This vignette describes how to use the quantiseqr package for streamlining your workflow around the quanTIseq method. quanTIseq is a transcriptomics deconvolution method that uses an RNA-seq-derived signature matrix (called TIL10) for quantifying 10 different immune cell types in bulk tumor or blood transcriptomics data. quanTIseq has been extensively validated using real and simulated RNA-seq data, as well as flow cytometry and immunohistochemistry data.
The TIL10 signature can quantify cell fractions for
For detailed information about quanTIseq methodology and its embedded TIL10 signature, please refer to its original publication (Finotello et al. 2019), or consult the documentation for the quanTIseq pipeline (https://icbi.i-med.ac.at/software/quantiseq/doc/).
quantiseqr
returns a cell type by sample quantification of these cell types, either as a simple data frame object, or alternatively, when providing an object derived from the SummarizedExperiment
class, adds this information in the colData
slot, where it can be further accessed.
To install this package, start R and enter:
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("quantiseqr")
Once installed, the package can be loaded and attached to your current workspace as follows:
library("quantiseqr")
In the following chunk, we load a set of additional packages that will be required throughout this vignette.
library("dplyr")
library("ggplot2")
library("tidyr")
library("tibble")
library("GEOquery")
library("reshape2")
library("SummarizedExperiment")
In order to use quantiseqr in your workflow, one fundamental input is required, to be provided to run_quantiseqr()
as expression_data
. This is an object containing the gene TPM expression values measured in the sample under investigation, and can be provided in different ways:
ExpressionSet
object (from the Biobase package), where the HGNC gene symbols are provided in a column of the fData
slotSummarizedExperiment
object, or any of the derivative classes (e.g. DESeq2’s DESeqDataSet
), in which the assay (default: “abundance”) is containing the TPMs as expectedquantiseqr
In this section, we illustrate the usage of quantiseqr
on a variety of datasets. These differ with respect to their size and samples of origin, and we illustrate how the different parameters of quantiseqr
should be set in the different scenarios.
The fundamental input for quantiseqr
is a gene expression matrix-like object, with features on the rows, and samples as the columns. quantiseqr
can also directly handle SummarizedExperiment
objects, as well as ExpressionSet
objects, commonly used for microarray data. In case a SummarizedExperiment
object is passed, the quantifications of the immune cell composition can be directly returned extending the colData
of the provided input.
quantiseqr
ships with an example dataset with samples from four patients with metastatic melanoma published in (Racle et al. 2017).
The dataset quantiseqr::dataset_racle
contains:
dataset_racle$expr_mat
) generated using bulk RNA-seq;dataset_racle$ref
).We are going to use the bulk RNA-seq data to run the deconvolution methods and will compare the results to the FACS data in the following steps.
Let’s inspect the expression matrix first:
data("dataset_racle")
dim(dataset_racle$expr_mat)
#> [1] 32467 4
knitr::kable(dataset_racle$expr_mat[1:5, ])
LAU125 | LAU355 | LAU1255 | LAU1314 | |
---|---|---|---|---|
A1BG | 0.82 | 0.58 | 0.81 | 0.71 |
A1CF | 0.00 | 0.01 | 0.00 | 0.00 |
A2M | 247.15 | 24.88 | 2307.94 | 20.30 |
A2M-AS1 | 1.38 | 0.20 | 2.60 | 0.28 |
A2ML1 | 0.03 | 0.00 | 0.05 | 0.02 |
The quantification of the immune cell types with quantiseqr
can be done as in the chunk below:
ti_racle <- quantiseqr::run_quantiseq(
expression_data = dataset_racle$expr_mat,
signature_matrix = "TIL10",
is_arraydata = FALSE,
is_tumordata = TRUE,
scale_mRNA = TRUE
)
#>
#> Running quanTIseq deconvolution module
#> Gene expression normalization and re-annotation (arrays: FALSE)
#> Removing 17 noisy genes
#> Removing 15 genes with high expression in tumors
#> Signature genes found in data set: 135/138 (97.83%)
#> Mixture deconvolution (method: lsei)
#> Deconvolution successful!
The call above means that we are passing the expression data as simple matrix (in dataset_racle$expr_mat
) and quantifying the tumor immune cell composition using the (default) TIL10 signature. This is a dataset stemming from tumor RNA-seq samples. Therefore is_tumordata
is set to TRUE
, whereas is_arraydata
is set to FALSE
(default). With scale_mRNA
set to TRUE
(default), we are performing the correction of cell-type-specific mRNA content bias.
