miaSim 1.0.0
miaSim implements tools for microbiome data simulation based on the
SummarizedExperiment [@SE], microsim .
Microbiome time series simulation can be obtained by generalized
Lotka-Volterra model,simulateGLV, and Self-Organized Instability
(SOI), simulateSOI. Hubbell’s Neutral model, simulateHubbell is used
to determine the species abundance matrix. The resulting abundance matrix
from these three simulation models is applied to SummarizedExperiment
object or TreeSummarizedExperiment object.
powerlawA and randomA give interaction matrix of species
generated by normal distribution and uniform distribution, respectively.
These matrices can be used in the simulation model examples.
tDyn generates lists of time series that can be specified as simulation time
and time points to keep in simulated time.
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
simulateGLV is the generalized Lotka-Volterra simulation model fitted to
time-series estimates microbial population dynamics and relative rates of
interaction. The model relies on interaction matrix that represents interaction
heterogeneity between species. This interaction matrix can be generated
with powerlawA or randomA functions depending on the distribution method.
powerlawA uses normal distribution to create interaction matrix.
library(miaSim)
A_normal <- powerlawA(n.species = 4, alpha = 3)
randomA uses uniform distribution to create interaction matrix.
A_uniform <- randomA(n.species = 10, d = -0.4, min.strength = -0.8,
max.strength = 0.8, connectance = 0.5)
The number of species specified in the interaction matrix must be the same
amount as the species used in the simulateGLV and simulateSOI models.
SEobject <- simulateGLV(n.species = 4, A_normal, t.end = 1000)
Time series is added to simulateGLV with tDyn function where the time
points can be kept and extracted from simulation time as a separate list.
Time <- tDyn(t.start = 0, t.end = 100, t.step = 0.5, t.store = 100)
Time$t.index
## [1] 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
## [19] 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71
## [37] 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107
## [55] 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143
## [73] 145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179
## [91] 181 183 185 187 189 191 193 195 197 199 201
simulateHubbell includes the Hubbell Neutral simulation model which explains
the diversity and relative abundance of species in ecological communities.
This model is based on the community dynamics; migration, births and deaths.
A_uniform <- randomA(n.species = 10, d = -0.4, min.strength = -0.8,
max.strength = 0.8, connectance = 0.5)
The number of species specified in the interaction matrix must be the same
amount as the species used in the simulateGLV and simulateSOI models.
SEobject <- simulateGLV(n.species = 4, A_normal, t.start = 0, t.store = 1000)
Time series is added to simulateGLV with tDyn function where the time
points can be kept and extracted from simulation time as a separate list.
Time <- tDyn(t.start = 0, t.end = 100, t.step = 0.5, t.store = 100)
Time$t.index
## [1] 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
## [19] 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71
## [37] 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107
## [55] 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143
## [73] 145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179
## [91] 181 183 185 187 189 191 193 195 197 199 201
simulateHubbell includes the Hubbell Neutral simulation model which explains
the diversity and relative abundance of species in ecological communities.
This model is based on the community dynamics; migration, births and deaths.
ExampleHubbell <- simulateHubbell(n.species = 8, M = 10, I = 1000, d = 50,
m = 0.02, tend = 100)
The Self-Organised Instability (SOI) model can be found in simulateSOI and it
generates time series for communities and accelerates stochastic simulation.
ExampleSOI <- simulateSOI(n.species = 4, I = 1000, A_normal, k=5, com = NULL,
tend = 150, norm = TRUE)
The simulations result in the SummarizedExperiment [@SE] class object
containing the abundance matrix. Other fields, such as rowData containing
information about the samples, and colData, consisting of sample metadata
describing the samples, can be added to the SummarizedExperiment class object.
sessionInfo()
## R version 4.1.1 (2021-08-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] miaSim_1.0.0 SummarizedExperiment_1.24.0
## [3] Biobase_2.54.0 GenomicRanges_1.46.0
## [5] GenomeInfoDb_1.30.0 IRanges_2.28.0
## [7] S4Vectors_0.32.0 BiocGenerics_0.40.0
## [9] MatrixGenerics_1.6.0 matrixStats_0.61.0
## [11] BiocStyle_2.22.0
##
## loaded via a namespace (and not attached):
## [1] pracma_2.3.3 bslib_0.3.1 compiler_4.1.1
## [4] BiocManager_1.30.16 jquerylib_0.1.4 XVector_0.34.0
## [7] bitops_1.0-7 tools_4.1.1 zlibbioc_1.40.0
## [10] digest_0.6.28 jsonlite_1.7.2 evaluate_0.14
## [13] lattice_0.20-45 rlang_0.4.12 Matrix_1.3-4
## [16] DelayedArray_0.20.0 parallel_4.1.1 yaml_2.2.1
## [19] xfun_0.27 fastmap_1.1.0 GenomeInfoDbData_1.2.7
## [22] stringr_1.4.0 knitr_1.36 sass_0.4.0
## [25] grid_4.1.1 deSolve_1.30 R6_2.5.1
## [28] poweRlaw_0.70.6 rmarkdown_2.11 bookdown_0.24
## [31] magrittr_2.0.1 htmltools_0.5.2 stringi_1.7.5
## [34] RCurl_1.98-1.5