MultiAssayExperiment
classMultiAssayExperiment
object: a rich example[
GenomicRanges
rownames
and colnames
if (!require("BiocManager"))
install.packages("BiocManager")
BiocManager::install("MultiAssayExperiment")
Loading the packages:
library(MultiAssayExperiment)
library(GenomicRanges)
library(SummarizedExperiment)
library(RaggedExperiment)
MultiAssayExperiment
offers a data structure for representing and
analyzing multi-omics experiments: a biological analysis approach utilizing
multiple types of observations, such as DNA mutations and abundance of RNA
and proteins, in the same biological specimens.
For assays with different numbers of rows and even columns,
MultiAssayExperiment
is recommended. For sets of assays with the same
information across all rows (e.g., genes or genomic ranges),
SummarizedExperiment
is the recommended data structure.
MultiAssayExperiment
classHere is an overview of the class and its constructors and extractors:
empty <- MultiAssayExperiment()
empty
## A MultiAssayExperiment object of 0 listed
## experiments with no user-defined names and respective classes.
## Containing an ExperimentList class object of length 0:
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
slotNames(empty)
## [1] "ExperimentList" "colData" "sampleMap" "drops"
## [5] "metadata"
A visual representation of the MultiAssayExperiment class and its accessor functions can be seen below. There are three main components:
ExperimentList
colData
sampleMap
MultiAssayExperiment
ExperimentList
: experimental dataThe ExperimentList
slot and class is the container workhorse for the
MultiAssayExperiment
class. It contains all the experimental data. It inherits
from class S4Vectors::SimpleList
with one element/component per data type.
class(experiments(empty)) # ExperimentList
## [1] "ExperimentList"
## attr(,"package")
## [1] "MultiAssayExperiment"
The elements of the ExperimentList
can contain ID-based and
range-based data. Requirements for all classes in the ExperimentList
are listed in the API.
The following base and Bioconductor classes are known to work as elements of the ExperimentList:
base::matrix
: the base class, can be used for ID-based datasets such as
gene expression summarized per-gene, microRNA, metabolomics, or microbiome
data.
SummarizedExperiment::SummarizedExperiment
: A richer representation compared
to a ordinary matrix of ID-based datasets capable of storing additional assay-
level metadata.
Biobase::ExpressionSet
: A legacy representation of ID-based datasets,
supported for convenience and supplanted by SummarizedExperiment
.
SummarizedExperiment::RangedSummarizedExperiment
: For rectangular
range-based datasets, one set of genomic ranges are assayed for multiple
samples. It can be used for gene expression, methylation, or other data
types that refer to genomic positions.
RaggedExperiment::RaggedExperiment
: For range-based datasets, such as
copy number and mutation data, the RaggedExperiment
class can be used
to represent measurements by genomic positions.
ExperimentList
containerSee the API section for details on
requirements for using other data classes. In general, data classes meeting
minimum requirements, including support for square bracket [
subsetting and
dimnames()
will work by default.
The datasets contained in elements of the ExperimentList
can have:
The column names correspond to samples, and are used to match assay data to
specimen metadata stored in colData
.
The row names can correspond to a variety of features in the data including but not limited to gene names, probe IDs, proteins, and named ranges. Note that the existence of “row” names does not mean the data must be rectangular or matrix-like.
Classes contained in the ExperimentList
must support the following list of
methods:
[
: single square bracket subsetting, with a single comma. It is assumed
that values before the comma subset rows, and values after the comma subset
columns.dimnames()
: corresponding to features (such as genes, proteins, etc.)
and experimental samplesdim()
: returns a vector of the number of rows and number of columnscolData
: primary dataThe MultiAssayExperiment
keeps one set of “primary” metadata that describes
the ‘biological unit’ which can refer to specimens, experimental subjects,
patients, etc. In this vignette, we will refer to each experimental subject as
a patient.
colData
slot requirementsThe colData
dataset should be of class DataFrame
but can accept a
data.frame
class object that will be coerced.
In order to relate metadata of the biological unit, the row names of the
colData
dataset must contain patient identifiers.
patient.data <- data.frame(sex=c("M", "F", "M", "F"),
age=38:41,
row.names=c("Jack", "Jill", "Bob", "Barbara"))
patient.data
## sex age
## Jack M 38
## Jill F 39
## Bob M 40
## Barbara F 41
Key points:
colData
can map to zero, one, or more columns in any ExperimentList
elementcolData
must map to at least one column in at least one ExperimentList
element.ExperimentList
element must map to exactly one row of colData
.These relationships are defined by the sampleMap.
DataFrame
For many typical purposes the DataFrame
and data.frame
behave equivalently;
but the Dataframe
is more flexible as it allows any vector-like data type
to be stored in its columns. The flexibility of the DataFrame
permits, for
example, storing multiple dose-response values for a single cell line, even
if the number of doses and responses is not consistent across all cell lines.
Doses could be stored in one column of colData
as a SimpleList
, and
responses in another column, also as a SimpleList
. Or, dose-response values
could be stored in a single column of colData
as a two-column matrix for
each cell line.
sampleMap
: relating colData
to multiple assaysThe sampleMap
is a DataFrame
that relates the “primary” data
(colData
) to the experimental assays:
is(sampleMap(empty), "DataFrame") # TRUE
## [1] TRUE
The sampleMap
provides an unambiguous map from every experimental
observation to one and only one row in colData
. It is, however, permissible
for a row of colData
to be associated with multiple experimental observations
or no observations at all. In other words, there is a “many-to-one” mapping
from experimental observations to rows of colData
, and a “one-to-any-number”
mapping from rows of colData
to experimental observations.
sampleMap
structureThe sampleMap
has three columns, with the following column names:
assay provides the names of the different experiments / assays
performed. These are user-defined, with the only requirement that the names
of the ExperimentList
, where the experimental assays are stored, must be
contained in this column.
primary provides the “primary” sample names. All values in this column
must also be present in the rownames of colData(MultiAssayExperiment)
.
In this example, allowable values in this column are “Jack”, “Jill”,
“Barbara”, and “Bob”.
colname provides the sample names used by experimental datasets, which in practice are often different than the primary sample names. For each assay, all column names must be found in this column. Otherwise, those assays would be orphaned: it would be impossible to match them up to samples in the overall experiment. As mentioned above, duplicate values are allowed, to represent replicates with the same overall experiment-level annotation.
