--- title: "Visualisation of proteomics data using R and Bioconductor" author: - name: Laurent Gatto - name: Lisa Breckels - name: Sebastian Gibb package: RforProteomics abstract: > This is the companion vignette to the 'Using R and Bioconductor for proteomics data analysis' manuscript that presents an overview of R and Bioconductor software for mass spectrometry and proteomics data. It provides the code to reproduce the figures in the paper. output: BiocStyle::html_document: toc_float: true bibliography: RforProteomics.bib vignette: > %\VignetteIndexEntry{Visualisation of proteomics data using R and Bioconductor} %\VignetteEngine{knitr::rmarkdown} %%\VignetteKeywords{bioinformatics, proteomics, mass spectrometry, visualisation} %\VignetteEncoding{UTF-8} --- ```{r style, echo = FALSE, results = 'asis'} BiocStyle::markdown() ``` ```{r env, message=FALSE, echo=FALSE, warning=FALSE} library("RforProteomics") library("BiocManager") library("protViz") library("BiocManager") library("DT") library("mzR") library("MSnbase") library("knitr") library("rpx") library("xtable") library("RColorBrewer") library("MALDIquant") library("MALDIquantForeign") library("pRoloc") library("pRolocdata") library("msmsTests") library("msmsEDA") library("e1071") ``` # Introduction This vignette illustrates existing \R{} and Bioconductor infrastructure for the visualisation of mass spectrometry and proteomics data. The code details the visualisations presented in > Gatto L, Breckels LM, Naake T, Gibb S. Visualisation of proteomics > data using R and Bioconductor. Proteomics. 2015 Feb 18. doi: > 10.1002/pmic.201400392. PubMed PMID: > [25690415](http://www.ncbi.nlm.nih.gov/pubmed/25690415). ## References - CRAN Task View: Graphic Displays & Dynamic Graphics & Graphic Devices & Visualization: http://cran.r-project.org/web/views/Graphics.html - CRAN Task View: Web Technologies and Services: http://cran.r-project.org/web/views/WebTechnologies.html - ggplot2 [book](http://link.springer.com/book/10.1007%2F978-0-387-98141-3) (syntax is slightly outdated) ([code](http://ggplot2.org/book/)), [web page](http://ggplot2.org/) and [on-line docs](http://docs.ggplot2.org/current/) - lattice [book](http://lmdvr.r-forge.r-project.org/figures/figures.html) and [web page](http://lattice.r-forge.r-project.org/) - *R Graphics* [book](https://www.stat.auckland.ac.nz/~paul/RG2e/) - [R Cookbook](http://www.cookbook-r.com/Graphs/) and [R Graphics Cookbook](http://shop.oreilly.com/product/0636920023135.do) ## Relevant packages ```{r packs, cache=FALSE, warning=FALSE, echo=FALSE} library("RforProteomics") pp <- proteomicsPackages() msp <- massSpectrometryPackages() ``` There are currently `r nrow(pp)` [Proteomics](http://bioconductor.org/packages/devel/BiocViews.html#___Proteomics) and `r nrow(msp)` [MassSpectrometry](http://bioconductor.org/packages/devel/BiocViews.html#___MassSpectrometry) packages in Bioconductor version `r as.character(BiocManager::version())`. Other non-Bioconductor packages are described in the `r Biocexptpkg("RforProteomics")` vignette (open it in R with `RforProteomics()` or read it [online](file:///home/lg390/dev/00_github/RforProteomics/docs/articles/RforProteomics.html).) ```{r pptab, echo=FALSE} DT::datatable(pp) ``` ```{r msptab, echo=FALSE} DT::datatable(msp) ``` # Ascombe's quartet ```{r anscombe, echo = FALSE, results='asis'} kable(anscombe, format = "html") ``` ```{r anscombetab} tab <- matrix(NA, 5, 4) colnames(tab) <- 1:4 rownames(tab) <- c("var(x)", "mean(x)", "var(y)", "mean(y)", "cor(x,y)") for (i in 