The output of quantiseqr
can be further processed and visualized in a tabular or graphical manner to facilitate the comparisons across samples/conditions.
The estimates returned by quantiseqr
can be interpreted as a cell-type fractions that can be compared between and within samples, making it possible to represent them as a stacked bar chart.
quantiplot(ti_racle)
We observe that
Estimating the amount of “uncharacterized cells” is a novel feature introduced by quanTIseq and EPIC (Finotello et al. 2019, @EPIC2017). This estimate often corresponds to the fraction of tumor cells in the sample.
Here we show how to use quantiseqr
to deconvolute blood-derived immune-cell mixtures (Finotello et al. 2019), for which also matching flow cytometry data are available.
This is also presented as an example in (Plattner, Finotello, and Rieder 2020), please refer to this later publication for additional details on the processing steps.
The example dataset is available online at the Gene Expression Omnibus (accession number GSE107572), and is provided as preprocessed RNA-seq data from blood-derived immune-cell mixtures from nine healthy donors.
Flow cytometry estimates for the according immune subpopulations are also available.
## While downloading by hand is possible, it is recommended to use GEOquery
# wget -c ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE107nnn/GSE107572/suppl/GSE107572%5Ftpm%5FPBMC%5FRNAseq%2Etxt%2Egz
# unzip GSE107572_tpm_PBMC_RNAseq.txt.gz
# read.table("GSE107572_tpm_PBMC_RNAseq.txt", header = TRUE)
# downloading the supplemental files on the fly
tpminfo_GSE107572 <- getGEOSuppFiles("GSE107572",
baseDir = tempdir(),
filter_regex = "GSE107572_tpm_PBMC_RNAseq"
)
tpm_location <- rownames(tpminfo_GSE107572)[1]
tpm_location
#> [1] "/tmp/RtmpddZXT3/GSE107572/GSE107572_tpm_PBMC_RNAseq.txt.gz"
tpmdata <- read.table(tpm_location, header = TRUE)
tpm_genesymbols <- tpmdata$GENE
tpmdata <- as.matrix(tpmdata[, -1])
rownames(tpmdata) <- tpm_genesymbols
ti_PBMCs <- quantiseqr::run_quantiseq(
expression_data = tpmdata,
signature_matrix = "TIL10",
is_arraydata = FALSE,
is_tumordata = FALSE,
scale_mRNA = TRUE
)
#>
#> Running quanTIseq deconvolution module
#> Gene expression normalization and re-annotation (arrays: FALSE)
#> Removing 17 noisy genes
#> Signature genes found in data set: 153/153 (100%)
#> Mixture deconvolution (method: lsei)
#> Deconvolution successful!
To obtain an overview on immune cell type compositions, we can print out the results and plot them with the convenient quantiplot
wrapper:
# printing out the percentages for the first 4 samples
signif(ti_PBMCs[1:4, 2:12], digits = 3)
#> B.cells Macrophages.M1 Macrophages.M2 Monocytes
#> pbmc_1 0.0929 0.000000 0.0182 0.175
#> pbmc_10 0.0949 0.000000 0.0113 0.215
#> pbmc_12_merged_1.fastq 0.0643 0.000605 0.0121 0.115
#> pbmc_2_merged_1.fastq 0.0471 0.000000 0.0172 0.152
#> Neutrophils NK.cells T.cells.CD4 T.cells.CD8 Tregs
#> pbmc_1 0.0275 0.02080 0.303 0.225 0.03800
#> pbmc_10 0.0336 0.00261 0.240 0.196 0.03330
#> pbmc_12_merged_1.fastq 0.0222 0.05580 0.116 0.364 0.00935
#> pbmc_2_merged_1.fastq 0.0546 0.02320 0.238 0.189 0.02830
#> Dendritic.cells Other
#> pbmc_1 0.0176 0.0827
#> pbmc_10 0.0326 0.1400
#> pbmc_12_merged_1.fastq 0.0654 0.1750
#> pbmc_2_merged_1.fastq 0.0170 0.2340
# getting a complete visual overview
quantiplot(ti_PBMCs)
Notably, for these samples, corresponding quantifications of the true cell fractions done by flow cytometry are also available.
In the chunk that follows, we retrieve that information and generate scatter plots to display how the estimated values from quantiseqr
correlate with the ground truth values.
This is adapted by (Plattner, Finotello, and Rieder 2020) to match the output format generated by quantiseqr
- and can be used as a template in case other types of matched ground-truth information are available.
We start by retrieving the information from the GSE107572 entry via GEOquery
(this will be cached locally after the first execution), and process the information matching it to the quantification of cell fractions we just obtained as ti_PBMCs
.