This design is motivated by the following situations:
sampleMap
isn’t providedIf each assay uses the same colnames (i.e., if the same sample identifiers are
used for each experiment), a simple list of these datasets is sufficient for
the MultiAssayExperiment
constructor function. It is not necessary for
them to have the same rownames or colnames:
exprss1 <- matrix(rnorm(16), ncol = 4,
dimnames = list(sprintf("ENST00000%i", sample(288754:290000, 4)),
c("Jack", "Jill", "Bob", "Bobby")))
exprss2 <- matrix(rnorm(12), ncol = 3,
dimnames = list(sprintf("ENST00000%i", sample(288754:290000, 4)),
c("Jack", "Jane", "Bob")))
doubleExp <- list("methyl 2k" = exprss1, "methyl 3k" = exprss2)
simpleMultiAssay <- MultiAssayExperiment(experiments=doubleExp)
simpleMultiAssay
## A MultiAssayExperiment object of 2 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 2:
## [1] methyl 2k: matrix with 4 rows and 4 columns
## [2] methyl 3k: matrix with 4 rows and 3 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
In the above example, the user did not provide the colData
argument so the
constructor function filled it with an empty DataFrame
:
colData(simpleMultiAssay)
## DataFrame with 5 rows and 0 columns
But the colData
can be provided. Here, note that any assay sample (column)
that cannot be mapped to a corresponding row in the provided colData
gets
dropped. This is part of ensuring internal validity of the
MultiAssayExperiment
.
simpleMultiAssay2 <- MultiAssayExperiment(experiments=doubleExp,
colData=patient.data)
## Warning: Data dropped from ExperimentList (element - column):
## methyl 2k - Bobby
## methyl 3k - Jane
## Unable to map to rows of colData
## harmonizing input:
## removing 1 colData rownames not in sampleMap 'primary'
simpleMultiAssay2
## A MultiAssayExperiment object of 2 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 2:
## [1] methyl 2k: matrix with 4 rows and 3 columns
## [2] methyl 3k: matrix with 4 rows and 2 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
colData(simpleMultiAssay2)
## DataFrame with 3 rows and 2 columns
## sex age
## <character> <integer>
## Jack M 38
## Jill F 39
## Bob M 40
Metadata can be added at different levels of the MultiAssayExperiment
.
Can be of ANY class, for storing study-wide metadata, such as citation
information. For an empty MultiAssayExperiment
object, it is NULL.
class(metadata(empty)) # NULL (class "ANY")
## [1] "list"
At the ExperimentList
level, the metadata
function would allow the user to
enter metadata as a list
.
metadata(experiments(empty))
## list()
At the individual assay level, certain classes may support metadata, for
example, metadata
and mcols
for a SummarizedExperiment
. It is recommended
to use metadata
at the ExperimentList
level.
MultiAssayExperiment
object: a rich exampleIn this section we demonstrate all core supported data classes, using different
sample ID conventions for each assay, with primary colData
. The some
supported classes such as, matrix
, SummarizedExperiment
, and RangedSummarizedExperiment
.
We have three matrix-like datasets. First, let’s represent expression data as
a SummarizedExperiment
:
(arraydat <- matrix(seq(101, 108), ncol=4,
dimnames=list(c("ENST00000294241", "ENST00000355076"),
c("array1", "array2", "array3", "array4"))))
## array1 array2 array3 array4
## ENST00000294241 101 103 105 107
## ENST00000355076 102 104 106 108
coldat <- data.frame(slope53=rnorm(4),
row.names=c("array1", "array2", "array3", "array4"))
exprdat <- SummarizedExperiment(arraydat, colData=coldat)
exprdat
## class: SummarizedExperiment
## dim: 2 4
## metadata(0):
## assays(1): ''
## rownames(2): ENST00000294241 ENST00000355076
## rowData names(0):
## colnames(4): array1 array2 array3 array4
## colData names(1): slope53
The following map matches colData
sample names to exprdata
sample
names. Note that row orders aren’t initially matched up, and this is OK.
(exprmap <- data.frame(primary=rownames(patient.data)[c(1, 2, 4, 3)],
colname=c("array1", "array2", "array3", "array4"),
stringsAsFactors = FALSE))
## primary colname
## 1 Jack array1
## 2 Jill array2
## 3 Barbara array3
## 4 Bob array4
Now methylation data, which we will represent as a matrix
. It uses
gene identifiers also, but measures a partially overlapping set of genes.
Now, let’s store this as a simple matrix which can contains a replicate
for one of the patients.
(methyldat <-
matrix(1:10, ncol=5,
dimnames=list(c("ENST00000355076", "ENST00000383706"),
c("methyl1", "methyl2", "methyl3",
"methyl4", "methyl5"))))
## methyl1 methyl2 methyl3 methyl4 methyl5
## ENST00000355076 1 3 5 7 9
## ENST00000383706 2 4 6 8 10
The following map matches colData
sample names to methyldat
sample
names.
(methylmap <- data.frame(primary = c("Jack", "Jack", "Jill", "Barbara", "Bob"),
colname = c("methyl1", "methyl2", "methyl3", "methyl4", "methyl5"),
stringsAsFactors = FALSE))
## primary colname
## 1 Jack methyl1
## 2 Jack methyl2
## 3 Jill methyl3
## 4 Barbara methyl4
## 5 Bob methyl5
Now we have a microRNA platform, which has no common identifiers with the
other datasets, and which we also represent as a matrix
. It
is also missing data for “Jill”. We will use the same sample naming
convention as we did for arrays.
(microdat <- matrix(201:212, ncol=3,
dimnames=list(c("hsa-miR-21", "hsa-miR-191",
"hsa-miR-148a", "hsa-miR148b"),
c("micro1", "micro2", "micro3"))))
## micro1 micro2 micro3
## hsa-miR-21 201 205 209
## hsa-miR-191 202 206 210
## hsa-miR-148a 203 207 211
## hsa-miR148b 204 208 212
And the following map matches colData
sample names to microdat
sample names.
(micromap <- data.frame(primary = c("Jack", "Barbara", "Bob"),
colname = c("micro1", "micro2", "micro3"), stringsAsFactors = FALSE))
## primary colname
## 1 Jack micro1
## 2 Barbara micro2
## 3 Bob micro3
Finally, we create a dataset of class RangedSummarizedExperiment
:
nrows <- 5; ncols <- 4
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
rowRanges <- GRanges(rep(c("chr1", "chr2"), c(2, nrows - 2)),
IRanges(floor(runif(nrows, 1e5, 1e6)), width=100),
strand=sample(c("+", "-"), nrows, TRUE),
feature_id=sprintf("ID\\%03d", 1:nrows))
names(rowRanges) <- letters[1:5]
colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 2),
row.names= c("mysnparray1", "mysnparray2", "mysnparray3", "mysnparray4"))
rse <- SummarizedExperiment(assays=SimpleList(counts=counts),
rowRanges=rowRanges, colData=colData)
And we map the colData
samples to the RangedSummarizedExperiment
:
(rangemap <-
data.frame(primary = c("Jack", "Jill", "Bob", "Barbara"),
colname = c("mysnparray1", "mysnparray2", "mysnparray3", "mysnparray4"),
stringsAsFactors = FALSE))
## primary colname
## 1 Jack mysnparray1
## 2 Jill mysnparray2
## 3 Bob mysnparray3
## 4 Barbara mysnparray4
sampleMap
creationThe MultiAssayExperiment
constructor function can create the sampleMap
automatically if a single naming convention is used, but in this example
it cannot because we used platform-specific sample identifiers
(e.g. mysnparray1, etc). So we must provide an ID map that matches the
samples of each experiment back to the colData
, as a three-column
data.frame
or DataFrame
with three columns named “assay”, primary“, and”colname". Here we start with a list:
listmap <- list(exprmap, methylmap, micromap, rangemap)
names(listmap) <- c("Affy", "Methyl 450k", "Mirna", "CNV gistic")
listmap
## $Affy
## primary colname
## 1 Jack array1
## 2 Jill array2
## 3 Barbara array3
## 4 Bob array4
##
## $`Methyl 450k`
## primary colname
## 1 Jack methyl1
## 2 Jack methyl2
## 3 Jill methyl3
## 4 Barbara methyl4
## 5 Bob methyl5
##
## $Mirna
## primary colname
## 1 Jack micro1
## 2 Barbara micro2
## 3 Bob micro3
##
## $`CNV gistic`
## primary colname
## 1 Jack mysnparray1
## 2 Jill mysnparray2
## 3 Bob mysnparray3
## 4 Barbara mysnparray4
and use the convenience function listToMap
to convert the list of
data.frame
objects to a valid object for the sampleMap
:
dfmap <- listToMap(listmap)