1:4) tab[, i] <- c(var(anscombe[, i]), mean(anscombe[, i]), var(anscombe[, i+4]), mean(anscombe[, i+4]), cor(anscombe[, i], anscombe[, i+4])) ``` ```{r anstabdisplay, echo=FALSE} kable(tab) ``` While the residuals of the linear regression clearly indicate fundamental differences in these data, the most simple and straightforward approach is visualisation to highlight the fundamental differences in the datasets. ```{r anscombefig} ff <- y ~ x mods <- setNames(as.list(1:4), paste0("lm", 1:4)) par(mfrow = c(2, 2), mar = c(4, 4, 1, 1)) for (i in 1:4) { ff[2:3] <- lapply(paste0(c("y","x"), i), as.name) plot(ff, data = anscombe, pch = 19, xlim = c(3, 19), ylim = c(3, 13)) mods[[i]] <- lm(ff, data = anscombe) abline(mods[[i]]) } ``` ```{r anscomberesids, echo=FALSE, fig.cap="The 11 sets of residuals for Anscombe's four datasets."} kable(sapply(mods, residuals)) ``` # The MA plot example The following code chunk connects to the `PXD000001` data set on the ProteomeXchange repository and fetches the `mzTab` file. After missing values filtering, we extract relevant data (log2 fold-changes and log10 mean expression intensities) into `data.frames`. ```{r, makemadata, warning=FALSE, cache=FALSE} library("rpx") px1 <- PXDataset("PXD000001") mztab <- pxget(px1, "F063721.dat-mztab.txt") library("MSnbase") ## here, we need to specify the (old) mzTab version 0.9 qnt <- readMzTabData(mztab, what = "PEP", version = "0.9") sampleNames(qnt) <- reporterNames(TMT6) qnt <- filterNA(qnt) ## may be combineFeatuers spikes <- c("P02769", "P00924", "P62894", "P00489") protclasses <- as.character(fData(qnt)$accession) protclasses[!protclasses %in% spikes] <- "Background" madata42 <- data.frame(A = rowMeans(log(exprs(qnt[, c(4, 2)]), 10)), M = log(exprs(qnt)[, 4], 2) - log(exprs(qnt)[, 2], 2), data = rep("4vs2", nrow(qnt)), protein = fData(qnt)$accession, class = factor(protclasses)) madata62 <- data.frame(A = rowMeans(log(exprs(qnt[, c(6, 2)]), 10)), M = log(exprs(qnt)[, 6], 2) - log(exprs(qnt)[, 2], 2), data = rep("6vs2", nrow(qnt)), protein = fData(qnt)$accession, class = factor(protclasses)) madata <- rbind(madata42, madata62) ``` ## The traditional plotting system ```{r, mafig1} par(mfrow = c(1, 2)) plot(M ~ A, data = madata42, main = "4vs2", xlab = "A", ylab = "M", col = madata62$class) plot(M ~ A, data = madata62, main = "6vs2", xlab = "A", ylab = "M", col = madata62$class) ``` ## lattice ```{r mafig2} library("lattice") latma <- xyplot(M ~ A | data, data = madata, groups = madata$class, auto.key = TRUE) print(latma) ``` ## ggplot2 ```{r mafig3} library("ggplot2") ggma <- ggplot(aes(x = A, y = M, colour = class), data = madata, colour = class) + geom_point() + facet_grid(. ~ data) print(ggma) ``` ## Customization ```{r macols} library("RColorBrewer") bcols <- brewer.pal(4, "Set1") cls <- c("Background" = "#12121230", "P02769" = bcols[1], "P00924" = bcols[2], "P62894" = bcols[3], "P00489" = bcols[4]) ``` ```{r macust} ggma2 <- ggplot(aes(x = A, y = M, colour = class), data = madata) + geom_point(shape = 19) + facet_grid(. ~ data) + scale_colour_manual(values = cls) + guides(colour = guide_legend(override.aes = list(alpha = 1))) print(ggma2) ``` ## The `MAplot` method for `MSnSet` instances ```{r mafigmsnset} MAplot(qnt, cex = .8) ``` ## An interactive `r CRANpkg("shiny")` app for MA plots This (now outdated and deprecated) app is based on Mike Love's [shinyMA](https://github.com/mikelove/shinyMA) application, adapted for a proteomics data. A screen shot is displayed below. ![shinyMA screeshot](./figures/shinyMA.png) See the excellent `r CRANpkg("shiny")` [web page](http://shiny.rstudio.com/) for tutorials and the [Mastering Shiny](https://mastering-shiny.org/) book