GEOid <- "GSE107572"
gds <- getGEO(GEOid)
#> Found 1 file(s)
#> GSE107572_series_matrix.txt.gz
GEOinfo <- pData(gds[[1]])
FACSdata <- data.frame(
B.cells = GEOinfo$`b cells:ch1`,
T.cells.CD4 = GEOinfo$`cd4+ t cells:ch1`,
T.cells.CD8 = GEOinfo$`cd8+ t cells:ch1`,
Monocytes = GEOinfo$`monocytes:ch1`,
Dendritic.cells = GEOinfo$`myeloid dendritic cells:ch1`,
NK.cells = GEOinfo$`natural killer cells:ch1`,
Neutrophils = GEOinfo$`neutrophils:ch1`,
Tregs = GEOinfo$`tregs:ch1`
)
rownames(FACSdata) <- gsub(
"Blood-derived immune-cell mixture from donor ", "pbmc", GEOinfo$title
)
rownames(ti_PBMCs) <- gsub("_.*$", "", sub("_", "", rownames(ti_PBMCs)))
ccells <- intersect(colnames(ti_PBMCs), colnames(FACSdata))
csbjs <- intersect(rownames(ti_PBMCs), rownames(FACSdata))
ti_PBMCs <- ti_PBMCs[csbjs, ccells]
FACSdata <- FACSdata[csbjs, ccells]
Then we proceed to plot the agreement between the computed cell fractions and the estimated values extracted from flow cytometry experiments.
palette <- c("#451C87", "#B3B300", "#CE0648", "#2363C5", "#AB4CA1", "#0A839B", "#DD8C24", "#ED6D42")
names(palette) <- c("T.cells.CD4", "Dendritic.cells", "Monocytes", "T.cells.CD8", "Tregs", "B.cells", "NK.cells", "Neutrophils")
par(mfrow = c(3, 3))
colall <- c()
for (i in 1:(ncol(ti_PBMCs) + 1)) {
if (i <= ncol(ti_PBMCs)) {
x <- as.numeric(as.character(FACSdata[, i]))
y <- ti_PBMCs[, i]
ccell <- colnames(ti_PBMCs)[i]
col <- palette[ccell]
} else {
x <- as.numeric(as.vector(as.matrix(FACSdata)))
y <- as.vector(as.matrix(ti_PBMCs))
ccell <- "All cells"
col <- colall
}
res.cor <- cor.test(y, x)
R <- round(res.cor$estimate, digits = 2)
p <- format.pval(res.cor$p.value, digits = 2)
RMSE <- round(sqrt(mean((y - x)^2, na.rm = TRUE)), digits = 2)
regl <- lm(y ~ x)
ymax <- max(round(max(y), digits = 2) * 1.3, 0.01)
xmax <- max(round(max(x), digits = 2), 0.01)
plot(x, y,
main = gsub("(\\.)", " ", ccell), pch = 19,
xlab = "Flow cytometry fractions",
ylab = "quanTIseq cell fractions",
col = col, cex.main = 1.3, ylim = c(0, ymax), xlim = c(0, xmax), las = 1
)
abline(regl)
abline(a = 0, b = 1, lty = "dashed", col = "lightgrey")
text(0, ymax * 0.98, cex = 1, paste0("r = ", R, ", p = ", p), pos = 4)
text(0, ymax * 0.9, cex = 1, paste0("RMSE = ", RMSE), pos = 4)
colall <- c(colall, rep(col, length(x)))
}
We use here the dataset provided in (Song et al. 2017), where the transcriptomes of cancer cell lines and patients’ tumors were characterized with RNA-seq before and during treatment with kinase inhibitors.
The original dataset is available via GEO at the accession GSE75299, but we will be loading a preprocessed version of it, containing the precomputed TPM expression values, made available via ExperimentHub
.
This will enable us to performed a paired analysis on the same observation units (the patients) to appreciate differences in the cell proportions induced by the kinase-inhibitor treatment.
library("ExperimentHub")
#> Loading required package: AnnotationHub
#> Loading required package: BiocFileCache
#> Loading required package: dbplyr
#>
#> Attaching package: 'dbplyr'
#> The following objects are masked from 'package:dplyr':
#>
#> ident, sql
#>
#> Attaching package: 'AnnotationHub'
#> The following object is masked from 'package:Biobase':
#>
#> cache
eh <- ExperimentHub()
#> snapshotDate(): 2022-04-26
quantiseqdata_eh <- query(eh, "quantiseqr")
quantiseqdata_eh
#> ExperimentHub with 1 record
#> # snapshotDate(): 2022-04-26
#> # names(): EH6015
#> # package(): quantiseqr
#> # $dataprovider: GEO
#> # $species: Homo sapiens
#> # $rdataclass: SummarizedExperiment
#> # $rdatadateadded: 2021-04-27
#> # $title: Song2017_MAPKi_treatment
#> # $description: RNA-seq data, quantified as TPM, for tumor samples pre and ...