dfmap
## DataFrame with 16 rows and 3 columns
## assay primary colname
## <factor> <character> <character>
## 1 Affy Jack array1
## 2 Affy Jill array2
## 3 Affy Barbara array3
## 4 Affy Bob array4
## 5 Methyl 450k Jack methyl1
## ... ... ... ...
## 12 Mirna Bob micro3
## 13 CNV gistic Jack mysnparray1
## 14 CNV gistic Jill mysnparray2
## 15 CNV gistic Bob mysnparray3
## 16 CNV gistic Barbara mysnparray4
Note, dfmap
can be reverted to a list with another provided function:
mapToList(dfmap, "assay")
list()
Create an named list of experiments for the MultiAssayExperiment
function.
All of these names must be found within in the third column of dfmap
:
objlist <- list("Affy" = exprdat, "Methyl 450k" = methyldat,
"Mirna" = microdat, "CNV gistic" = rse)
MultiAssayExperiment
class objectWe recommend using the MultiAssayExperiment
constructor function:
myMultiAssay <- MultiAssayExperiment(objlist, patient.data, dfmap)
myMultiAssay
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 2 rows and 4 columns
## [2] Methyl 450k: matrix with 2 rows and 5 columns
## [3] Mirna: matrix with 4 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 4 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
The following extractor functions can be used to get extract data from the object:
experiments(myMultiAssay)
## ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 2 rows and 4 columns
## [2] Methyl 450k: matrix with 2 rows and 5 columns
## [3] Mirna: matrix with 4 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 4 columns
colData(myMultiAssay)
## DataFrame with 4 rows and 2 columns
## sex age
## <character> <integer>
## Jack M 38
## Jill F 39
## Bob M 40
## Barbara F 41
sampleMap(myMultiAssay)
## DataFrame with 16 rows and 3 columns
## assay primary colname
## <factor> <character> <character>
## 1 Affy Jack array1
## 2 Affy Jill array2
## 3 Affy Barbara array3
## 4 Affy Bob array4
## 5 Methyl 450k Jack methyl1
## ... ... ... ...
## 12 Mirna Bob micro3
## 13 CNV gistic Jack mysnparray1
## 14 CNV gistic Jill mysnparray2
## 15 CNV gistic Bob mysnparray3
## 16 CNV gistic Barbara mysnparray4
metadata(myMultiAssay)
## list()
Note that the ExperimentList
class extends the SimpleList
class to add some
validity checks specific to MultiAssayExperiment
. It can be used like
a list.
MultiAssayExperiment
objectThe prepMultiAssay
function helps diagnose common problems when creating a
MultiAssayExperiment
object. It provides error messages and/or warnings in
instances where names (either colnames
or ExperimentList
element names) are
inconsistent with those found in the sampleMap. Input arguments are the same
as those in the MultiAssayExperiment
(i.e., ExperimentList
, colData
,
sampleMap
). The resulting output of the prepMultiAssay
function is a list
of inputs including a “metadata$drops” element for names that were not able to be
matched.
Instances where ExperimentList
is created without names will prompt an error
from prepMultiAssay
. Named ExperimentList
elements are essential for checks
in MultiAssayExperiment
.
objlist3 <- objlist
(names(objlist3) <- NULL)
## NULL
try(prepMultiAssay(objlist3, patient.data, dfmap)$experiments,
outFile = stdout())
## Error in prepMultiAssay(objlist3, patient.data, dfmap) :
## ExperimentList does not have names, assign names
Non-matching names may also be present in the ExperimentList
elements and the
“assay” column of the sampleMap
. If names only differ by case and are
identical and unique, names will be standardized to lower case and replaced.
names(objlist3) <- toupper(names(objlist))
names(objlist3)
## [1] "AFFY" "METHYL 450K" "MIRNA" "CNV GISTIC"
unique(dfmap[, "assay"])
## [1] Affy Methyl 450k Mirna CNV gistic
## Levels: Affy Methyl 450k Mirna CNV gistic
prepMultiAssay(objlist3, patient.data, dfmap)$experiments
##
## Names in the ExperimentList do not match sampleMap assay
## standardizing will be attempted...
## - names set to lowercase
## ExperimentList class object of length 4:
## [1] affy: SummarizedExperiment with 2 rows and 4 columns
## [2] methyl 450k: matrix with 2 rows and 5 columns
## [3] mirna: matrix with 4 rows and 3 columns
## [4] cnv gistic: RangedSummarizedExperiment with 5 rows and 4 columns
When colnames
in the ExperimentList
cannot be matched back to the primary
data (colData
), these will be dropped and added to the drops element.
exampleMap <- sampleMap(simpleMultiAssay2)
sapply(doubleExp, colnames)
## $`methyl 2k`
## [1] "Jack" "Jill" "Bob" "Bobby"
##
## $`methyl 3k`
## [1] "Jack" "Jane" "Bob"
exampleMap
## DataFrame with 5 rows and 3 columns
## assay primary colname
## <factor> <character> <character>
## 1 methyl 2k Jack Jack
## 2 methyl 2k Jill Jill
## 3 methyl 2k Bob Bob
## 4 methyl 3k Jack Jack
## 5 methyl 3k Bob Bob
prepMultiAssay(doubleExp, patient.data, exampleMap)$metadata$drops
##
## Not all colnames in the ExperimentList are found in the
## sampleMap, dropping samples from ExperimentList...
## $`methyl 2k`
## [1] "Bobby"
##
## $`methyl 3k`
## [1] "Jane"
## $`columns.methyl 2k`
## [1] "Bobby"
##
## $`columns.methyl 3k`
## [1] "Jane"
A similar operation is performed for checking “primary” sampleMap
names and
colData
rownames. In this example, we add a row corresponding to “Joe” that
does not have a match in the experimental data.
