The epivizrChart
package is used to add interactive charts and dashboards for genomic data visualization into RMarkdown and HTML documents using the epiviz framework. It provides an API to interactively create and manage web components that encapsulate epiviz charts. Charts can be embedded in R markdown/notebooks to create interactive documents. Epiviz Web components are built using the Google Polymer library. This vignette demonstrates how to use these visualization components in RMarkdown documents.
Sample data sets we will be using for the vignette.
data(tcga_colon_blocks)
data(tcga_colon_curves)
data(tcga_colon_expression)
data(apColonData)
We currently have three different web components built for genomic data exploration and visualization.
Epiviz charts are used to visualize genomic data objects in R/BioConductor. The data objects can be BioConductor data types for ex: Genomic Ranges, ExpressionSet, SummarizedExperiment etc.
For example, to visualize hg19 reference genome as a genes track at a particular genomic location (chr
, start
, end
)
library(Homo.sapiens)
genes_track <- epivizChart(Homo.sapiens, chr="chr11", start=118000000, end=121000000)
## creating gene annotation (it may take a bit)
## 403 genes were dropped because they have exons located on both strands
## of the same reference sequence or on more than one reference sequence,
## so cannot be represented by a single genomic range.
## Use 'single.strand.genes.only=FALSE' to get all the genes in a
## GRangesList object, or use suppressMessages() to suppress this message.
## 'select()' returned 1:1 mapping between keys and columns
genes_track
epivizChart
infers the chart type from the data object that was passed. Instead of inferring a chart type from the data object, we can use the chart
parameter to specify a chart type. Currently, we support the following chart types - BlocksTrack
, HeatmapPlot
, LinePlot
, LineTrack
, ScatterPlot
, StackedLinePlot
, StackedLineTrack
.
scatter_plot <- epivizChart(tcga_colon_curves, chr="chr11", start=99800000, end=103383180, type="bp", columns=c("cancerMean","normalMean"), chart="ScatterPlot")
scatter_plot
An important part of the epivizrChart
design is that data and plots are separated: you can make multiple charts from the same data object without having to replicate data multiple times. This way, data queries are made by data object, not per chart, which leads to a more responsive design of the system. To enable this, we built the epiviz-environment
web component. The environment element also enables brushing across all the charts.
To create an environment,
epivizEnv <- epivizEnv(chr="chr11", start=118000000, end=121000000)
genes_track <- epivizEnv$plot(Homo.sapiens)
## creating gene annotation (it may take a bit)
## 403 genes were dropped because they have exons located on both strands
## of the same reference sequence or on more than one reference sequence,
## so cannot be represented by a single genomic range.
## Use 'single.strand.genes.only=FALSE' to get all the genes in a
## GRangesList object, or use suppressMessages() to suppress this message.
## 'select()' returned 1:1 mapping between keys and columns
blocks_track <- epivizEnv$plot(tcga_colon_blocks, datasource_name="450kMeth")
epivizEnv
epivizrChart
examplesWe’ll walk through a few examples of visualizing different bioconductor data types with epivizrChart and enable interactive data exploration.
First, lets create an epiviz enivornment element
epivizEnv <- epivizEnv(chr="chr11", start=99800000, end=103383180)
Add a genome track to the environment. You can add charts to an environment by using the environment’s plot
method. For this vignette, we use the human genome from the Homo.sapiens
package.
require(Homo.sapiens)
genes_track <- epivizEnv$plot(Homo.sapiens)
genes_track
Add a blocks track using the tcga_colon_blocks
object.
blocks_track <- epivizEnv$plot(tcga_colon_blocks, datasource_name="450kMeth")
blocks_track
You can now render the epivizEnv
object and see that both the charts are linked to each other. Brushing is now enabled across charts.
epivizEnv
Similarly let’s add a line track using the tcga_colon_curves
data object. We can specify what columns to visualize from the data object.
means_track <- epivizEnv$plot(tcga_colon_curves, datasource_name="450kMeth", type="bp", columns=c("cancerMean","normalMean"))
means_track
The apColonData
object is an ExpressionSet
containing gene expression data for colon normal and tumor samples for genes within regions of methylation loss identified this paper.