#> # $taxonomyid: 9606
#> # $genome: NA
#> # $sourcetype: tar.gz
#> # $sourceurl: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75299
#> # $sourcesize: NA
#> # $tags: c("Annotation", "Classification", "ExperimentHubSoftware",
#> # "FeatureExtraction", "GeneExpression", "ImmunoOncology",
#> # "Microarray", "Sequencing", "StatisticalMethod", "Transcription",
#> # "Transcriptomics", "Visualization")
#> # retrieve record with 'object[["EH6015"]]'
se_Song2017_MAPKi_treatment <- quantiseqdata_eh[["EH6015"]]
#> see ?quantiseqr and browseVignettes('quantiseqr') for documentation
#> loading from cache
se_Song2017_MAPKi_treatment_tiquant <- quantiseqr::run_quantiseq(
expression_data = se_Song2017_MAPKi_treatment,
signature_matrix = "TIL10",
is_arraydata = FALSE,
is_tumordata = TRUE,
scale_mRNA = TRUE
)
#>
#> Running quanTIseq deconvolution module
#> Gene expression normalization and re-annotation (arrays: FALSE)
#> Removing 17 noisy genes
#> Removing 15 genes with high expression in tumors
#> Signature genes found in data set: 138/138 (100%)
#> Mixture deconvolution (method: lsei)
#> Deconvolution successful!
dim(se_Song2017_MAPKi_treatment_tiquant)
#> [1] 19423 39
# colData(se_Song2017_MAPKi_treatment_tiquant)
colnames(colData(se_Song2017_MAPKi_treatment_tiquant))
#> [1] "geo_accession" "sra_id"
#> [3] "title" "status"
#> [5] "submission_date" "last_update_date"
#> [7] "type" "channel_count"
#> [9] "source_name_ch1" "organism_ch1"
#> [11] "characteristics_ch1" "characteristics_ch1.1"
#> [13] "characteristics_ch1.2" "molecule_ch1"
#> [15] "extract_protocol_ch1" "extract_protocol_ch1.1"
#> [17] "extract_protocol_ch1.2" "taxid_ch1"
#> [19] "description" "description.1"
#> [21] "data_processing" "data_processing.1"
#> [23] "data_processing.2" "data_processing.3"
#> [25] "platform_id" "contact_name"
#> [27] "contact_email" "contact_department"
#> [29] "contact_institute" "contact_address"
#> [31] "contact_city" "contact_state"
#> [33] "contact_zip/postal_code" "contact_country"
#> [35] "data_row_count" "instrument_model"
#> [37] "library_selection" "library_source"
#> [39] "library_strategy" "relation"
#> [41] "relation.1" "relation.2"
#> [43] "supplementary_file_1" "cell line:ch1"
#> [45] "mapki treatment:ch1" "mapki type:ch1"
#> [47] "is_patient" "quanTIseq_TIL10_B.cells"
#> [49] "quanTIseq_TIL10_Macrophages.M1" "quanTIseq_TIL10_Macrophages.M2"
#> [51] "quanTIseq_TIL10_Monocytes" "quanTIseq_TIL10_Neutrophils"
#> [53] "quanTIseq_TIL10_NK.cells" "quanTIseq_TIL10_T.cells.CD4"
#> [55] "quanTIseq_TIL10_T.cells.CD8" "quanTIseq_TIL10_Tregs"
#> [57] "quanTIseq_TIL10_Dendritic.cells" "quanTIseq_TIL10_Other"
As visible from the output of the last chunk, the cell type composition is stored in the colData
slot, if providing a SummarizedExperiment
as input.
We first plot the cell fractions by sample, this time with a color palette resembling the one used in (Plattner, Finotello, and Rieder 2020).
# to extract the TIL10-relevant parts:
ti_quant <- quantiseqr::extract_ti_from_se(se_Song2017_MAPKi_treatment_tiquant)
#> Found quantifications for the TIL10 signature...