exMap <- rbind(dfmap,
DataFrame(assay = "New methyl", primary = "Joe",
colname = "Joe"))
invisible(prepMultiAssay(objlist, patient.data, exMap))
## Warning in prepMultiAssay(objlist, patient.data, exMap):
## Lengths of names in the ExperimentList and sampleMap
## are not equal
##
## Not all names in the primary column of the sampleMap
## could be matched to the colData rownames; see $drops
## DataFrame with 1 row and 3 columns
## assay primary colname
## <factor> <character> <character>
## 1 New methyl Joe Joe
To create a MultiAssayExperiment
from the results of the prepMultiAssay
function, take each corresponding element from the resulting list and enter
them as arguments to the MultiAssayExperiment
constructor function.
prepped <- prepMultiAssay(objlist, patient.data, exMap)
## Warning in prepMultiAssay(objlist, patient.data, exMap):
## Lengths of names in the ExperimentList and sampleMap
## are not equal
##
## Not all names in the primary column of the sampleMap
## could be matched to the colData rownames; see $drops
## DataFrame with 1 row and 3 columns
## assay primary colname
## <factor> <character> <character>
## 1 New methyl Joe Joe
preppedMulti <- MultiAssayExperiment(prepped$experiments, prepped$colData,
prepped$sampleMap, prepped$metadata)
preppedMulti
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 2 rows and 4 columns
## [2] Methyl 450k: matrix with 2 rows and 5 columns
## [3] Mirna: matrix with 4 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 4 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
Alternatively, use the do.call
function to easily create a MultiAssayExperiment
from the output of prepMultiAssay
function:
do.call(MultiAssayExperiment, prepped)
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 2 rows and 4 columns
## [2] Methyl 450k: matrix with 2 rows and 5 columns
## [3] Mirna: matrix with 4 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 4 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
Bioconductor
classes from raw dataRecent updates to the GenomicRanges
and SummarizedExperiment
packages
allow the user to create standard Bioconductor classes from raw data. Raw
data read in as either data.frame
or DataFrame
can be converted to
GRangesList
or SummarizedExperiment
classes depending on the type of data.
The function to create a GRangesList
from a data.frame
, called
makeGRangesListFromDataFrame
can be found in the GenomicRanges
package.
makeSummarizedExperimentFromDataFrame
is available in the
SummarizedExperiment
package. It is also possible to create a
RangedSummarizedExperiment
class object from raw data when ranged data is
available.
A simple example can be obtained from the function documentation in
GenomicRanges
:
grlls <- list(chr = rep("chr1", nrows), start = seq(11, 15),
end = seq(12, 16), strand = c("+", "-", "+", "*", "*"),
score = seq(1, 5), specimen = c("a", "a", "b", "b", "c"),
gene_symbols = paste0("GENE", letters[seq_len(nrows)]))
grldf <- as.data.frame(grlls, stringsAsFactors = FALSE)
GRL <- makeGRangesListFromDataFrame(grldf, split.field = "specimen",
names.field = "gene_symbols")
This can then be converted to a RaggedExperiment
object for a
rectangular representation that will conform more easily to the
MultiAssayExperiment
API requirements.
RaggedExperiment(GRL)
## class: RaggedExperiment
## dim: 5 3
## assays(0):
## rownames(5): GENEa GENEb GENEc GENEd GENEe
## colnames(3): a b c
## colData names(0):
Note. See the RaggedExperiment
vignette for more details.
In the SummarizedExperiment
package:
sels <- list(chr = rep("chr2", nrows), start = seq(11, 15),
end = seq(12, 16), strand = c("+", "-", "+", "*", "*"),
expr0 = seq(3, 7), expr1 = seq(8, 12), expr2 = seq(12, 16))
sedf <- as.data.frame(sels,
row.names = paste0("GENE", letters[rev(seq_len(nrows))]),
stringsAsFactors = FALSE)
sedf
## chr start end strand expr0 expr1 expr2
## GENEe chr2 11 12 + 3 8 12
## GENEd chr2 12 13 - 4 9 13
## GENEc chr2 13 14 + 5 10 14
## GENEb chr2 14 15 * 6 11 15
## GENEa chr2 15 16 * 7 12 16
makeSummarizedExperimentFromDataFrame(sedf)
## class: RangedSummarizedExperiment
## dim: 5 3
## metadata(0):
## assays(1): ''
## rownames(5): GENEe GENEd GENEc GENEb GENEa
## rowData names(0):
## colnames(3): expr0 expr1 expr2
## colData names(0):
MultiAssayExperiment
allows subsetting by rows, columns, and assays,
rownames, and colnames, across all experiments simultaneously while
guaranteeing continued matching of samples.
Subsetting can be done most compactly by the square bracket method, or more
verbosely and potentially more flexibly by the subsetBy*()
methods.
[
The three positions within the bracket operator indicate rows, columns, and assays, respectively (pseudocode):
myMultiAssay[rows, columns, assays]
For example, to select the gene “ENST00000355076”:
myMultiAssay["ENST00000355076", , ]
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 1 rows and 4 columns
## [2] Methyl 450k: matrix with 1 rows and 5 columns
## [3] Mirna: matrix with 0 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 0 rows and 4 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
The above operation works across all types of assays, whether ID-based
(e.g. matrix
, ExpressionSet
, SummarizedExperiment
) or range-based
(e.g. RangedSummarizedExperiment
). Note that when using
the bracket method [
, the drop argument is TRUE by default.
You can subset by rows, columns, and assays in a single bracket operation,
and they will be performed in that order (rows, then columns, then assays).
The following selects the ENST00000355076
gene across all samples, then the
first two samples of each assay, and finally the Affy and Methyl 450k assays:
myMultiAssay["ENST00000355076", 1:2, c("Affy", "Methyl 450k")]
## Warning: 'experiments' dropped; see 'metadata'
## harmonizing input:
## removing 3 sampleMap rows not in names(experiments)
## A MultiAssayExperiment object of 2 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 2:
## [1] Affy: SummarizedExperiment with 1 rows and 2 columns
## [2] Methyl 450k: matrix with 1 rows and 3 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
By columns - character, integer, and logical are all allowed, for example:
myMultiAssay[, "Jack", ]
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 2 rows and 1 columns
## [2] Methyl 450k: matrix with 2 rows and 2 columns
## [3] Mirna: matrix with 4 rows and 1 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 1 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
myMultiAssay[, 1, ]
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 2 rows and 1 columns
## [2] Methyl 450k: matrix with 2 rows and 2 columns
## [3] Mirna: matrix with 4 rows and 1 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 1 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
myMultiAssay[, c(TRUE, FALSE, FALSE, FALSE), ]
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 2 rows and 1 columns
## [2] Methyl 450k: matrix with 2 rows and 2 columns
## [3] Mirna: matrix with 4 rows and 1 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 1 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
By assay - character, integer, and logical are allowed:
myMultiAssay[, , "Mirna"]