To visualize an MA plot from the apColonData
, we first create an ExpressionSet
object and create an EpivizChart
object.
keep <- pData(apColonData)$SubType!="adenoma"
apColonData <- apColonData[,keep]
status <- pData(apColonData)$Status
Indexes <- split(seq(along=status),status)
exprMat <- exprs(apColonData)
mns <- sapply(Indexes, function(ind) rowMeans(exprMat[,ind]))
mat <- cbind(colonM=mns[,"1"]-mns[,"0"], colonA=0.5*(mns[,"1"]+mns[,"0"]))
pd <- data.frame(stat=c("M","A"))
rownames(pd) <- colnames(mat)
maEset <- ExpressionSet(
assayData=mat,
phenoData=AnnotatedDataFrame(pd),
featureData=featureData(apColonData),
annotation=annotation(apColonData)
)
eset_chart <- epivizEnv$plot(maEset, datasource_name="MAPlot", columns=c("colonA","colonM"))
eset_chart
We can also visualize data from SummarizedExperiment
objects.
ref_sample <- 2 ^ rowMeans(log2(assay(tcga_colon_expression) + 1))
scaled <- (assay(tcga_colon_expression) + 1) / ref_sample
scaleFactor <- Biobase::rowMedians(t(scaled))
assay_normalized <- sweep(assay(tcga_colon_expression), 2, scaleFactor, "/")
assay(tcga_colon_expression) <- assay_normalized
status <- colData(tcga_colon_expression)$sample_type
index <- split(seq(along = status), status)
logCounts <- log2(assay(tcga_colon_expression) + 1)
means <- sapply(index, function(ind) rowMeans(logCounts[, ind]))
mat <- cbind(cancer = means[, "Primary Tumor"], normal = means[, "Solid Tissue Normal"])
sumexp <- SummarizedExperiment(mat, rowRanges=rowRanges(tcga_colon_expression))
se_chart <- epivizEnv$plot(sumexp, datasource_name="Mean by Sample Type", columns=c("normal", "cancer"))
se_chart
If a data set is already added to an EpivizEnvironment
, we can reuse the same data object and visualize the data using a different chart type. This avoids creating multiple copies of data. For example, lets visualize the sumexp
using a HeatmapPlot
. measurements from different data objects can also be used to create a chart.
# get measurements
measurements <- se_chart$get_measurements()
# create a heatmap using these measurements
heatmap_plot <- epivizEnv$plot(measurements=measurements, chart="HeatmapPlot")
heatmap_plot
If we want to change the ordering of the charts within the EpivizEnvironment
, we can use order_charts
. Let’s reorder the environment and move the HeatmapPlot
to the top.
order <- list(
heatmap_plot,
genes_track,
blocks_track,
means_track,
se_chart,
eset_chart
)
epivizEnv$order_charts(order)
Render the Environment and all its charts.
epivizEnv
To remove all the charts from an environment or navigation element, we can use the remove_all_charts
methods.
epivizEnv$remove_all_charts()
colors <- brewer.pal(3, "Dark2")
blocks_track <- epivizChart(tcga_colon_blocks, chr="chr11", start=99800000, end=103383180, colors=colors)
# to list availble settings for a chart
blocks_track$get_available_settings()
settings <- list(
title="Blocks",
minBlockDistance=10
)
blocks_track$set_settings(settings)
blocks_track
blocks_track$set_colors(c("#D95F02"))
blocks_track
colors <- brewer.pal(3, "Dark2")
lines_track <- epivizChart(tcga_colon_curves, chr="chr11", start=99800000, end=103383180, type="bp", columns=c("cancerMean","normalMean"))
lines_track
lines_track$set_colors(colors)
lines_track
The interactive mode takes advantage of the websocket protocol to create an active connection between the R-session and the epiviz components visualized in the browser. In interactive mdoe, data is not embedded along with the components, So the charts make data requests to the R-session to get data.
To use charts in interactive
mode, first we create an epiviz environment with interactive mode enabled.
library(epivizrChart)
# initialize environment with interactive = true. this argument will init. an epiviz-data-source element
epivizEnv <- epivizEnv(chr="chr11", start=118000000, end=121000000, interactive=TRUE)
We then create an instance of an epivizrServer
to manage websocket connections. The register_all_the_epiviz_things adds listeners and handlers to manage data requests.
library(epivizrServer)
library(Homo.sapiens)
data(tcga_colon_blocks)
# initialize server
server <- epivizrServer::createServer()
# register all our actions between websocket and components
epivizrChart:::.register_all_the_epiviz_things(server, epivizEnv)
# start server
server$start_server()
We now have an epiviz environment and an active websocket connection to the R-session. Adding and managing charts is exactly the same as described in this vignette.
# plot charts
blocks_track <- epivizEnv$plot(tcga_colon_blocks, datasource_name="450kMeth")
epivizEnv
genes <- epivizEnv$plot(Homo.sapiens)
epivizEnv
Finally close the server
server$stop_server()
data.frame
We can visualize genomic data stored in data.frame
use epivizrChart. If the data.frame
does not contain genomic location columns like chr
, start
or end
, linking between charts is by row_number.
For this example, we will use rna-seq data from AnnotationHub
.
ah <- AnnotationHub()
## snapshotDate(): 2022-04-21
epi <- query(ah, c("roadmap"))
df <- epi[["AH49015"]]
## loading from cache
now we’ll create a scatter plot to visualize samples “E006” & “E114” from the data.frame
rna_plot <- epivizChart(df, datasource_name="RNASeq", columns=c("E006","E114"), chart="ScatterPlot")
rna_plot