recountmethylation 1.6.1
This vignette walks through 3 analysis examples using data accessed with the
recountmethylation
package. First, predicted and chronological ages are
compared from the sample metadata. Then quality signals (methylated and
unmethylated, log2 median scale) are compared between samples stored using
either formalin fixed paraffin-embedding (FFPE) or freezing. Finally,
tissue-specific probe sets with high DNA methylation (DNAm) fraction variances
are identifed and analyzed using liver and adipose samples. Note that versions
of these analyses also appear in the manuscript Maden et al. (2020).
This vignette accompanies the “data_analyses.R” script. Note the script was written with extensibility to new and larger comparator groups in mind. While the script should run to completion without errors, it takes several hours in total to complete (excluding the time to download large database files). Due to this lengthy script run time, this vignette only evaluates code chunks utilizing final/resultant data objects produced by the script (e.g. for tables, tests, and figures). For completeness, remaining script steps and code are included but not evaluated.
Load the file “data_analyses.RData” from the recountmethylation
package files.
This contains the resultant/final data objects produced by the script, which will
be used in evaluated code chunks below.
sf <- system.file(file.path("extdata", "data_analyses"),
package = "recountmethylation")
load(file.path(sf, "data_analyses.RData"))
The analysis script uses sample metadata and 2 database files. Retrieve the
provided sample metadata from the recountmethylation
package files.
# get local metadata
mdpath <- system.file("extdata", "gsm_metadata", "md_final_hm450k_0-0-1.rda",
package = "recountmethylation")
md <- get(load(mdpath))
Also obtain 2 HDF5-SummarizedExperiment
database files, the
GenomicRanges and MethylSet files. Consult the users_guide
vignette for
details about the database file formats and download instructions. Once the
datasets downloaded, they can be loaded into an R session as follows.
# load methylset
gmdn <- "remethdb-h5se_gm_0-0-1_1590090412"
gm <- loadHDF5SummarizedExperiment(gmdn)
# load grset
grdn <- "remethdb-h5se_gr_0-0-1_1590090412"
gr <- loadHDF5SummarizedExperiment(grdn)
This example uses sample metadata to compare mined and predicted ages from
the age
and predage
variables, respectively. Values in age
were mined
from GEO record metadata and are included with available age units. Values in
predage
were calculated from noob-normalized (Triche et al. (2013)) DNAm
Beta-values with agep
, a function from the wateRmelon
package that
implements the Horvath biological age clock (Horvath (2013)).
Get samples for which both age
and predage
age are available. From age
,
make a new numeric variable chron.age
.
mdf <- md[!md$age == "valm:NA",]
mdf$chron.age <- as.numeric(gsub(";.*", "", gsub("^valm:", "", mdf$age)))
mdf$predage <- as.numeric(mdf$predage)
mdf <- mdf[!is.na(mdf$chron.age),]
mdf <- mdf[!is.na(mdf$predage),]
Next, make a new variable stype
from sampletype
and remove samples with
missing values.
mdf$stype <- as.character(gsub(";.*", "",
gsub("^msraptype:", "", mdf$sampletype)))
mdf <- mdf[!is.na(mdf$stype),]
Now make a new variable is.cx
from querying cancer
in the disease
term.
This reflects whether a sample was likely from a cancer or a cancer patient.
mdf$is.cx <- ifelse(grepl(".*cancer.*", mdf$disease), TRUE, FALSE)
Next, store the study-wise age differences in the xdif
variable using the
mean absolute difference (a.k.a. “MAD”) between chron.age
and predage
across samples from the same study. Also store study sizes in the ngsm
term
for plotting.
xdif <- ngsm <- c()
for(g in unique(mdf$gseid)){
mdff <- mdf[mdf$gseid==g, ]
xdif <- c(xdif, mean(abs(mdff$chron.age - as.numeric(mdff$predage))))
ngsm <- c(ngsm, nrow(mdff))
}
names(xdif) <- names(ngsm) <- unique(mdf$gseid)
Make a new filtered mdff
data frame using the new variables. Retain likely
non-cancer samples from studies with MAD <= 10 years. Pre- and post-filter
datasets (groups 1 and 2, respectively) are summarized below.
filt <- mdf$stype == "tissue" & !mdf$is.cx
filt <- filt & !mdf$gseid %in% names(xdif[xdif > 10])
mdff <- mdf[filt, ]
Perform statistical analyses of mdf
(group 1) and mdff
(group 2). First,
generate multiple regressions for each.
lm1 <- lm(mdf$predage ~ mdf$chron.age + mdf$gseid + mdf$stype + mdf$is.cx)
lm2 <- lm(mdff$predage ~ mdff$chron.age + mdff$gseid)
Now perform analyses of variances (ANOVAs) on multiple regressions. Summarize variance percentages and p-values for covariates in each model. Columns “Vperc” and “Pval” are the percent variance and unadjusted p-value for covariates in each model.