## Warning: 'experiments' dropped; see 'metadata'
## harmonizing input:
## removing 13 sampleMap rows not in names(experiments)
## removing 1 colData rownames not in sampleMap 'primary'
## A MultiAssayExperiment object of 1 listed
## experiment with a user-defined name and respective class.
## Containing an ExperimentList class object of length 1:
## [1] Mirna: matrix with 4 rows and 3 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
myMultiAssay[, , 3]
## Warning: 'experiments' dropped; see 'metadata'
## harmonizing input:
## removing 13 sampleMap rows not in names(experiments)
## removing 1 colData rownames not in sampleMap 'primary'
## A MultiAssayExperiment object of 1 listed
## experiment with a user-defined name and respective class.
## Containing an ExperimentList class object of length 1:
## [1] Mirna: matrix with 4 rows and 3 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
myMultiAssay[, , c(FALSE, FALSE, TRUE, FALSE, FALSE)]
## Warning: 'experiments' dropped; see 'metadata'
## harmonizing input:
## removing 13 sampleMap rows not in names(experiments)
## removing 1 colData rownames not in sampleMap 'primary'
## A MultiAssayExperiment object of 1 listed
## experiment with a user-defined name and respective class.
## Containing an ExperimentList class object of length 1:
## [1] Mirna: matrix with 4 rows and 3 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
Specify drop=FALSE
to keep assays with zero rows or zero columns, e.g.:
myMultiAssay["ENST00000355076", , , drop=FALSE]
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 1 rows and 4 columns
## [2] Methyl 450k: matrix with 1 rows and 5 columns
## [3] Mirna: matrix with 0 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 0 rows and 4 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
Using the default drop=TRUE
, assays with no rows or no columns are removed:
myMultiAssay["ENST00000355076", , , drop=TRUE]
## Warning: 'experiments' dropped; see 'metadata'
## Warning: 'experiments' dropped; see 'metadata'
## harmonizing input:
## removing 7 sampleMap rows not in names(experiments)
## A MultiAssayExperiment object of 2 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 2:
## [1] Affy: SummarizedExperiment with 1 rows and 4 columns
## [2] Methyl 450k: matrix with 1 rows and 5 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
Experimental samples are stored in the rows of colData
but the columns of
elements of ExperimentList
, so when we refer to subsetting by columns, we
are referring to columns of the experimental assays. Subsetting by samples /
columns will be more obvious after recalling the colData
:
colData(myMultiAssay)
## DataFrame with 4 rows and 2 columns
## sex age
## <character> <integer>
## Jack M 38
## Jill F 39
## Bob M 40
## Barbara F 41
Subsetting by samples identifies the selected samples in rows of the colData
DataFrame, then selects all columns of the ExperimentList
corresponding to
these rows. Here we use an integer to keep the first two rows of colData, and
all experimental assays associated to those two primary samples:
myMultiAssay[, 1:2]
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 2 rows and 2 columns
## [2] Methyl 450k: matrix with 2 rows and 3 columns
## [3] Mirna: matrix with 4 rows and 1 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 2 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
Note that the above operation keeps different numbers of columns / samples from each assay, reflecting the reality that some samples may not have been assayed in all experiments, and may have replicates in some.
Columns can be subset using a logical vector. Here the dollar sign operator
($
) accesses one of the columns in colData
.
malesMultiAssay <- myMultiAssay[, myMultiAssay$sex == "M"]
colData(malesMultiAssay)
## DataFrame with 2 rows and 2 columns
## sex age
## <character> <integer>
## Jack M 38
## Bob M 40
Finally, for special use cases you can exert detailed control of row or column
subsetting, by using a list
or CharacterList
to subset. The following
creates a CharacterList
of the column names of each assay:
allsamples <- colnames(myMultiAssay)
allsamples
## CharacterList of length 4
## [["Affy"]] array1 array2 array3 array4
## [["Methyl 450k"]] methyl1 methyl2 methyl3 methyl4 methyl5
## [["Mirna"]] micro1 micro2 micro3
## [["CNV gistic"]] mysnparray1 mysnparray2 mysnparray3 mysnparray4
Now let’s get rid of three Methyl 450k arrays, those in positions 3, 4, and 5:
allsamples[["Methyl 450k"]] <- allsamples[["Methyl 450k"]][-3:-5]
myMultiAssay[, as.list(allsamples), ]
## harmonizing input:
## removing 3 sampleMap rows with 'colname' not in colnames of experiments
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 2 rows and 4 columns
## [2] Methyl 450k: matrix with 2 rows and 2 columns
## [3] Mirna: matrix with 4 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 4 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
subsetByColumn(myMultiAssay, as.list(allsamples)) #equivalent
## harmonizing input:
## removing 3 sampleMap rows with 'colname' not in colnames of experiments
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 2 rows and 4 columns
## [2] Methyl 450k: matrix with 2 rows and 2 columns
## [3] Mirna: matrix with 4 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 4 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
You can select certain assays / experiments using subset, by providing a character, logical, or integer vector. An example using character:
myMultiAssay[, , c("Affy", "CNV gistic")]
## Warning: 'experiments' dropped; see 'metadata'
## harmonizing input:
## removing 8 sampleMap rows not in names(experiments)
## A MultiAssayExperiment object of 2 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 2:
## [1] Affy: SummarizedExperiment with 2 rows and 4 columns
## [2] CNV gistic: RangedSummarizedExperiment with 5 rows and 4 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
You can subset assays also using logical or integer vectors:
is.cnv <- grepl("CNV", names(experiments(myMultiAssay)))
is.cnv
## [1] FALSE FALSE FALSE TRUE
myMultiAssay[, , is.cnv] #logical subsetting
## Warning: 'experiments' dropped; see 'metadata'
## harmonizing input:
## removing 12 sampleMap rows not in names(experiments)
## A MultiAssayExperiment object of 1 listed
## experiment with a user-defined name and respective class.
## Containing an ExperimentList class object of length 1:
## [1] CNV gistic: RangedSummarizedExperiment with 5 rows and 4 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
myMultiAssay[, , which(is.cnv)] #integer subsetting
## Warning: 'experiments' dropped; see 'metadata'
## harmonizing input:
## removing 12 sampleMap rows not in names(experiments)
## A MultiAssayExperiment object of 1 listed
## experiment with a user-defined name and respective class.
## Containing an ExperimentList class object of length 1:
## [1] CNV gistic: RangedSummarizedExperiment with 5 rows and 4 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
Rows of the assays correspond to assay features or measurements, such as genes.
Regardless of whether the assay is ID-based (e.g., matrix
, ExpressionSet
) or
range-based (e.g., RangedSummarizedExperiment
), they can be
subset using any of the following:
a character vector of IDs that will be matched to rownames in each assay
an integer vector that will select rows of this position from each assay.
This probably doesn’t make sense unless every ExperimentList
element
represents the same measurements in the same order and will generate an error
if any of the integer elements exceeds the number of rows in any
ExperimentList
element. The most likely use of integer subsetting would be
as a head
function, for example to look at the first 6 rows of each assay.
a logical vector that will be passed directly to the row subsetting operation for each assay.
a list or List with element names matching those in the
ExperimentList
. Each element of the subsetting list will be passed on exactly
to subset rows of the corresponding element of the ExperimentList
.