# to access the full column metadata:
cdata <- colData(se_Song2017_MAPKi_treatment_tiquant)
cellfracs_tidy <- tidyr::pivot_longer(
as.data.frame(cdata),
cols = quanTIseq_TIL10_B.cells:quanTIseq_TIL10_Other)
cellfracs_tidy$name <- factor(gsub("quanTIseq_TIL10_", "", cellfracs_tidy$name),
levels = c(
"B.cells", "Macrophages.M1", "Macrophages.M2",
"Monocytes", "Neutrophils", "NK.cells",
"T.cells.CD4", "T.cells.CD8", "Tregs",
"Dendritic.cells", "Other"
)
)
ggplot(cellfracs_tidy, aes(fill = name, y = value, x = sra_id)) +
geom_bar(position = "fill", stat = "identity") +
scale_fill_brewer(palette = "PuOr") +
xlab("") +
ylab("Cell Fractions") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
# we could have also used the compact wrapper
## quantiplot(se_Song2017_MAPKi_treatment_tiquant)
Similarly, we proceed by splitting the data in pre- and post-treatment, first filtering out the cell line samples (keeping the ones where is_patient
is TRUE
), then manipulating to long format and explicitly building up the plot object.
prepost_data <- cdata[cdata$is_patient, ]
prepost_data_tidy <- tidyr::pivot_longer(
as.data.frame(prepost_data),
cols = quanTIseq_TIL10_B.cells:quanTIseq_TIL10_Dendritic.cells)
prepost_data_tidy$groups <- factor(prepost_data_tidy$mapki.treatment.ch1, levels = c("none", "on-treatment"))
prepost_data_tidy$name <- factor(gsub("quanTIseq_TIL10_", "", prepost_data_tidy$name),
levels = c(
"B.cells", "Macrophages.M1", "Macrophages.M2",
"Monocytes", "Neutrophils", "NK.cells",
"T.cells.CD4", "T.cells.CD8", "Tregs",
"Dendritic.cells"
)
)
ggplot(prepost_data_tidy, aes(name, value, fill = groups)) +
geom_boxplot() +
xlab("") +
ylab("cell fractions") +
theme_bw() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
We will now display the performance of quantiseqr
on a dataset for which the ground truth mRNA fractions are known.
The large simulated dataset represents the RNA-seq expression data from breast tumors with different immune-infiltration scenarios, consisting of a total of 1700 samples, that were generated by mixing RNA-seq reads from purified immune cell types and from a MCF7 breast tumor cell line.
These samples were generated considering different immune relative cell proportions, tumor purity values (0:10:100%), and at different sequencing depths (1, 2, 5, 10, 20, 50, and 100 million read pairs).
Please refer to https://icbi.i-med.ac.at/software/quantiseq/doc/ and to (Finotello et al. 2019) for more details.
This dataset is coupled with a table where the original information on the used true fractions is available, and can be used to benchmark the performance of the deconvolution algorithm.
In this case, we set the scale_mRNA
parameter to FALSE
because the samples were simulated without modelling any cell-type-specific mRNA bias, so quanTIseq does not have to correct for it. Instead, when analyzing real RNA-seq data, this parameter should always set to TRUE
(default) to avoid that some cell types with higher (or lower) total mRNA abundance are systematically under (or over) estimated via deconvolution.
# downloading first the file from https://icbi.i-med.ac.at/software/quantiseq/doc/downloads/quanTIseq_SimRNAseq_mixture.txt
# https://icbi.i-med.ac.at/software/quantiseq/doc/
tpm_1700mixtures <- readr::read_tsv("quanTIseq_SimRNAseq_mixture.txt.gz")
dim(tpm_1700mixtures)
# extracting the gene names, restructuring the matrix by dropping the column
tpm_genesymbols <- tpm_1700mixtures$Gene
tpm_1700mixtures <- as.matrix(tpm_1700mixtures[, -1])
rownames(tpm_1700mixtures) <- tpm_genesymbols
# running quantiseq on that set
# True mRNA fractions were simulated with no total-mRNA bias. Thus, these data should be analyzed specifying the option scale_mRNA set to FALSE
ti_quant_sim1700mixtures <- quantiseqr::run_quantiseq(
expression_data = tpm_1700mixtures,
signature_matrix = "TIL10",
is_arraydata = FALSE,
is_tumordata = TRUE,
scale_mRNA = FALSE
)
# save(ti_quant_sim1700mixtures, file = "data/ti_quant_sim1700mixtures.RData")
To avoid the download of a large file, we provide the precomputed object ti_quant_sim1700mixtures
in the quantiseqr
package - the chunk above is still fully functional once the mixture file has been retrieved.