# anovas
av1 <- anova(lm1)
av2 <- anova(lm2)
# results summaries
sperc1 <- round(100*av1$`Sum Sq`[1:4]/sum(av1$`Sum Sq`), 2)
pval1 <- format(av1$`Pr(>F)`[1:4], scientific = TRUE, digits = 3)
sperc2 <- round(100*av2$`Sum Sq`[1:2]/sum(av2$`Sum Sq`), 2)
pval2 <- format(av2$`Pr(>F)`[1:2], scientific = TRUE, digits = 3)
# summary table
dan <- data.frame(Vperc1 = c(sperc1),
Pval1 = c(pval1),
Vperc2 = c(sperc2, "-", "-"),
Pval2 = c(pval2, "-", "-"),
stringsAsFactors = FALSE)
rownames(dan) <- c("Chron.Age", "GSEID", "SampleType", "Cancer")
knitr::kable(dan, align = "c")
Vperc1 | Pval1 | Vperc2 | Pval2 | |
---|---|---|---|---|
Chron.Age | 51.73 | 0.00e+00 | 92.77 | 0.00e+00 |
GSEID | 24.40 | 0.00e+00 | 1.52 | 2.42e-274 |
SampleType | 0.07 | 1.27e-09 | - | - |
Cancer | 0.01 | 1.55e-02 | - | - |
Now calcualte the R-squared, Spearman correlation coefficient (Rho), and MAD for each model.
# rsquared
rsq1 <- round(summary(lm1)$r.squared, 2)
rsq2 <- round(summary(lm2)$r.squared, 2)
# correlation coefficient
rho1 <- round(cor.test(mdf$predage, mdf$chron.age,
method = "spearman")$estimate, 2)
rho2 <- round(cor.test(mdff$predage, mdff$chron.age,
test = "spearman")$estimate, 2)
# mean absolute difference
mad1 <- round(mean(abs(mdf$chron.age - mdf$predage)), 2)
mad2 <- round(mean(abs(mdff$chron.age - mdff$predage)), 2)
Finally, organize and display the results
dss <- data.frame(group = c("1", "2"),
ngsm = c(nrow(mdf), nrow(mdff)),
ngse = c(length(unique(mdf$gseid)),
length(unique(mdff$gseid))),
r.squared = c(rsq1, rsq2), rho = as.character(c(rho1, rho2)),
mad = c(mad1, mad2), stringsAsFactors = FALSE)
knitr::kable(dss, align = "c")
group | ngsm | ngse | r.squared | rho | mad |
---|---|---|---|---|---|
1 | 16510 | 105 | 0.76 | 0.76 | 12.87 |
2 | 6019 | 37 | 0.94 | 0.96 | 4.53 |
Plot sample counts and MAD for each GSE record, with a vertical line at the 10-years MAD cutoff used for the group 2 filter.
plot(xdif, ngsm, ylab = "Study Size (Num. GSM)",
xlab = "Age Difference, MAD[Chron, Pred]")
abline(v = 10, col = "red")
Finally, plot the chronological and predicted ages for group 2 samples.
ggplot(mdff, aes(x = chron.age, y = predage)) +
geom_point(size = 1.2, alpha = 0.2) + geom_smooth(method = "lm", size = 1.2) +
theme_bw() + xlab("Chronological Age") + ylab("Epigenetic (DNAm) Age")
This section compares methylated and unmethylated signal (log2 sample median scale) between samples stored with either FFPE or fresh freezing (FF).