Any list
or List
input allows for selective subsetting. The subsetting is
applied only to the matching element names in the ExperimentList
. For
example, to only take the first two rows of the microRNA dataset, we use a
named list
to indicate what element we want to subset along with the
drop = FALSE
argument.
myMultiAssay[list(Mirna = 1:2), , ]
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 2 rows and 4 columns
## [2] Methyl 450k: matrix with 2 rows and 5 columns
## [3] Mirna: matrix with 2 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 4 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
## equivalently
subsetByRow(myMultiAssay, list(Mirna = 1:2))
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 2 rows and 4 columns
## [2] Methyl 450k: matrix with 2 rows and 5 columns
## [3] Mirna: matrix with 2 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 4 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
Again, these operations always return a MultiAssayExperiment
class, unless
drop=TRUE
is passed to the [
backet subset, with any ExperimentList
element not containing the feature having zero rows.
For example, return a MultiAssayExperiment where Affy
and Methyl 450k
contain only “ENST0000035076”" row, and “Mirna” and “CNV gistic” have zero
rows (drop
argument is set to FALSE
by default in subsetBy*
):
featSub0 <- subsetByRow(myMultiAssay, "ENST00000355076")
featSub1 <- myMultiAssay["ENST00000355076", , drop = FALSE] #equivalent
all.equal(featSub0, featSub1)
## [1] TRUE
class(featSub1)
## [1] "MultiAssayExperiment"
## attr(,"package")
## [1] "MultiAssayExperiment"
class(experiments(featSub1))
## [1] "ExperimentList"
## attr(,"package")
## [1] "MultiAssayExperiment"
experiments(featSub1)
## ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 1 rows and 4 columns
## [2] Methyl 450k: matrix with 1 rows and 5 columns
## [3] Mirna: matrix with 0 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 0 rows and 4 columns
In the following, Affy
SummarizedExperiment
keeps both rows but with their
order reversed, and Methyl 450k
keeps only its second row.
featSubsetted <-
subsetByRow(myMultiAssay, c("ENST00000355076", "ENST00000294241"))
assay(myMultiAssay, 1L)
## array1 array2 array3 array4
## ENST00000294241 101 103 105 107
## ENST00000355076 102 104 106 108
assay(featSubsetted, 1L)
## array1 array2 array3 array4
## ENST00000355076 102 104 106 108
## ENST00000294241 101 103 105 107
GenomicRanges
For MultiAssayExperiment
objects containing range-based objects (currently
RangedSummarizedExperiment
), these can be subset
using a GRanges
object, for example:
gr <- GRanges(seqnames = c("chr1", "chr1", "chr2"), strand = c("-", "+", "+"),
ranges = IRanges(start = c(230602, 443625, 934533),
end = c(330701, 443724, 934632)))
Now do the subsetting. The function doing the work here is
IRanges::subsetByOverlaps
- see its arguments for flexible types of
subsetting by range. The first three arguments here are for subset
, the
rest passed on to IRanges::subsetByOverlaps
through “…”:
subsetted <- subsetByRow(myMultiAssay, gr, maxgap = 2L, type = "within")
experiments(subsetted)
## ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 0 rows and 4 columns
## [2] Methyl 450k: matrix with 0 rows and 5 columns
## [3] Mirna: matrix with 0 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 0 rows and 4 columns
rowRanges(subsetted[[4]])
## GRanges object with 0 ranges and 1 metadata column:
## seqnames ranges strand | feature_id
## <Rle> <IRanges> <Rle> | <character>
## -------
## seqinfo: 2 sequences from an unspecified genome; no seqlengths
Square bracket subsetting can still be used here, but passing on arguments to
IRanges::subsetByOverlaps
through “…” is simpler using subsetByRow()
.
subsetByRow
, subsetByColumn
, subsetByAssay
, and square bracket subsetting
are all “endomorphic” operations, in that they always return another
MultiAssayExperiment
object.
A double-bracket subset operation refers to an experiment, and will return
the object contained within an ExperimentList
element. It is not
endomorphic. For example, the first ExperimentList
element is called “Affy”
and contains a SummarizedExperiment
:
names(myMultiAssay)
## [1] "Affy" "Methyl 450k" "Mirna" "CNV gistic"
myMultiAssay[[1]]
## class: SummarizedExperiment
## dim: 2 4
## metadata(0):
## assays(1): ''
## rownames(2): ENST00000294241 ENST00000355076
## rowData names(0):
## colnames(4): array1 array2 array3 array4
## colData names(1): slope53
myMultiAssay[["Affy"]]
## class: SummarizedExperiment
## dim: 2 4
## metadata(0):
## assays(1): ''
## rownames(2): ENST00000294241 ENST00000355076
## rowData names(0):
## colnames(4): array1 array2 array3 array4
## colData names(1): slope53
complete.cases
The complete.cases
function returns a logical vector of colData
rows
identifying which primary units have data for all experiments. Recall that
myMultiAssay
provides data for four individuals:
colData(myMultiAssay)
## DataFrame with 4 rows and 2 columns
## sex age
## <character> <integer>
## Jack M 38
## Jill F 39
## Bob M 40
## Barbara F 41
Of these, only Jack has data for all 5 experiments:
complete.cases(myMultiAssay)
## [1] TRUE FALSE TRUE TRUE
But all four have complete cases for Affy and Methyl 450k:
complete.cases(myMultiAssay[, , 1:2])
## Warning: 'experiments' dropped; see 'metadata'
## harmonizing input:
## removing 7 sampleMap rows not in names(experiments)
## [1] TRUE TRUE TRUE TRUE
This output can be used to select individuals with complete data:
myMultiAssay[, complete.cases(myMultiAssay), ]
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 2 rows and 3 columns
## [2] Methyl 450k: matrix with 2 rows and 4 columns
## [3] Mirna: matrix with 4 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 3 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
replicated
The replicated
function identifies primary
column values or biological units
that have multiple observations per assay
. It returns a list
of
LogicalList
s that indicate what biological units have one or more replicate
measurements. This output is used for merging replicates by default.
replicated(myMultiAssay)
## $Affy
## LogicalList of length 4
## [["Jack"]] FALSE FALSE FALSE FALSE
## [["Jill"]] FALSE FALSE FALSE FALSE
## [["Barbara"]] FALSE FALSE FALSE FALSE
## [["Bob"]] FALSE FALSE FALSE FALSE
##
## $`Methyl 450k`
## LogicalList of length 4
## [["Jack"]] TRUE TRUE FALSE FALSE FALSE
## [["Jill"]] FALSE FALSE FALSE FALSE FALSE
## [["Barbara"]] FALSE FALSE FALSE FALSE FALSE
## [["Bob"]] FALSE FALSE FALSE FALSE FALSE
##
## $Mirna
## LogicalList of length 3
## [["Jack"]] FALSE FALSE FALSE
## [["Barbara"]] FALSE FALSE FALSE
## [["Bob"]] FALSE FALSE FALSE
##
## $`CNV gistic`
## LogicalList of length 4
## [["Jack"]] FALSE FALSE FALSE FALSE
## [["Jill"]] FALSE FALSE FALSE FALSE
## [["Bob"]] FALSE FALSE FALSE FALSE
## [["Barbara"]] FALSE FALSE FALSE FALSE
intersectRows
The intersectRows
function takes all common rownames across all experiments
and returns a MultiAssayExperiment
with those rows.