for details on `shiny`. ## Volcano plots Below, using the `r Biocpkg("msmsTest")` package, we load a example `MSnSet` data with spectral couting data (from the `r Biocpkg("msmsEDA")` package) and run a statistical test to obtain (adjusted) p-values and fold-changes. ```{r msmsTestsData, cache=FALSE} library("msmsEDA") library("msmsTests") data(msms.dataset) ## Pre-process expression matrix e <- pp.msms.data(msms.dataset) ## Models and normalizing condition null.f <- "y~batch" alt.f <- "y~treat+batch" div <- apply(exprs(e), 2, sum) ## Test res <- msms.glm.qlll(e, alt.f, null.f, div = div) lst <- test.results(res, e, pData(e)$treat, "U600", "U200 ", div, alpha = 0.05, minSpC = 2, minLFC = log2(1.8), method = "BH") ``` Here, we produce the volcano plot by hand, with the `plot` function. In the second plot, we limit the x axis limits and add grid lines. ```{r volc1} plot(lst$tres$LogFC, -log10(lst$tres$p.value)) plot(lst$tres$LogFC, -log10(lst$tres$p.value), xlim = c(-3, 3)) grid() ``` Below, we use the `res.volcanoplot` function from the `r Biocpkg("msmsTests")` package. This functions uses the sample annotation stored with the quantitative data in the `MSnSet` object to colour the samples according to their phenotypes. ```{r volc2} ## Plot res.volcanoplot(lst$tres, max.pval = 0.05, min.LFC = 1, maxx = 3, maxy = NULL, ylbls = 4) ``` ## A PCA plot Using the `counts.pca` function from the `r Biocpkg("msmsEDA")` package: ```{r msmsedapca} library("msmsEDA") data(msms.dataset) msnset <- pp.msms.data(msms.dataset) lst <- counts.pca(msnset, wait = FALSE) ``` It is also possible to generate the PCA data using the `prcomp`. Below, we extract the coordinates of PC1 and PC2 from the `counts.pca` result and plot them using the `plot` function. ```{r pca} pcadata <- lst$pca$x[, 1:2] head(pcadata) plot(pcadata[, 1], pcadata[, 2], xlab = "PCA1", ylab = "PCA2") grid() ``` # Plotting with R ```{r mkplottab, echo=FALSE} plotfuns <- rbind(c("scatterplots", "plot", "xyplot", "geom_point"), c("histograms", "hist", "histgram", "geom_histogram"), c("density plots", "plot(density())", "densityplot", "geom_density"), c("boxplots", "boxplot", "bwplot", "geom_boxplot"), c("violin plots", "vioplot::vioplot", "bwplot(..., panel = panel.violin)", "geom_violin"), c("line plots", "plot, matplot", "xyploy, parallelplot", "geom_line"), c("bar plots", "barplot", "barchart", "geom_bar"), c("pie charts", "pie", "", "geom_bar with polar coordinates"), c("dot plots", "dotchart", "dotplot", "geom_point"), c("stip plots", "stripchart", "stripplot", "goem_point"), c("dendrogramms", "plot(hclust())", "latticeExtra package", "ggdendro package"), c("heatmaps", "image, heatmap", "levelplot", "geom_tile")) colnames(plotfuns) <- c("plot type", "traditional", "lattice", "ggplot2") ``` ```{r, plottab} kable(plotfuns) ``` Below, we are going to use a data from the `r Biocexptpkg("pRolocdata")` to illustrate the plotting functions. ```{r tandata} library("pRolocdata") data(tan2009r1) ``` ## Scatter plots See the MA and volcano plot examples. The default plot `type` is `p`, for points. Other important types are `l` for lines and `h` for *histogram* (see below). ## Historams and density plots We extract the (normalised) intensities of the first sample ```{r histex} x <- exprs(tan2009r1)[, 1] ``` and plot the distribution with a histogram and a density plot next to each other on the same figure (using the `mfrow` `par` plotting paramter) ```{r histplot, fig.height=7, fig.width=14} par(mfrow = c(1, 2)) hist(x) plot(density(x)) ``` ## Box plots and violin plots we first extract the `r