Identify and summarize samples with the storage
variable available. Use
values in storage
to inform a new sgroup
variable.
mdf <- md[!md$storage == "NA",]
mdf$sgroup <- ifelse(grepl("FFPE", mdf$storage), "ffpe", "frozen")
# get summary table
sst <- get_sst(sgroup.labs = c("ffpe", "frozen"), mdf)
knitr::kable(sst, align = "c") # table display
Subset the MethylSet
object and extract the full signal matrices with the
getMeth
and getUnmeth
functions from the minfi package.
gmf <- gm[, gm$gsm %in% mdf$gsm] # filt h5se object
mdf <- mdf[order(match(mdf$gsm, gmf$gsm)),]
identical(gmf$gsm, mdf$gsm)
gmf$storage <- mdf$storage # append storage info
meth.all <- getMeth(gmf)
unmeth.all <- getUnmeth(gmf)
Next, prepare to calculate log2 median signals. To manage data in active
memory, process it in smaller units or blocks. Using the get_blocks
helper
function, assign sample indices to blocks of size 1,000 using the bsize
argument.
blocks <- getblocks(slength = ncol(gmf), bsize = 1000)
Now calculate log2 of sample median signals for each block. Vectorize
calculations within blocks with apply
. Store results in the data.frame ds
.
ms <- matrix(nrow = 0, ncol = 2)
l2meth <- l2unmeth <- c()
for(i in 1:length(blocks)){
b <- blocks[[i]]
gmff <- gmf[, b]
methb <- as.matrix(meth.all[, b])
unmethb <- as.matrix(unmeth.all[, b])
l2meth <- c(l2meth, apply(methb, 2, function(x){
log2(median(as.numeric(x)))
}))
l2unmeth <- c(l2unmeth, apply(unmethb, 2, function(x){
log2(median(as.numeric(x)))
}))
ms <- rbind(ms, matrix(c(l2meth, l2unmeth), ncol = 2))
message(i)
}
rownames(ms) <- colnames(meth.all)
colnames(ms) <- c("meth.l2med", "unmeth.l2med")
ds <- as.data.frame(ms)
ds$storage <- ifelse(grepl("FFPE", gmf$storage), "ffpe", "frozen")
Evaluate signal patterns across storage type using plots using the ggplot2
package. First, make a 2d scatter plot of methylated and unmethylated signals
using the geom_point
function. Color by storage type with the
scale_color_manual
function (FFPE samples are orange, frozen samples are
purple).
ggplot(ds, aes(x = meth.l2med, y = unmeth.l2med, color = storage)) +
geom_point(alpha = 0.35, cex = 3) + theme_bw() +
scale_color_manual(values = c("ffpe" = "orange", "frozen" = "purple"))
Next, make separate violin plots for signals and groups using the geom_violin
function with the same colors for each storage type. Draw horizontal median
lines by setting the draw_quantiles
argument to 0.5.
vp <- matrix(nrow = 0, ncol = 2)
vp <- rbind(vp, matrix(c(ds$meth.l2med, paste0("meth.", ds$storage)),
ncol = 2))
vp <- rbind(vp, matrix(c(ds$unmeth.l2med, paste0("unmeth.", ds$storage)),
ncol = 2))
vp <- as.data.frame(vp, stringsAsFactors = FALSE)
vp[,1] <- as.numeric(vp[,1])
colnames(vp) <- c("signal", "group")
vp$col <- ifelse(grepl("ffpe", vp$group), "orange", "purple")
# make plot
ggplot(vp, aes(x = group, y = signal, color = group)) +
scale_color_manual(values = c("meth.ffpe" = "orange",
"unmeth.ffpe" = "orange", "meth.frozen" = "purple",
"unmeth.frozen" = "purple")) +
geom_violin(draw_quantiles = c(0.5)) + theme_bw() +
theme(legend.position = "none")
variances
This example describes variance analyses in liver and adipose, 2 of the 7 tissues analyzed in the manuscript Maden et al. (2020). This includes a quality assessment, study ID linear adjustment of DNAm fractions, ANOVA-based and probe filtering, 2-step variance analyses, and results plots.
Summarize the samples of interest. Use two vectors of GSM IDs, adipose.gsmv
and liver.gsmv
to filter the metadata (see vectors in the data_analyses.R
script). Also define tissues in the new group variable sgroup
. Summarize the
sample groups in a table
gsmv <- c(adipose.gsmv, liver.gsmv)
mdf <- md[md$gsm %in% gsmv,]
mdf$sgroup <- ifelse(mdf$gsm %in% adipose.gsmv, "adipose", "liver")
sst.tvar <- get_sst(sgroup.labs = c("liver", "adipose"), mdf)
knitr::kable(sst.tvar, align = "c")
liver | adipose | |
---|---|---|
ngsm | 112 | 104 |
meangsm.gse | 16 | 26 |
sdgsm.gse | 17.3 | 19.41 |
numgse | 7 | 4 |
min.predage | 1.91 | 36.07 |
max.predage | 73.75 | 79.27 |
mean.predage | 42.72 | 54.17 |
sd.predage | 17.06 | 7.63 |
numna.predage | 0 | 0 |
percfemale.predsex | 45.54 | 68.27 |
numna.predsex | 0 | 0 |
Subset the MethylSet
dataset, then append the sgroup
variable from mdf
and map the object to the genome using the mapToGenome
function from the
minfi
package.