(ensmblMatches <- intersectRows(myMultiAssay[, , 1:2]))
## Warning: 'experiments' dropped; see 'metadata'
## harmonizing input:
## removing 7 sampleMap rows not in names(experiments)
## A MultiAssayExperiment object of 2 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 2:
## [1] Affy: SummarizedExperiment with 1 rows and 4 columns
## [2] Methyl 450k: matrix with 1 rows and 5 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
rownames(ensmblMatches)
## CharacterList of length 2
## [["Affy"]] ENST00000355076
## [["Methyl 450k"]] ENST00000355076
intersectColumns
A call to intersectColumns
returns another MultiAssayExperiment
where the
columns of each element of the ExperimentList
correspond exactly to the rows
of colData
. In many cases, this operation returns a 1-to-1 correspondence of samples to
patients for each experiment assay unless replicates are present in the data.
intersectColumns(myMultiAssay)
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 2 rows and 3 columns
## [2] Methyl 450k: matrix with 2 rows and 4 columns
## [3] Mirna: matrix with 4 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 3 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
mergeReplicates
The mergeReplicates
function allows the user to specify a function (default:
mean
) for combining replicate columns in each assay element. This can be
combined with intersectColumns
to create a MultiAssayExperiment
object with
one measurement in each experiment per biological unit.
mergeReplicates(intersectColumns(myMultiAssay))
## harmonizing input:
## removing 1 sampleMap rows with 'colname' not in colnames of experiments
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] Affy: SummarizedExperiment with 2 rows and 3 columns
## [2] Methyl 450k: matrix with 2 rows and 3 columns
## [3] Mirna: matrix with 4 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 3 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
c
The combine c
function allows the user to append an experiment to the list
of experiments already present in MultiAssayExperiment
.
In the case that additional observations on the same set of samples were
performed, the c
function can conveniently be referenced to an existing assay
that contains the same ordering of sample measurements.
The mapFrom
argument indicates what experiment has the exact same
organization of samples that will be introduced by the new experiment
dataset. If the number of columns in the new experiment do not match
those in the reference experiment, an error will be thrown.
Here we introduce a toy dataset created on the fly:
c(myMultiAssay, ExpScores = matrix(1:8, ncol = 4,
dim = list(c("ENSMBL0001", "ENSMBL0002"), paste0("pt", 1:4))),
mapFrom = 1L)
## Warning: Assuming column order in the data provided
## matches the order in 'mapFrom' experiment(s) colnames
## A MultiAssayExperiment object of 5 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 5:
## [1] Affy: SummarizedExperiment with 2 rows and 4 columns
## [2] Methyl 450k: matrix with 2 rows and 5 columns
## [3] Mirna: matrix with 4 rows and 3 columns
## [4] CNV gistic: RangedSummarizedExperiment with 5 rows and 4 columns
## [5] ExpScores: matrix with 2 rows and 4 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
Note: Alternatively, a sampleMap
for the additional dataset can be provided.
Extractor functions convert a MultiAssayExperiment
into other forms that are
convenient for analyzing. These would normally be called after any desired
subsetting has been performed.
getWithColData
Provides a single assay along with any associated ‘colData’ columns while keeping the assay class constant.
(affex <- getWithColData(myMultiAssay, 1L))
## Warning: 'experiments' dropped; see 'metadata'
## class: SummarizedExperiment
## dim: 2 4
## metadata(0):
## assays(1): ''
## rownames(2): ENST00000294241 ENST00000355076
## rowData names(0):
## colnames(4): array1 array2 array3 array4
## colData names(3): slope53 sex age
colData(affex)
## DataFrame with 4 rows and 3 columns
## slope53 sex age
## <numeric> <character> <integer>
## array1 -0.887298 M 38
## array2 0.660085 F 39
## array3 0.324628 F 41
## array4 0.109413 M 40
class(affex)
## [1] "SummarizedExperiment"
## attr(,"package")
## [1] "SummarizedExperiment"
It will error when the target data class does not support a colData
replacement method, meaning that it typically works with SummarizedExperiment
and RaggedExperiment
assays and their extensions.
longFormat
& wideFormat
Produces long (default) or wide DataFrame
objects. The following
produces a long DataFrame
(the default) for the first two assays:
longFormat(myMultiAssay[, , 1:2])
## Warning: 'experiments' dropped; see 'metadata'
## harmonizing input:
## removing 7 sampleMap rows not in names(experiments)
## DataFrame with 18 rows and 5 columns
## assay primary rowname colname value
## <character> <character> <character> <character> <integer>
## 1 Affy Jack ENST00000294241 array1 101
## 2 Affy Jack ENST00000355076 array1 102
## 3 Affy Jill ENST00000294241 array2 103
## 4 Affy Jill ENST00000355076 array2 104
## 5 Affy Barbara ENST00000294241 array3 105
## ... ... ... ... ... ...
## 14 Methyl 450k Jill ENST00000383706 methyl3 6
## 15 Methyl 450k Barbara ENST00000355076 methyl4 7
## 16 Methyl 450k Barbara ENST00000383706 methyl4 8
## 17 Methyl 450k Bob ENST00000355076 methyl5 9
## 18 Methyl 450k Bob ENST00000383706 methyl5 10
This is especially useful for performing regression against patient or sample
data from colData
using the pDataCols
argument:
longFormat(myMultiAssay[, , 1:2], colDataCols="age")
## Warning: 'experiments' dropped; see 'metadata'
## harmonizing input:
## removing 7 sampleMap rows not in names(experiments)
## DataFrame with 18 rows and 6 columns
## assay primary rowname colname value age
## <character> <character> <character> <character> <integer> <integer>
## 1 Affy Jack ENST00000294241 array1 101 38
## 2 Affy Jack ENST00000355076 array1 102 38
## 3 Affy Jill ENST00000294241 array2 103 39
## 4 Affy Jill ENST00000355076 array2 104 39
## 5 Affy Barbara ENST00000294241 array3 105 41
## ... ... ... ... ... ... ...
## 14 Methyl 450k Jill ENST00000383706 methyl3 6 39
## 15 Methyl 450k Barbara ENST00000355076 methyl4 7 41
## 16 Methyl 450k Barbara ENST00000383706 methyl4 8 41
## 17 Methyl 450k Bob ENST00000355076 methyl5 9 40
## 18 Methyl 450k Bob ENST00000383706 methyl5 10 40
The “wide” format is useful for calculating correlations or performing
regression against different genomic features. Wide format is in general not
possible with replicate measurements, so we demonstrate on the cleaned
MultiAssayExperiment
for the first 5 columns:
maemerge <- mergeReplicates(intersectColumns(myMultiAssay))
## harmonizing input:
## removing 1 sampleMap rows with 'colname' not in colnames of experiments
wideFormat(maemerge, colDataCols="sex")[, 1:5]
## DataFrame with 3 rows and 5 columns
## primary sex Affy_ENST00000294241 Affy_ENST00000355076
## <character> <character> <integer> <integer>
## 1 Jack M 101 102
## 2 Bob M 107 108
## 3 Barbara F 105 106
## Methyl.450k_ENST00000355076
## <numeric>
## 1 2
## 2 9
## 3 7
assay
/ assays
The assay
(singular) function takes a particular experiment and returns
a matrix. By default, it will return the first experiment as a matrix.
