only 1st cell type has this pattern
RPattern=c(0,1,0), # Only 2nd cell type has this pattern
nGene=50, # 50 pairs are generated as CCI1
fc="E10"), # Degree of differential expression (Fold Change)
# 2nd CCI
CCI2=list(
LPattern=c(0,1,0),
RPattern=c(0,0,1),
nGene=30,
fc="E100")
)
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123
# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
The output object sim has some attributes as follows.
Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.
dim(sim$input)
## [1] 1000 60
sim$input[1:2,1:3]
## Cell1 Cell2 Cell3
## Gene1 9105 2 0
## Gene2 4 37 850
Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.
dim(sim$LR)
## [1] 500 2
sim$LR[1:10,]
## GENEID_L GENEID_R
## 1 Gene1 Gene81
## 2 Gene2 Gene82
## 3 Gene3 Gene83
## 4 Gene4 Gene84
## 5 Gene5 Gene85
## 6 Gene6 Gene86
## 7 Gene7 Gene87
## 8 Gene8 Gene88
## 9 Gene9 Gene89
## 10 Gene10 Gene90
sim$LR[46:55,]
## GENEID_L GENEID_R
## 46 Gene46 Gene126
## 47 Gene47 Gene127
## 48 Gene48 Gene128
## 49 Gene49 Gene129
## 50 Gene50 Gene130
## 51 Gene51 Gene131
## 52 Gene52 Gene132
## 53 Gene53 Gene133
## 54 Gene54 Gene134
## 55 Gene55 Gene135
sim$LR[491:500,]
## GENEID_L GENEID_R
## 491 Gene571 Gene991
## 492 Gene572 Gene992
## 493 Gene573 Gene993
## 494 Gene574 Gene994
## 495 Gene575 Gene995
## 496 Gene576 Gene996
## 497 Gene577 Gene997
## 498 Gene578 Gene998
## 499 Gene579 Gene999
## 500 Gene580 Gene1000
Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.
length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1
## "Cell1" "Cell2" "Cell3" "Cell4" "Cell5" "Cell6"
table(names(sim$celltypes))
##
## Celltype1 Celltype2 Celltype3
## 20 20 20
## R version 4.2.0 RC (2022-04-19 r82224)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] scTGIF_1.10.0
## [2] Homo.sapiens_1.3.1
## [3] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [4] org.Hs.eg.db_3.15.0
## [5] GO.db_3.15.0
## [6] OrganismDbi_1.38.0
## [7] GenomicFeatures_1.48.0
## [8] AnnotationDbi_1.58.0
## [9] SingleCellExperiment_1.18.0
## [10] SummarizedExperiment_1.26.0
## [11] Biobase_2.56.0
## [12] GenomicRanges_1.48.0
## [13] GenomeInfoDb_1.32.0
## [14] IRanges_2.30.0
## [15] S4Vectors_0.34.0
## [16] MatrixGenerics_1.8.0
## [17] matrixStats_0.62.0
## [18] scTensor_2.6.0
## [19] RSQLite_2.2.12
## [20] LRBaseDbi_2.6.0
## [21] AnnotationHub_3.4.0
## [22] BiocFileCache_2.4.0
## [23] dbplyr_2.1.1
## [24] BiocGenerics_0.42.0
## [25] BiocStyle_2.24.0
##
## loaded via a namespace (and not attached):
## [1] ica_1.0-2 Rsamtools_2.12.0
## [3] foreach_1.5.2 lmtest_0.9-40
## [5] crayon_1.5.1 spatstat.core_2.4-2
## [7] MASS_7.3-57 nlme_3.1-157
## [9] backports_1.4.1 GOSemSim_2.22.0
## [11] MeSHDbi_1.32.0 rlang_1.0.2
## [13] XVector_0.36.0 ROCR_1.0-11
## [15] irlba_2.3.5 nnTensor_1.1.5
## [17] filelock_1.0.2 GOstats_2.62.0
## [19] BiocParallel_1.30.0 rjson_0.2.21
## [21] tagcloud_0.6 bit64_4.0.5
## [23] glue_1.6.2 sctransform_0.3.3
## [25] parallel_4.2.0 spatstat.sparse_2.1-1
## [27] dotCall64_1.0-1 tcltk_4.2.0
## [29] DOSE_3.22.0 spatstat.geom_2.4-0
## [31] tidyselect_1.1.2 SeuratObject_4.0.4
## [33] fitdistrplus_1.1-8 XML_3.99-0.9
## [35] tidyr_1.2.0 zoo_1.8-10
## [37] GenomicAlignments_1.32.0 xtable_1.8-4
## [39] magrittr_2.0.3 evaluate_0.15
## [41] ggplot2_3.3.5 cli_3.3.0
## [43] zlibbioc_1.42.0 