ms <- gm[,colnames(gm) %in% rownames(mdf)]
ms <- ms[,order(match(colnames(ms), rownames(mdf)))]
identical(colnames(ms), rownames(mdf))
# [1] TRUE
ms$sgroup <- mdf$sgroup
ms <- mapToGenome(ms)
dim(ms)
# [1] 485512 252
As in example 2 above, calculate the sample log2 median signals from signal
matrices. Process the data in blocks using within-block vectorization with
apply
.
# get log2 medians
meth.tx <- getMeth(ms)
unmeth.tx <- getUnmeth(ms)
blocks <- getblocks(slength = ncol(ms), bsize = 50)
# process data in blocks
l2m <- matrix(nrow = 0, ncol = 2)
for(i in 1:length(blocks)){
b <- blocks[[i]]
gmff <- ms[, b]
methb <- as.matrix(meth.tx[, b])
unmethb <- as.matrix(unmeth.tx[, b])
l2meth <- l2unmeth <- c()
l2meth <- c(l2meth, apply(methb, 2, function(x){
log2(median(as.numeric(x)))
}))
l2unmeth <- c(l2unmeth, apply(unmethb, 2, function(x){
log2(median(as.numeric(x)))
}))
l2m <- rbind(l2m, matrix(c(l2meth, l2unmeth), ncol = 2))
message(i)
}
ds2 <- as.data.frame(l2m)
colnames(ds2) <- c("l2med.meth", "l2med.unmeth")
ds2$tissue <- as.factor(ms$sgroup)
Make a scatter plot of log2 median signals by tissue type with the geom_point
function.
ggplot(ds2, aes(x = l2med.meth, y = l2med.unmeth, color = tissue)) +
geom_point(alpha = 0.3, cex = 3) + theme_bw()
Access the noob-normalized DNAm Beta-values from the GenomicRatio
object gr
loaded above. Extract the DNAm fractions as M-values (logit2 transformed
Beta-values) with the getM
minfi function. Perform linear correction on
study ID with the removeBatchEffect
function from the limma package by
setting the batch
argument to the “gseid” variable.
lmv <- lgr <- lmd <- lb <- lan <- list()
tv <- c("adipose", "liver")
# get noob norm data
gr <- gr[,colnames(gr) %in% colnames(ms)]
gr <- gr[,order(match(colnames(gr), colnames(ms)))]
identical(colnames(gr), colnames(ms))
gr$sgroup <- ms$sgroup
# do study ID adj
for(t in tv){
lmv[[t]] <- gr[, gr$sgroup == t]
msi <- lmv[[t]]
madj <- limma::removeBatchEffect(getM(msi), batch = msi$gseid)
# store adjusted data in a new se object
lgr[[t]] <- GenomicRatioSet(GenomicRanges::granges(msi), M = madj,
annotation = annotation(msi))
# append samples metadata
lmd[[t]] <- pData(lgr[[t]]) <- pData(lmv[[t]])
# append preprocessing metadata
metadata(lgr[[t]]) <- list("preprocess" = "noobbeta;removeBatchEffect_gseid")
# make betavals list
lb[[t]] <- getBeta(lgr[[t]]) # beta values list
}
Prepare and run ANOVAs on autosomal probes. First, identify and remove sex
chromosome probes by accessing annotation with the getAnnotation
minfi
function. List the filtered data in the lbf
object.
anno <- getAnnotation(gr)
chr.xy <-c("chrY", "chrX")
cg.xy <- rownames(anno[anno$chr %in% chr.xy,])
lbf <- list()
for(t in tv){
bval <- lb[[t]]
lbf[[t]] <- bval[!rownames(bval) %in% cg.xy,]
}
bv <- lbf[[1]]
Next, select and format the 9 model covariates for the ANOVA tests. From sample
metadata, select the variables for study ID (“gseid”), predicted sex
(“predsex”), predicted age (“predage”), and predicted fractions of 6 cell types
("predcell..*"). Convert these to either factor or numeric type with the
functions as.factor
and as.numeric
, respectively.