data(ti_quant_sim1700mixtures)
dim(ti_quant_sim1700mixtures)
#> [1] 1700 12
head(ti_quant_sim1700mixtures)
#> Sample B.cells Macrophages.M1 Macrophages.M2 Monocytes
#> SimData1 SimData1 0.019844435 0.0597686387 0.27196959 0.23806843
#> SimData10 SimData10 0.009382905 0.0249402719 0.08979368 0.09425353
#> SimData100 SimData100 0.033495650 0.0096198517 0.03057850 0.00000000
#> SimData1000 SimData1000 0.042487150 0.0149141815 0.05204647 0.03813509
#> SimData1001 SimData1001 0.029230069 0.0139994722 0.02193008 0.01626132
#> SimData1002 SimData1002 0.013160627 0.0003221679 0.02475316 0.03709523
#> Neutrophils NK.cells T.cells.CD4 T.cells.CD8 Tregs
#> SimData1 0.002813382 0.10095469 0.00000000 0.08827795 0.169366189
#> SimData10 0.005454131 0.03922658 0.00000000 0.04532855 0.067272535
#> SimData100 0.016667177 0.04231232 0.00000000 0.04674569 0.010138803
#> SimData1000 0.032586376 0.03811065 0.03650752 0.03029464 0.017042234
#> SimData1001 0.021034018 0.02682053 0.02145636 0.01624266 0.011879932
#> SimData1002 0.007311373 0.01710432 0.00000000 0.01314424 0.008695806
#> Dendritic.cells Other
#> SimData1 0.048936698 0.0000000
#> SimData10 0.015406051 0.6089418
#> SimData100 0.023892748 0.7865493
#> SimData1000 0.015217518 0.6826582
#> SimData1001 0.028108596 0.7930370
#> SimData1002 0.001104581 0.8773085
quantiplot(ti_quant_sim1700mixtures[1:100, ])
We also read in the true proportions, known by design - this is provided as a text file inside quantiseqr
.
true_prop_1700mix <- read.table(
system.file("extdata", "quanTIseq_SimRNAseq_read_fractions.txt.gz", package = "quantiseqr"),
sep = "\t", header = TRUE
)
head(true_prop_1700mix)
#> Mix B.cells Macrophages.M1 Macrophages.M2 Monocytes Neutrophils
#> 1 SimData1 0.01890000 0.067800000 0.22910000 0.22560000 0.007200000
#> 2 SimData10 0.00756000 0.027120000 0.09164000 0.09024000 0.002880000
#> 3 SimData100 0.03178064 0.017140343 0.01076022 0.02004040 0.019540391
#> 4 SimData1000 0.04103877 0.009149726 0.04553863 0.05792826 0.028139156
#> 5 SimData1001 0.02735945 0.006099878 0.03035939 0.03861923 0.018759625
#> 6 SimData1002 0.01367986 0.003049970 0.01517985 0.01930981 0.009379906
#> NK.cells T.cells.CD4 T.cells.CD8 Tregs Dendritic.cells Tumor
#> 1 0.09700000 0.00960000 0.108700000 0.203900000 0.032200000 0.000000
#> 2 0.03880000 0.00384000 0.043480000 0.081560000 0.012880000 0.600000
#> 3 0.03480070 0.02140043 0.036440729 0.001720034 0.006360127 0.800016
#> 4 0.03437897 0.03677890 0.029279122 0.012719618 0.005069848 0.699979
#> 5 0.02291954 0.02451951 0.019519610 0.008479830 0.003379932 0.799984
#> 6 0.01145989 0.01225988 0.009759902 0.004239958 0.001689983 0.899991
In the following chunk we perform some preprocessing steps to facilitate the comparison, also in a graphical manner.