nrow(tan2009r1)` proteins by `r ncol(tan2009r1)` samples data matrix and plot the sample distributions next to each other using `boxplot` and `beanplot` (from the `r CRANpkg("beanplot")` package). ```{r bxplot, fig.width=7, fig.height=10} library("beanplot") x <- exprs(tan2009r1) par(mfrow = c(2, 1)) boxplot(x) beanplot(x[, 1], x[, 2], x[, 3], x[, 4], log = "") ``` ## Line plots below, we produce line plots that describe the protein quantitative profiles for two sets of proteins, namely er and mitochondrial proteins using `matplot`. we need to transpose the matrix (with `t`) and set the type to both (`b`), to display points and lines, the colours to red and steel blue, the point characters to 1 (an empty point) and the line type to 1 (a solid line). ```{r matplotex, fig.width=7, fig.height=10} er <- fData(tan2009r1)$markers == "ER" mt <- fData(tan2009r1)$markers == "mitochondrion" par(mfrow = c(2, 1)) matplot(t(x[er, ]), type = "b", col = "red", pch = 1, lty = 1) matplot(t(x[mt, ]), type = "b", col = "steelblue", pch = 1, lty = 1) ``` In the last section, about spatial proteomics, we use the specialised `plotDist` function from the `r Biocpkg("pRoloc")` package to generate such figures. ## Bar and dot charts To illustrate bar and dot charts, we cound the number of proteins in the respective class using table. ```{r mrktab} x <- table(fData(tan2009r1)$markers) x ``` ```{r mrkplot, fig.height=7, fig.width=12} par(mfrow = c(1, 2)) barplot(x) dotchart(as.numeric(x)) ``` ## Heatmaps The easiest to produce a complete heatmap is with the `heatmap` function: ```{r hmap} heatmap(exprs(tan2009r1)) ``` To produce the a heatmap without the dendrograms, one can use the image function on a matrix or the specialised version for `MSnSet` objects from the `r Biocpkg("MSnbase")` package. ```{r image, fig.width=14, fig.height=7} par(mfrow = c(1, 2)) x <- matrix(1:9, ncol = 3) image(x) image(tan2009r1) ``` See also `r CRANpkg("gplots")`'s `heatmap.2` function and the `r Biocpkg("Heatplus")` Bioconductor package for more advanced heatmaps and the `r CRANpkg("corrplot")` package for correlation matrices. ## Dendrograms The easiest way to produce and plot a dendrogram is: ```{r dendro} d <- dist(t(exprs(tan2009r1))) ## distance between samples hc <- hclust(d) ## hierarchical clustering plot(hc) ## visualisation ``` See also `r CRANpkg("dendextend")` and this [post](http://stackoverflow.com/questions/6673162/reproducing-lattice-dendrogram-graph-with-ggplot2) to illustrate `r CRANpkg("latticeExtra")` and `r CRANpkg("ggdendro")`. ## Venn diagrams - The `r Biocpkg("limma")` package. - The `r CRANpkg("VennDiagram")` package. # Visualising mass spectrometry data ## Direct access to the raw data ```{r mapsprep} library("mzR") mzf <- pxget(px1, "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML") ms <- openMSfile(mzf) hd <- header(ms) ms1 <- which(hd$msLevel == 1) rtsel <- hd$retentionTime[ms1] / 60 > 30 & hd$retentionTime[ms1] / 60 < 35 library("MSnbase") (M <- MSmap(ms, ms1[rtsel], 521, 523, .005, hd)) ``` ```{r mapsheat} library("lattice") ff <- colorRampPalette(c("yellow", "steelblue")) trellis.par.set(regions=list(col=ff(100))) plot(M, aspect = 1, allTicks = FALSE) ``` ```{r maps3D} M@map[msMap(M) == 0] <- NA plot3D(M, rgl = FALSE) ``` To produce a version that can be reoriented interactively on the screen discplay, use the `r CRANpkg("rgl")` ```{r rglmap, eval=FALSE} library("rgl") plot3D(M, rgl = TRUE) ``` ```{r layout} lout <- matrix(NA, ncol = 10, nrow = 8) lout[1:2, ] <- 1 for (ii in 3:4) lout[ii, ] <- c(2, 2, 2, 2, 2, 2, 3, 3, 3, 3) lout[5, ] <- rep(4:8, each = 2) lout[6, ] <- rep(4:8, each = 2) lout[7, ] <- rep(9:13, each = 2) lout[8, ] <- rep(9:13, each = 2) ``` ```{r msdetails} i <- ms1[which(rtsel)][1] j <- ms1[which(rtsel)][2] ms2 <- (i+1):(j-1) ``` ```{r msdetailsplot, fig.cap = "Accesing and plotting MS data."