lvar <- list()
cnf <- c("gseid", "predsex", "predage", "predcell.CD8T",
"predcell.CD4T", "predcell.NK", "predcell.Bcell",
"predcell.Mono", "predcell.Gran")
for(t in tv){
for(c in cnf){
if(c %in% c("gseid", "predsex")){
lvar[[t]][[c]] <- as.factor(pData(lgr[[t]])[,c])
} else{
lvar[[t]][[c]] <- as.numeric(pData(lgr[[t]])[,c])
}
}
}
Run ANOVAs on probe Beta-values. Use the blocking-with-vectorization strategy
here as above, with large blocks of 100,000 sample indices each. Calculations
should complete in about 1 hour. For each test, retain unadjusted p-values and
variance percentages of the 9 covariates. Store the 18-column results matrices
in the lan
list object.
bv <- lbf[[1]]
blocks <- getblocks(slength = nrow(bv), bsize = 100000)
mr <- matrix(nrow = 0, ncol = 18)
lan <- list("adipose" = mr, "liver" = mr)
t1 <- Sys.time()
for(bi in 1:length(blocks)){
for(t in tv){
datr <- lbf[[t]][blocks[[bi]],]
tvar <- lvar[[t]]
newchunk <- t(apply(datr, 1, function(x){
# do multiple regression and anova
x <- as.numeric(x)
ld <- lm(x ~ tvar[[1]] + tvar[[2]] + tvar[[3]] + tvar[[4]] +
tvar[[5]] + tvar[[6]] + tvar[[7]] + tvar[[8]] + tvar[[9]])
an <- anova(ld)
# get results
ap <- an[c(1:9),5] # pval
av <- round(100*an[c(1:9),2]/sum(an[,2]), 3) # percent var
return(as.numeric(c(ap, av)))
}))
# append new results
lan[[t]] <- rbind(lan[[t]], newchunk)
}
message(bi, "tdif: ", Sys.time() - t1)
}
# append colnames
for(t in tv){colnames(lan[[t]]) <- rep(cnf, 2)}
Next, remove probes showing evidence of residual confounding from the
covariates. Adjust covariate p-values with the p.adjust
function, and retain
probes with adjusted p-values >= 0.001 and variance < 10% variance for all 9
covariates. Retain the filtered probe DNAm data as GenomicRatioSet
s for each
tissue in the list lgr.filt
.
pfilt <- 1e-3
varfilt <- 10
lcgkeep <- list() # list of filtered probe sets
for(t in tv){
pm <- lan[[t]][,c(1:9)]
vm <- lan[[t]][,c(10:18)]
# parse variable thresholds
cm <- as.data.frame(matrix(nrow = nrow(pm), ncol = ncol(pm)))
for(c in 1:ncol(pm)){
pc <- pm[,c];
pc.adj <- as.numeric(p.adjust(pc))
pc.filt <- pc.adj < pfilt
vc.filt <- vm[,c] >= varfilt
cm[,c] <- (pc.filt & vc.filt)
}
cgkeep <- apply(cm, 1, function(x){return((length(x[x == TRUE]) == 0))})
lcgkeep[[t]] <- rownames(pm)[cgkeep]
}
lgr.filt <- list("adipose" = lgr[[1]][lcgkeep[[1]],],
"liver" = lgr[[2]][lcgkeep[[2]],])
Calculate probe DNAm summary statistics. For each tissue, calculate the minima,
maxima, means, medians, standard deviations, and variances of Beta-values
across samples. Store results in the lcg.ss
list.
cnv <- c("min", "max", "mean", "median", "sd", "var")
bv <- getBeta(lgr.filt[[t]])
lbt <- lcg.ss <- list()
bsize = 100000
for(t in tv){
lcg.ss[[t]] <- matrix(nrow = 0, ncol = 6)
lbt[[t]] <- bt <- as.matrix(getBeta(lgr.filt[[t]]))
blockst <- getblocks(slength = nrow(bt), bsize = bsize)
for(bi in 1:length(blockst)){
bc <- bt[blockst[[bi]],]
newchunk <- t(apply(bc, 1, function(x){
newrow <- c(min(x), max(x), mean(x), median(x), sd(x), var(x))
return(as.numeric(newrow))
}))
lcg.ss[[t]] <- rbind(lcg.ss[[t]], newchunk)
message(t, ";", bi)
}
colnames(lcg.ss[[t]]) <- cnv
}
Perform the main variance analyses with 2 strategies. This selects the 2,000 probes with the highest group-specific variances.