# merging the two sets to facilitate the visualization
# colnames(ti_quant_sim1700mixtures) <- paste0("quantiseq_", colnames(ti_quant_sim1700mixtures))
# colnames(true_prop_1700mix) <- paste0("trueprops_", colnames(true_prop_1700mix))
# ti_quant_sim1700mixtures$method <- "quanTIseq"
# true_prop_1700mix$method <- "ground_truth"
colnames(true_prop_1700mix)[1] <- "Sample"
colnames(true_prop_1700mix)[12] <- "Other"
ti_long <- tidyr::pivot_longer(ti_quant_sim1700mixtures,
cols = B.cells:Other,
names_to = "cell_type",
values_to = "value_quantiseq"
)
ti_long$mix_id <- paste(ti_long$Sample, ti_long$cell_type, sep = "_")
tp_long <- pivot_longer(true_prop_1700mix,
cols = B.cells:Other,
names_to = "cell_type",
values_to = "value_trueprop"
)
tp_long$mix_id <- paste(tp_long$Sample, tp_long$cell_type, sep = "_")
ti_tp_merged <- merge(ti_long, tp_long, by = "mix_id")
ti_tp_merged$cell_type.x <- factor(ti_tp_merged$cell_type.x, levels = colnames(true_prop_1700mix)[2:12])
# ti_merged <- rbind(ti_quant_sim1700mixtures,
# true_prop_1700mix)
# ti_merged_long <- pivot_longer(ti_quant_sim1700mixtures, cols = B.cells:Other)
ggplot(
ti_tp_merged,
aes(
x = value_trueprop,
y = value_quantiseq,
col = cell_type.x
)
) +
geom_point(alpha = 0.5) +
theme_bw() +
labs(
x = "True fractions",
y = "quanTIseq cell fractions",
col = "Cell type"
)
ggplot(
ti_tp_merged,
aes(
x = value_trueprop,
y = value_quantiseq,
col = cell_type.x
)
) +
facet_wrap(~cell_type.x, scales = "free") +
geom_point(alpha = 0.5) +
geom_abline(slope = 1, col = "lightgrey") +
labs(
x = "True fractions",
y = "quanTIseq cell fractions",
col = "Cell type"
) +
theme_bw()
This figure aims to replicate with live code the one available as Supplementary Figure 1.
Q: Do I have to provide my expression data formatted as TPMs? Why is that so?
A: The expression data is indeed expected to be provided as TPM values. quantiseqr
might warn you if you are providing a different format (counts, normalized counts) - this does not mean that it will trigger an error as the computation is still able to proceed.
Still: it is not the recommended way. If using a SummarizedExperiment
object coming from Salmon’s quantifications, the tximeta
/tximport
pipeline will provide an assay named “abundance”, which would be handled internally by the se_to_matrix()
function - you can simply call quantiseqr()
and provide the SummarizedExperiment
object as main parameter.
Q: Can I use quantiseqr
with samples from model systems, i.e. not from human?
A: You might exploit orthology-based conversions among gene identifiers to use quantiseqr
e.g. in mouse scenarios. Keep in mind, though, that the TIL10 signature has been explicitly designed and validated on human samples.
Q: My expression data is encoding the features in a different identifier than Gene Symbols. Can I use quantiseqr
for that?
A: Sure, just make sure to convert the identifiers beforehand - you can use one of the many options available inside Bioconductor for streamlining this step (e.g. the org.Hs.eg.db
and the function AnnotationDbi::mapIds()
).
Q: I’m interested in other such deconvolution methods. What other options are available?
A: You can check out the works of (Sturm et al. 2019, @Sturm2020) to find a collection of methods, provided in the immunedeconv
package, and benchmarked in the above mentioned manuscripts.
Q: Can I provide my own signature like the TIL10
and use that in quantiseqr
?
A: No, for now it is only possible to use the TIL10 signature matrix.
sessionInfo()
#> R version 4.2.1 (2022-06-23)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 20.04.5 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so
#> LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] ExperimentHub_2.4.0 AnnotationHub_3.4.0