miniUI_0.1.1.1
## [45] bslib_0.3.1 rpart_4.1.16
## [47] fastmatch_1.1-3 treeio_1.20.0
## [49] maps_3.4.0 fields_13.3
## [51] shiny_1.7.1 xfun_0.30
## [53] cluster_2.1.3 tidygraph_1.2.1
## [55] TSP_1.2-0 KEGGREST_1.36.0
## [57] tibble_3.1.6 interactiveDisplayBase_1.34.0
## [59] ggrepel_0.9.1 ape_5.6-2
## [61] listenv_0.8.0 dendextend_1.15.2
## [63] Biostrings_2.64.0 png_0.1-7
## [65] future_1.25.0 withr_2.5.0
## [67] bitops_1.0-7 ggforce_0.3.3
## [69] RBGL_1.72.0 plyr_1.8.7
## [71] GSEABase_1.58.0 pillar_1.7.0
## [73] cachem_1.0.6 graphite_1.42.0
## [75] vctrs_0.4.1 ellipsis_0.3.2
## [77] generics_0.1.2 plot3D_1.4
## [79] outliers_0.15 tools_4.2.0
## [81] entropy_1.3.1 munsell_0.5.0
## [83] tweenr_1.0.2 fgsea_1.22.0
## [85] DelayedArray_0.22.0 fastmap_1.1.0
## [87] compiler_4.2.0 abind_1.4-5
## [89] httpuv_1.6.5 rtracklayer_1.56.0
## [91] plotly_4.10.0 GenomeInfoDbData_1.2.8
## [93] gridExtra_2.3 lattice_0.20-45
## [95] deldir_1.0-6 visNetwork_2.1.0
## [97] AnnotationForge_1.38.0 utf8_1.2.2
## [99] later_1.3.0 dplyr_1.0.8
## [101] jsonlite_1.8.0 ccTensor_1.0.2
## [103] concaveman_1.1.0 scales_1.2.0
## [105] graph_1.74.0 tidytree_0.3.9
## [107] pbapply_1.5-0 genefilter_1.78.0
## [109] lazyeval_0.2.2 promises_1.2.0.1
## [111] goftest_1.2-3 spatstat.utils_2.3-0
## [113] reticulate_1.24 checkmate_2.1.0
## [115] rmarkdown_2.14 cowplot_1.1.1
## [117] schex_1.10.0 webshot_0.5.3
## [119] Rtsne_0.16 uwot_0.1.11
## [121] igraph_1.3.1 survival_3.3-1
## [123] yaml_2.3.5 plotrix_3.8-2
## [125] htmltools_0.5.2 memoise_2.0.1
## [127] rTensor_1.4.8 BiocIO_1.6.0
## [129] Seurat_4.1.0 seriation_1.3.5
## [131] graphlayouts_0.8.0 viridisLite_0.4.0
## [133] digest_0.6.29 assertthat_0.2.1
## [135] ReactomePA_1.40.0 mime_0.12
## [137] rappdirs_0.3.3 registry_0.5-1
## [139] spam_2.8-0 yulab.utils_0.0.4
## [141] future.apply_1.9.0 misc3d_0.9-1
## [143] data.table_1.14.2 blob_1.2.3
## [145] splines_4.2.0 RCurl_1.98-1.6
## [147] hms_1.1.1 colorspace_2.0-3
## [149] BiocManager_1.30.17 aplot_0.1.3
## [151] sass_0.4.1 Rcpp_1.0.8.3
## [153] bookdown_0.26 RANN_2.6.1
## [155] enrichplot_1.16.0 fansi_1.0.3
## [157] parallelly_1.31.1 R6_2.5.1
## [159] grid_4.2.0 ggridges_0.5.3
## [161] lifecycle_1.0.1 curl_4.3.2
## [163] leiden_0.3.9 meshr_2.2.0
## [165] jquerylib_0.1.4 DO.db_2.9
## [167] Matrix_1.4-1 qvalue_2.28.0
## [169] RcppAnnoy_0.0.19 RColorBrewer_1.1-3
## [171] iterators_1.0.14 stringr_1.4.0
## [173] htmlwidgets_1.5.4 polyclip_1.10-0
## [175] biomaRt_2.52.0 purrr_0.3.4
## [177] shadowtext_0.1.2 gridGraphics_0.5-1
## [179] reactome.db_1.79.0 mgcv_1.8-40
## [181] globals_0.14.0 patchwork_1.1.1
## [183] spatstat.random_2.2-0 codetools_0.2-18
## [185] prettyunits_1.1.1 gtable_0.3.0
## [187] DBI_1.1.2 ggfun_0.0.6
## [189] tensor_1.5 httr_1.4.2
## [191] highr_0.9 KernSmooth_2.23-20
## [193] stringi_1.7.6 progress_1.2.2
## [195] msigdbr_7.5.1 reshape2_1.4.4
## [197] farver_2.1.0 heatmaply_1.3.0
## [199] annotate_1.74.0 viridis_0.6.2
## [201] hexbin_1.28.2 fdrtool_1.2.17
## [203] Rgraphviz_2.40.0 magick_2.7.3
## [205] ggtree_3.4.0 xml2_1.3.3
## [207] restfulr_0.0.13 ggplotify_0.1.0
## [209] Category_2.62.0 scattermore_0.8
## [211] BiocVersion_3.15.2 bit_4.0.4
## [213] scatterpie_0.1.7 spatstat.data_2.2-0
## [215] ggraph_2.0.5 babelgene_22.3
## [217] pkgconfig_2.0.3 knitr_1.38