First, use a single variance cutoff, or “absolute” quantile cutoff, for each
group. List probes in the top 99th quantile variances for each tissue in the
lmvp.abs
object.
qiv = seq(0, 1, 0.01)
qwhich = c(100)
lmvp.abs <- list()
lci <- list()
for(t in tv){
cgv <- c()
sa <- lcg.ss[[t]]
sa <- as.data.frame(sa, stringsAsFactors = FALSE)
q <- quantile(sa$var, qiv)[qwhich]
lmvp.abs[[t]] <- rownames(sa[sa$var > q,])
}
Now select high-variance probes with binning for each tissue. Assign probes to
1 of 10 bins using 0.1 mean Beta-value intervals. Select probes in the top
99th variance quantiles for each bin, and store in lmvp.bin
.
# binned quantiles method
qiv = seq(0, 1, 0.01) # quantile filter
qwhich = c(100)
bin.xint <- 0.1
binv = seq(0, 1, bin.xint)[1:10] # binned bval mean
# iter on ncts
lmvp.bin = list()
for(t in tv){
sa <- as.data.frame(lcg.ss[[t]])
cgv <- c()
# iterate on betaval bins
for(b in binv){
bf <- sa[sa$mean >= b & sa$mean < b + bin.xint, ] # get probes in bin
q <- qf <- quantile(bf$var, qiv)[qwhich] # do bin filter
cgv <- c(cgv, rownames(bf)[bf$var > q]) # append probes list
}
lmvp.bin[[t]] <- cgv
}
With the variance analyses complete, filter the lmvp.abs
and lmvp.bin
probes by tissue specificity. Tissue-specific probes should only occur among
high variance probes for a single tissue. Categorize probes as
“tissue-specific” or “non-specific” using the table
function to determine
their frequency of occurrence across tissues.
cgav <- c()
for(t in tv){
txcg <- unique(c(lmvp.abs[[t]], lmvp.bin[[t]]))
cgav <- c(cgav, txcg)
}
cgdf <- as.data.frame(table(cgav))
cgdf$type <- ifelse(cgdf[,2] > 1, "non-specific", "tissue-specific")
table(cgdf$type)
##
## non-specific tissue-specific
## 3217 4572
After filtering probes by tissue specificity, rank them by descending DNAm
variance. Select 1,000 probes from lmvp.abs
, then 1,000 non-overlapping
probes from lmvp.bin
, retain the 2,000 highest-variance probes by tissue
in the ltxcg
list.
cgfilt <- cgdf$type == "non-specific"
cgdff <- cgdf[!cgfilt,]
ltxcg <- list()
for(t in tv){
cgtx <- c()
cgabs <- lmvp.abs[[t]]
cgbin <- lmvp.bin[[t]]
st <- as.data.frame(lcg.ss[[t]])
# get t tissue specific probes
filtbt <- rownames(st) %in% cgdff[,1]
st <- st[filtbt,]
# get top 1k t tissue specific abs probes
filt.bf1 <- rownames(st) %in% cgabs
sf1 <- st[filt.bf1,]
sf1 <- sf1[rev(order(sf1$var)),]
cgtx <- rownames(sf1)[1:1000]
# get top 1k t tissue specific bin probes, after filt
filt.bf2 <- rownames(st) %in% cgbin &
!rownames(st) %in% rownames(sf1)
sf2 <- st[filt.bf2,]
sf2 <- sf2[rev(order(sf2$var)),]
cgtx <- c(cgtx, rownames(sf2)[1:1000])
ltxcg[[t]] <- cgtx
}
First, get probe set DNAm summaries and annotation data.