} layout(lout) par(mar=c(4,2,1,1)) plot(chromatogram(ms)[[1]], type = "l") abline(v = hd[i, "retentionTime"], col = "red") par(mar = c(3, 2, 1, 0)) plot(peaks(ms, i), type = "l", xlim = c(400, 1000)) legend("topright", bty = "n", legend = paste0( "Acquisition ", hd[i, "acquisitionNum"], "\n", "Retention time ", formatRt(hd[i, "retentionTime"]))) abline(h = 0) abline(v = hd[ms2, "precursorMZ"], col = c("#FF000080", rep("#12121280", 9))) par(mar = c(3, 0.5, 1, 1)) plot(peaks(ms, i), type = "l", xlim = c(521, 522.5), yaxt = "n") abline(h = 0) abline(v = hd[ms2, "precursorMZ"], col = "#FF000080") par(mar = c(2, 2, 0, 1)) for (ii in ms2) { p <- peaks(ms, ii) plot(p, xlab = "", ylab = "", type = "h", cex.axis = .6) legend("topright", legend = paste0("Prec M/Z\n", round(hd[ii, "precursorMZ"], 2)), bty = "n", cex = .8) } ``` ```{r maps3D2} M2 <- MSmap(ms, i:j, 100, 1000, 1, hd) plot3D(M2) ``` ### MS barcoding ```{r barcode, fig.height=2, fig.width=12} par(mar=c(4,1,1,1)) image(t(matrix(hd$msLevel, 1, nrow(hd))), xlab="Retention time", xaxt="n", yaxt="n", col=c("black","steelblue")) k <- round(range(hd$retentionTime) / 60) nk <- 5 axis(side=1, at=seq(0,1,1/nk), labels=seq(k[1],k[2],k[2]/nk)) ``` ### Animation The following animation scrolls over 5 minutes of retention time for a MZ range between 521 and 523. ```{r anim1, eval=FALSE} library("animation") an1 <- function() { for (i in seq(0, 5, 0.2)) { rtsel <- hd$retentionTime[ms1] / 60 > (30 + i) & hd$retentionTime[ms1] / 60 < (35 + i) M <- MSmap(ms, ms1[rtsel], 521, 523, .005, hd) M@map[msMap(M) == 0] <- NA print(plot3D(M, rgl = FALSE)) } } saveGIF(an1(), movie.name = "msanim1.gif") ``` ![MS animation 1](figures/msanim1.gif) The code chunk below scrolls of a slice of retention times while keeping the retention time constant between 30 and 35 minutes. ```{r anim2, eval=FALSE} an2 <- function() { for (i in seq(0, 2.5, 0.1)) { rtsel <- hd$retentionTime[ms1] / 60 > 30 & hd$retentionTime[ms1] / 60 < 35 mz1 <- 520 + i mz2 <- 522 + i M <- MSmap(ms, ms1[rtsel], mz1, mz2, .005, hd) M@map[msMap(M) == 0] <- NA print(plot3D(M, rgl = FALSE)) } } saveGIF(an2(), movie.name = "msanim2.gif") ``` ![MS animation 2](figures/msanim2.gif) ## The `r Biocpkg("MSnbase")` infrastructure ```{r msnbviz} library("MSnbase") data(itraqdata) itraqdata2 <- pickPeaks(itraqdata, verbose = FALSE) plot(itraqdata[[25]], full = TRUE, reporters = iTRAQ4) par(oma = c(0, 0, 0, 0)) par(mar = c(4, 4, 1, 1)) plot(itraqdata2[[25]], itraqdata2[[28]], sequences = rep("IMIDLDGTENK", 2)) ``` ## The `r CRANpkg("protViz")` package ```{r protviz} library("protViz") data(msms) fi <- fragmentIon("TAFDEAIAELDTLNEESYK") fi.cyz <- as.data.frame(cbind(c=fi[[1]]$c, y=fi[[1]]$y, z=fi[[1]]$z)) p <- peakplot("TAFDEAIAELDTLNEESYK", spec = msms[[1]], fi = fi.cyz, itol = 0.6, ion.axes = FALSE) ``` The `peakplot` function return the annotation of the MSMS spectrum that is plotted: ```{r strp} str(p) ``` ## Preprocessing of MALDI-MS spectra The following code chunks demonstrate the usage of the mass spectrometry preprocessing and plotting routines in the `r CRANpkg("MALDIquant")` package. `r CRANpkg("MALDIquant")` uses the traditional graphics system. Therefore `r CRANpkg("MALDIquant")` overloads the traditional functions `plot`, `lines` and `points` for its own data types. These data types represents spectrum and peak lists as