#> [3] BiocFileCache_2.4.0 dbplyr_2.2.1
#> [5] SummarizedExperiment_1.26.1 GenomicRanges_1.48.0
#> [7] GenomeInfoDb_1.32.4 IRanges_2.30.1
#> [9] S4Vectors_0.34.0 MatrixGenerics_1.8.1
#> [11] matrixStats_0.62.0 reshape2_1.4.4
#> [13] GEOquery_2.64.2 Biobase_2.56.0
#> [15] BiocGenerics_0.42.0 tibble_3.1.8
#> [17] tidyr_1.2.1 ggplot2_3.3.6
#> [19] dplyr_1.0.10 quantiseqr_1.4.1
#>
#> loaded via a namespace (and not attached):
#> [1] bitops_1.0-7 bit64_4.0.5
#> [3] filelock_1.0.2 RColorBrewer_1.1-3
#> [5] httr_1.4.4 tools_4.2.1
#> [7] bslib_0.4.0 utf8_1.2.2
#> [9] R6_2.5.1 DBI_1.1.3
#> [11] colorspace_2.0-3 withr_2.5.0
#> [13] tidyselect_1.1.2 bit_4.0.4
#> [15] curl_4.3.2 compiler_4.2.1
#> [17] preprocessCore_1.58.0 cli_3.4.1
#> [19] xml2_1.3.3 DelayedArray_0.22.0
#> [21] labeling_0.4.2 sass_0.4.2
#> [23] scales_1.2.1 readr_2.1.2
#> [25] quadprog_1.5-8 rappdirs_0.3.3
#> [27] stringr_1.4.1 digest_0.6.29
#> [29] rmarkdown_2.16 R.utils_2.12.0
#> [31] XVector_0.36.0 pkgconfig_2.0.3
#> [33] htmltools_0.5.3 fastmap_1.1.0
#> [35] limma_3.52.4 highr_0.9
#> [37] rlang_1.0.6 RSQLite_2.2.17
#> [39] shiny_1.7.2 jquerylib_0.1.4
#> [41] farver_2.1.1 generics_0.1.3
#> [43] jsonlite_1.8.0 R.oo_1.25.0
#> [45] RCurl_1.98-1.8 magrittr_2.0.3
#> [47] GenomeInfoDbData_1.2.8 Matrix_1.5-1
#> [49] Rcpp_1.0.9 munsell_0.5.0
#> [51] fansi_1.0.3 lifecycle_1.0.2
#> [53] R.methodsS3_1.8.2 stringi_1.7.8
#> [55] yaml_2.3.5 MASS_7.3-58.1
#> [57] zlibbioc_1.42.0 plyr_1.8.7
#> [59] grid_4.2.1 blob_1.2.3
#> [61] promises_1.2.0.1 crayon_1.5.1
#> [63] lattice_0.20-45 Biostrings_2.64.1
#> [65] KEGGREST_1.36.3 hms_1.1.2
#> [67] knitr_1.40 pillar_1.8.1
#> [69] lpSolve_5.6.16 BiocVersion_3.15.2
#> [71] glue_1.6.2 evaluate_0.16
#> [73] data.table_1.14.2 BiocManager_1.30.18
#> [75] png_0.1-7 httpuv_1.6.6
#> [77] vctrs_0.4.1 tzdb_0.3.0
#> [79] gtable_0.3.1 purrr_0.3.4
#> [81] assertthat_0.2.1 cachem_1.0.6
#> [83] xfun_0.33 mime_0.12
#> [85] limSolve_1.5.6 xtable_1.8-4
#> [87] later_1.3.0 AnnotationDbi_1.58.0
#> [89] memoise_2.0.1 interactiveDisplayBase_1.34.0
#> [91] ellipsis_0.3.2 BiocStyle_2.24.0
Finotello, Francesca, Clemens Mayer, Christina Plattner, Gerhard Laschober, Dietmar Rieder, Hubert Hackl, Anne Krogsdam, et al. 2019. “Molecular and Pharmacological Modulators of the Tumor Immune Contexture Revealed by Deconvolution of Rna-Seq Data.” Genome Medicine 11 (1): 34.
Plattner, Christina, Francesca Finotello, and Dietmar Rieder. 2020. Deconvoluting tumor-infiltrating immune cells from RNA-seq data using quanTIseq. 1st ed. Vol. 636. Elsevier Inc. https://doi.org/10.1016/bs.mie.2019.05.056.
Racle, Julien, Kaat de Jonge, Petra Baumgaertner, Daniel E Speiser, and David Gfeller. 2017. “Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data.” eLife 6 (November): e26476. https://doi.org/10.7554/eLife.26476.
Song, Chunying, Marco Piva, Lu Sun, Aayoung Hong, Gatien Moriceau, Xiangju Kong, Hong Zhang, et al. 2017. “Recurrent Tumor CellIntrinsic and Extrinsic Alterations During MAPKi-Induced Melanoma Regression and Early Adaptation.” Cancer Discovery 7 (11): 1248–65. https://doi.org/10.1158/2159-8290.cd-17-0401.
Sturm, Gregor, Francesca Finotello, and Markus List. 2020. “Immunedeconv: An R Package for Unified Access to Computational Methods for Estimating Immune Cell Fractions from Bulk RNA-Sequencing Data.” In, 2120:223–32. Berlin, Boston: DE GRUYTER. https://doi.org/10.1007/978-1-0716-0327-7_16.
Sturm, Gregor, Francesca Finotello, Florent Petitprez, Jitao David Zhang, Jan Baumbach, Wolf H Fridman, Markus List, and Tatsiana Aneichyk. 2019. “Comprehensive Evaluation of Transcriptome-Based Cell-Type Quantification Methods for Immuno-Oncology.” Bioinformatics 35 (14): i436–i445.