# filtered cg summaries
lfcg <- lapply(lcg.ss,
function(x){x <- x[rownames(x) %in% unique(unlist(ltxcg)),]})
# annotation subset
anno <- getAnnotation(gr) # save anno for cga
anno <- anno[,c("Name", "UCSC_RefGene_Name", "UCSC_RefGene_Group",
"Relation_to_Island")]
anno <- anno[rownames(anno) %in% unique(unlist(ltxcg)),]
# filtered beta values
lcgssf <- list()
for(t in tv){
bv <- lcg.ss[[t]]
bvf <- bv[rownames(bv) %in% ltxcg[[t]],]
lcgssf[[t]] <- bvf
}
Use the makevp()
helper function to make violin plots with horizontal bars at
distribution medians. This function formats the data and calls geom_violin
to make violin plots for DNAm fraction means and variances. Store plots in
the lvp
list, then display them vertically using the grid.arrange
function
from the gridExtra package.
lvp <- makevp(lfcg, ltxcg)
grid.arrange(lvp[[1]], lvp[[2]], ncol = 1, bottom = "Tissue")
Tabulate the means of probe set statistics by tissue.
tcgss <- matrix(nrow = 0, ncol = 6)
for(t in tv){
datt <- apply(lcgssf[[t]], 2, function(x){
round(mean(x), digits = 2)
})
mt <- matrix(datt, nrow = 1)
tcgss <- rbind(tcgss, mt)
}
colnames(tcgss) <- colnames(lcgssf$adipose)
rownames(tcgss) <- tv
knitr::kable(t(tcgss), align = "c")
adipose | liver | |
---|---|---|
min | 0.19 | 0.10 |
max | 0.80 | 0.76 |
mean | 0.52 | 0.35 |
median | 0.52 | 0.35 |
sd | 0.12 | 0.11 |
var | 0.02 | 0.01 |
Next, prepare genome region heatmaps with 3 helper functions. These will tabulate probe abundances by region and use the probe Beta-value means to calculate the mean of means (left heatmap) and variance of means (right heatmap) by genome region type.
First, define island and gene annotation groups from the manifest using
get_cga
. Next, get region-specific DNAm summaries with hmsets
using a
minimum region coverage of 2. This means values are calculated for regions
with least 2 probes, and regions with less are assigned “NA” and greyed out.
Make the 2 plots objects for means and variances with hmplots()
, which wraps
the geom_tile
ggplot2 function. Finally, display plots horizontally with
grid.arrange
.
cga <- get_cga(anno)
lhmset <- hmsets(ltxcg, lfcg, cga)
lhmplots <- hmplots(lhmset$hm.mean, lhmset$hm.var, lhmset$hm.size)
grid.arrange(lhmplots$hm.mean.plot, lhmplots$hm.var.plot,
layout_matrix = matrix(c(1, 1, 1, 1, 1, 2, 2), nrow = 1),
bottom = "Tissue", left = "Annotation/Region Type")
Colors blue, white, and red represent low, intermediate, and high means and variances of region-specific mean Beta-values. Cell numbers show probe region quantities and are identical for both plots.
This vignette described cross-study analyses using data objects accessible
with recountmethylation
and appearing in the manuscript Maden et al. (2020).
See the manuscript for more information about samples, quality metric signal
patterns, and extended variability analyses. For details about data objects,
consult the package users_guide
vignette. Full code and helper function
definitions are contained in the data_analyses.R
companion script. For
additional utilities to analyze DNAm data, consult the minfi
and
wateRmelon
packages.