assay(myMultiAssay)
## array1 array2 array3 array4
## ENST00000294241 101 103 105 107
## ENST00000355076 102 104 106 108
The assays
(plural) function returns a SimpleList
of data matrices from the
ExperimentList
:
assays(myMultiAssay)
## List of length 4
## names(4): Affy Methyl 450k Mirna CNV gistic
Our most recent efforts include the release of the experiment data package,
curatedTCGAData
. This package will allow users to selectively download
cancer datasets from The Cancer Genome Atlas (TCGA) and represent the data
as MultiAssayExperiment
objects. Please see the package vignette for more
details.
BiocManager::install("curatedTCGAData")
rownames
and colnames
rownames
and colnames
return a CharacterList
of row names and column names
across all the assays. A CharacterList
is an efficient alternative to
list
used when each element contains a character vector. It also provides a
nice show method:
rownames(myMultiAssay)
## CharacterList of length 4
## [["Affy"]] ENST00000294241 ENST00000355076
## [["Methyl 450k"]] ENST00000355076 ENST00000383706
## [["Mirna"]] hsa-miR-21 hsa-miR-191 hsa-miR-148a hsa-miR148b
## [["CNV gistic"]] a b c d e
colnames(myMultiAssay)
## CharacterList of length 4
## [["Affy"]] array1 array2 array3 array4
## [["Methyl 450k"]] methyl1 methyl2 methyl3 methyl4 methyl5
## [["Mirna"]] micro1 micro2 micro3
## [["CNV gistic"]] mysnparray1 mysnparray2 mysnparray3 mysnparray4
Any data classes in the ExperimentList
object must support the following
methods:
dimnames
[
dim()
Here is what happens if one of the methods doesn’t:
objlist2 <- objlist
objlist2[[2]] <- as.vector(objlist2[[2]])
tryCatch(
MultiAssayExperiment(objlist2, patient.data, dfmap),
error = function(e) {
conditionMessage(e)
}
)
## [1] "invalid class \"ExperimentList\" object: \n 'integer' class is not supported, use a rectangular class"
For more information on the formal API of MultiAssayExperiment
, please see
the API wiki document on GitHub. An API package is available for
download on GitHub via install("waldronlab/MultiAssayShiny")
. It provides
visual exploration of available methods in MultiAssayExperiment
.
The following methods are defined for MultiAssayExperiment
:
methods(class="MultiAssayExperiment")
## [1] $ $<- [ [<-
## [5] [[ [[<- anyReplicated assay
## [9] assays c coerce colData
## [13] colData<- colnames<- complete.cases dimnames
## [17] experiments experiments<- exportClass hasRowRanges
## [21] isEmpty length mergeReplicates metadata
## [25] metadata<- names names<- replicated
## [29] sampleMap sampleMap<- show splitAssays
## [33] subsetByAssay subsetByColData subsetByColumn subsetByRow
## [37] updateObject
## see '?methods' for accessing help and source code
We are excited to announce the official citation for MultiAssayExperiment in Cancer Research.
citation("MultiAssayExperiment")
##
## To cite MultiAssayExperiment in publications use:
##
## Marcel Ramos et al. Software For The Integration Of Multiomics
## Experiments In Bioconductor. Cancer Research, 2017 November 1;
## 77(21); e39-42. DOI: 10.1158/0008-5472.CAN-17-0344
##
## A BibTeX entry for LaTeX users is
##
## @Article{,
## title = {Software For The Integration Of Multi-Omics Experiments In Bioconductor},
## author = {Marcel Ramos and Lucas Schiffer and Angela Re and Rimsha Azhar and Azfar Basunia and Carmen Rodriguez Cabrera and Tiffany Chan and Philip Chapman and Sean Davis and David Gomez-Cabrero and Aedin C. Culhane and Benjamin Haibe-Kains and Kasper Hansen and Hanish Kodali and Marie Stephie Louis and Arvind Singh Mer and Markus Reister and Martin Morgan and Vincent Carey and Levi Waldron},
## journal = {Cancer Research},
## year = {2017},
## volume = {77(21); e39-42},
## }
sessionInfo()
## R version 4.2.0 RC (2022-04-19 r82224)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] RaggedExperiment_1.20.0 MultiAssayExperiment_1.22.0
## [3] SummarizedExperiment_1.26.0 Biobase_2.56.0
## [5] GenomicRanges_1.48.0 GenomeInfoDb_1.32.0
## [7] IRanges_2.30.0 S4Vectors_0.34.0
## [9] BiocGenerics_0.42.0 MatrixGenerics_1.8.0
## [11] matrixStats_0.62.0 BiocStyle_2.24.0
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.1.2 xfun_0.30 bslib_0.3.1
## [4] purrr_0.3.4 lattice_0.20-45 vctrs_0.4.1
## [7] generics_0.1.2 htmltools_0.5.2 yaml_2.3.5
## [10] utf8_1.2.2 rlang_1.0.2 R.oo_1.24.0
## [13] jquerylib_0.1.4 pillar_1.7.0 DBI_1.1.2
## [16] glue_1.6.2 R.utils_2.11.0 GenomeInfoDbData_1.2.8
## [19] R.cache_0.15.0 lifecycle_1.0.1 stringr_1.4.0
## [22] zlibbioc_1.42.0 R.methodsS3_1.8.1 evaluate_0.15
## [25] knitr_1.38 fastmap_1.1.0 fansi_1.0.3
## [28] highr_0.9 BiocManager_1.30.17 DelayedArray_0.22.0
## [31] jsonlite_1.8.0 XVector_0.36.0 R.rsp_0.44.0
## [34] digest_0.6.29 stringi_1.7.6 bookdown_0.26
## [37] dplyr_1.0.8 grid_4.2.0 cli_3.3.0
## [40] tools_4.2.0 bitops_1.0-7 magrittr_2.0.3
## [43] sass_0.4.1 tibble_3.1.6 RCurl_1.98-1.6
## [46] pkgconfig_2.0.3 crayon_1.5.1 tidyr_1.2.0
## [49] ellipsis_0.3.2 Matrix_1.4-1 assertthat_0.2.1
## [52] rmarkdown_2.14 R6_2.5.1 compiler_4.2.0