S4 classes. Please see the `r CRANpkg("MALDIquant")` [vignette](http://cran.r-project.org/web/packages/MALDIquant/vignettes/MALDIquant-intro.pdf) and the corresponding [website](http://strimmerlab.org/software/maldiquant/) for more details. After loading some example data a simple `plot` draws the raw spectrum. ```{r mqraw} library("MALDIquant") data("fiedler2009subset", package="MALDIquant") plot(fiedler2009subset[[14]]) ``` After some preprocessing, namely variance stabilization and smoothing, we use `lines` to draw our baseline estimate in our processed spectrum. ```{r mqestimatebaseline} transformedSpectra <- transformIntensity(fiedler2009subset, method = "sqrt") smoothedSpectra <- smoothIntensity(transformedSpectra, method = "SavitzkyGolay") plot(smoothedSpectra[[14]]) lines(estimateBaseline(smoothedSpectra[[14]]), lwd = 2, col = "red") ``` After removing the background removal we could use `plot` again to draw our baseline corrected spectrum. ```{r mqremovebaseline} rbSpectra <- removeBaseline(smoothedSpectra) plot(rbSpectra[[14]]) ``` `detectPeaks` returns a `MassPeaks` object that offers the same traditional graphics functions. The next code chunk demonstrates how to mark the detected peaks in a spectrum. ```{r mqpeaks} cbSpectra <- calibrateIntensity(rbSpectra, method = "TIC") peaks <- detectPeaks(cbSpectra, SNR = 5) plot(cbSpectra[[14]]) points(peaks[[14]], col = "red", pch = 4, lwd = 2) ``` Additional there is a special function `labelPeaks` that allows to draw the *M/Z* values above the corresponding peaks. Next we mark the 5 top peaks in the spectrum. ```{r mqlabelpeaks, echo = -(1:2)} plot(cbSpectra[[14]]) points(peaks[[14]], col = "red", pch = 4, lwd = 2) top5 <- intensity(peaks[[14]]) %in% sort(intensity(peaks[[14]]), decreasing = TRUE)[1:5] labelPeaks(peaks[[14]], index = top5, avoidOverlap = TRUE) ``` Often multiple spectra have to be recalibrated to be comparable. Therefore `r CRANpkg("MALDIquant")` warps the spectra according to so called reference or landmark peaks. For debugging the `determineWarpingFunctions` function offers some warping plots. Here we show only the last 4 plots: ```{r mqwarp, fig.keep = "last"} par(mfrow = c(2, 2)) warpingFunctions <- determineWarpingFunctions(peaks, tolerance = 0.001, plot = TRUE, plotInteractive = TRUE) par(mfrow = c(1, 1)) warpedSpectra <- warpMassSpectra(cbSpectra, warpingFunctions) warpedPeaks <- warpMassPeaks(peaks, warpingFunctions) ``` In the next code chunk we visualise the need and the effect of the recalibration. ```{r mqwarped} sel <- c(2, 10, 14, 16) xlim <- c(4180, 4240) ylim <- c(0, 1.9e-3) lty <- c(1, 4, 2, 6) par(mfrow = c(1, 2)) plot(cbSpectra[[1]], xlim = xlim, ylim = ylim, type = "n") for (i in seq(along = sel)) { lines(peaks[[sel[i]]], lty = lty[i], col = i) lines(cbSpectra[[sel[i]]], lty = lty[i], col = i) } plot(cbSpectra[[1]], xlim = xlim, ylim = ylim, type = "n") for (i in seq(along = sel)) { lines(warpedPeaks[[sel[i]]], lty = lty[i], col = i) lines(warpedSpectra[[sel[i]]], lty = lty[i], col = i) } par(mfrow = c(1, 1)) ``` The code chunks above generate plots that are very similar to the figure 7 in the corresponding paper *"Visualisation of proteomics data using R"*. Please find the code to exactly reproduce the figure at: https://github.com/sgibb/MALDIquantExamples/blob/master/R/createFigure1_color.R # Genomic and protein sequences These visualisations originate from the `Pbase` [`Pbase-data`](http://bioconductor.org/packages/devel/bioc/vignettes/Pbase/inst/doc/Pbase-data.html) and [`mapping`](http://bioconductor.org/packages/devel/bioc/vignettes/Pbase/inst/doc/mapping.html) vignettes. # Mass