sessionInfo()
## R version 4.2.0 (2022-04-22)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] HDF5Array_1.24.0 DelayedArray_0.22.0
## [3] Matrix_1.4-1 limma_3.52.1
## [5] gridExtra_2.3 ggplot2_3.3.6
## [7] knitr_1.39 recountmethylation_1.6.1
## [9] minfi_1.42.0 bumphunter_1.38.0
## [11] locfit_1.5-9.5 iterators_1.0.14
## [13] foreach_1.5.2 Biostrings_2.64.0
## [15] XVector_0.36.0 SummarizedExperiment_1.26.1
## [17] Biobase_2.56.0 MatrixGenerics_1.8.0
## [19] matrixStats_0.62.0 GenomicRanges_1.48.0
## [21] GenomeInfoDb_1.32.2 IRanges_2.30.0
## [23] S4Vectors_0.34.0 BiocGenerics_0.42.0
## [25] rhdf5_2.40.0 BiocStyle_2.24.0
##
## loaded via a namespace (and not attached):
## [1] BiocFileCache_2.4.0 plyr_1.8.7
## [3] splines_4.2.0 BiocParallel_1.30.2
## [5] digest_0.6.29 htmltools_0.5.2
## [7] magick_2.7.3 fansi_1.0.3
## [9] magrittr_2.0.3 memoise_2.0.1
## [11] tzdb_0.3.0 readr_2.1.2
## [13] annotate_1.74.0 askpass_1.1
## [15] siggenes_1.70.0 prettyunits_1.1.1
## [17] colorspace_2.0-3 blob_1.2.3
## [19] rappdirs_0.3.3 xfun_0.31
## [21] dplyr_1.0.9 crayon_1.5.1
## [23] RCurl_1.98-1.6 jsonlite_1.8.0
## [25] genefilter_1.78.0 GEOquery_2.64.2
## [27] survival_3.3-1 glue_1.6.2
## [29] gtable_0.3.0 zlibbioc_1.42.0
## [31] Rhdf5lib_1.18.2 scales_1.2.0
## [33] DBI_1.1.2 rngtools_1.5.2
## [35] Rcpp_1.0.8.3 xtable_1.8-4
## [37] progress_1.2.2 bit_4.0.4
## [39] mclust_5.4.10 preprocessCore_1.58.0
## [41] httr_1.4.3 RColorBrewer_1.1-3
## [43] ellipsis_0.3.2 farver_2.1.0
## [45] pkgconfig_2.0.3 reshape_0.8.9
## [47] XML_3.99-0.9 sass_0.4.1
## [49] dbplyr_2.1.1 utf8_1.2.2
## [51] labeling_0.4.2 tidyselect_1.1.2
## [53] rlang_1.0.2 AnnotationDbi_1.58.0
## [55] munsell_0.5.0 tools_4.2.0
## [57] cachem_1.0.6 cli_3.3.0
## [59] generics_0.1.2 RSQLite_2.2.14
## [61] evaluate_0.15 stringr_1.4.0
## [63] fastmap_1.1.0 yaml_2.3.5
## [65] bit64_4.0.5 beanplot_1.3.1
## [67] scrime_1.3.5 purrr_0.3.4
## [69] KEGGREST_1.36.0 nlme_3.1-157
## [71] doRNG_1.8.2 sparseMatrixStats_1.8.0
## [73] nor1mix_1.3-0 xml2_1.3.3
## [75] biomaRt_2.52.0 compiler_4.2.0
## [77] filelock_1.0.2 curl_4.3.2
## [79] png_0.1-7 tibble_3.1.7
## [81] bslib_0.3.1 stringi_1.7.6
## [83] highr_0.9 GenomicFeatures_1.48.2
## [85] lattice_0.20-45 multtest_2.52.0
## [87] vctrs_0.4.1 pillar_1.7.0
## [89] lifecycle_1.0.1 rhdf5filters_1.8.0
## [91] BiocManager_1.30.18 jquerylib_0.1.4
## [93] data.table_1.14.2 bitops_1.0-7
## [95] rtracklayer_1.56.0 R6_2.5.1
## [97] BiocIO_1.6.0 bookdown_0.26
## [99] codetools_0.2-18 MASS_7.3-57
## [101] assertthat_0.2.1 openssl_2.0.2
## [103] rjson_0.2.21 withr_2.5.0
## [105] GenomicAlignments_1.32.0 Rsamtools_2.12.0
## [107] GenomeInfoDbData_1.2.8 mgcv_1.8-40
## [109] hms_1.1.1 quadprog_1.5-8
## [111] grid_4.2.0 tidyr_1.2.0
## [113] base64_2.0 rmarkdown_2.14
## [115] DelayedMatrixStats_1.18.0 illuminaio_0.38.0
## [117] restfulr_0.0.13
Horvath, Steve. 2013. “DNA Methylation Age of Human Tissues and Cell Types.” Genome Biology 14 (10): R115. https://doi.org/10.1186/gb-2013-14-10-r115.
Maden, Sean K., Reid F. Thompson, Kasper D. Hansen, and Abhinav Nellore. 2020. “Human Methylome Variation Across Infinium 450K Data on the Gene Expression Omnibus.” bioRxiv, June. https://doi.org/10.1101/2020.11.17.387548.
Triche, Timothy J., Daniel J. Weisenberger, David Van Den Berg, Peter W. Laird, and Kimberly D. Siegmund. 2013. “Low-Level Processing of Illumina Infinium DNA Methylation BeadArrays.” Nucleic Acids Research 41 (7): e90. https://doi.org/10.1093/nar/gkt090.