spectrometry imaging The following code chunk downloads a MALDI imaging dataset from a mouse kidney shared by [Adrien Nyakas and Stefan Schurch](http://figshare.com/articles/MALDI_Imaging_Mass_Spectrometry_of_a_Mouse_Kidney/735961) and generates a plot with the mean spectrum and three slices of interesting *M/Z* regions. ```{r mqmsi, cache=FALSE, eval=FALSE, warning=FALSE} library("MALDIquant") library("MALDIquantForeign") spectra <- importBrukerFlex("http://files.figshare.com/1106682/MouseKidney_IMS_testdata.zip", verbose = FALSE) spectra <- smoothIntensity(spectra, "SavitzkyGolay", halfWindowSize = 8) spectra <- removeBaseline(spectra, method = "TopHat", halfWindowSize = 16) spectra <- calibrateIntensity(spectra, method = "TIC") avgSpectrum <- averageMassSpectra(spectra) avgPeaks <- detectPeaks(avgSpectrum, SNR = 5) avgPeaks <- avgPeaks[intensity(avgPeaks) > 0.0015] oldPar <- par(no.readonly = TRUE) layout(matrix(c(1,1,1,2,3,4), nrow = 2, byrow = TRUE)) plot(avgSpectrum, main = "mean spectrum", xlim = c(3000, 6000), ylim = c(0, 0.007)) lines(avgPeaks, col = "red") labelPeaks(avgPeaks, cex = 1) par(mar = c(0.5, 0.5, 1.5, 0.5)) plotMsiSlice(spectra, center = mass(avgPeaks), tolerance = 1, plotInteractive = TRUE) par(oldPar) ``` ![mqmsi](./figures/mqmsi-1.png))] ## An interactive `r CRANpkg("shiny")` app for Imaging mass spectrometry There is also an interactive [MALDIquant IMS shiny app](https://github.com/sgibb/ims-shiny) for demonstration purposes. A screen shot is displayed below. To start the application: ```{r ims-shiny, eval=FALSE} library("shiny") runGitHub("sgibb/ims-shiny") ``` ![ims-shiny screeshot](./figures/ims-shiny.png) # Spatial proteomics ```{r spatprot} library("pRoloc") library("pRolocdata") data(tan2009r1) ## these params use class weights fn <- dir(system.file("extdata", package = "pRoloc"), full.names = TRUE, pattern = "params2.rda") load(fn) setStockcol(NULL) setStockcol(paste0(getStockcol(), 90)) w <- table(fData(tan2009r1)[, "pd.markers"]) (w <- 1/w[names(w) != "unknown"]) tan2009r1 <- svmClassification(tan2009r1, params2, class.weights = w, fcol = "pd.markers") ptsze <- exp(fData(tan2009r1)$svm.scores) - 1 ``` ```{r spatplot, fig.width=12, fig.height=6} lout <- matrix(c(1:4, rep(5, 4)), ncol = 4, nrow = 2) layout(lout) cls <- getStockcol() par(mar = c(4, 4, 1, 1)) plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "mitochondrion"), ], markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "mitochondrion")], mcol = cls[5]) legend("topright", legend = "mitochondrion", bty = "n") plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "ER/Golgi"), ], markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "ER")], mcol = cls[2]) legend("topright", legend = "ER", bty = "n") plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "ER/Golgi"), ], markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "Golgi")], mcol = cls[3]) legend("topright", legend = "Golgi", bty = "n") plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "PM"), ], markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "PM")], mcol = cls[8]) legend("topright", legend = "PM", bty = "n") plot2D(tan2009r1, fcol = "svm", cex = ptsze, method = "kpca") addLegend(tan2009r1, where = "bottomleft", fcol = "svm", bty = "n") ``` See the [`pRoloc-tutorial`](http://bioconductor.org/packages/release/bioc/vignettes/pRoloc/inst/doc/pRoloc-tutorial.pdf) vignette (pdf) from the `r Biocpkg("pRoloc")` package for details about spatial proteomics data analysis and visualisation. # Session information ```{r si} print(sessionInfo(), locale = FALSE) ```