Contents

1 Introduction

Cardinal 2 provides new classes and methods for the manipulation, transformation, visualization, and analysis of imaging experiments–specifically mass spectrometry (MS) imaging experiments.

MS imaging is a rapidly advancing field with consistent improvements in instrumentation for both MALDI and DESI imaging experiments. Both mass resolution and spatial resolution are steadily increasing, and MS imaging experiments grow increasingly complex.

The first version of Cardinal was written with certain assumptions about MS imaging data that are no longer true. For example, the basic assumption that the raw spectra can be fully loaded into memory is unreasonable for many MS imaging experiments today.

Cardinal 2 was re-written from the ground up to handle the evolving needs of high-resolution MS imaging experiments. Some advancements include:

Classes from older versions of Cardinal should be coerced to their Cardinal 2 equivalents. For example, to return an updated MSImageSet object called x, use as(x, "MSImagingExperiment").

2 Installation

Cardinal can be installed via the BiocManager package.

install.packages("BiocManager")
BiocManager::install("Cardinal")

The same function can be used to update Cardinal and other Bioconductor packages.

Once installed, Cardinal can be loaded with library():

library(Cardinal)

3 Components of an MSImagingExperiment

In Cardinal, imaging experiment datasets are composed of multiple sets of metadata, in addition to the actual experimental data. These are (1) pixel metadata, (2) feature (\(m/z\)) metadata, (3) the actual imaging data, and (4) a class that holds all of these and represents the experiment as a whole.

MSImagingExperiment is a matrix-like container for complete MS imaging experiments, where the “rows” represent the mass features, and the columns represent the pixels. An MSImagingExperiment object contains the following components:

Unlike many software packages designed for analysis of MS imaging experiments, Cardinal is designed to work with multiple datasets simultaneously and can integrate all aspects of experimental design and metadata.

3.1 Example data

We will use simulateImage() to prepare an example dataset.

set.seed(2020)
mse <- simulateImage(preset=1, npeaks=10, nruns=2, baseline=1)
mse
## An object of class 'MSContinuousImagingExperiment'
##   <3919 feature, 800 pixel> imaging dataset
##     imageData(1): intensity
##     featureData(0):
##     pixelData(1): circle
##     metadata(1): design
##     run(2): run0 run1
##     raster dimensions: 20 x 20
##     coord(2): x = 1..20, y = 1..20
##     mass range:  426.5285 to 2044.4400 
##     centroided: FALSE

3.2 Pixel metadata with PositionDataFrame

The pixelData() accessor extracts the pixel information for an MSImagingExperiment. The pixel data are stored in a PositionDataFrame object, which is a type of data frame that separately tracks pixel coordinates and experimental run information.

pixelData(mse)
## PositionDataFrame with 800 rows and 1 column
##        :run:   coord:x   coord:y    circle
##     <factor> <integer> <integer> <logical>
## 1       run0         1         1     FALSE
## 2       run0         2         1     FALSE
## 3       run0         3         1     FALSE
## 4       run0         4         1     FALSE
## 5       run0         5         1     FALSE
## ...      ...       ...       ...       ...
## 796     run1        16        20     FALSE
## 797     run1        17        20     FALSE
## 798     run1        18        20     FALSE
## 799     run1        19        20     FALSE
## 800     run1        20        20     FALSE

The coord() accessor specifically extracts the data frame of pixel coordinates.

coord(mse)
## DataFrame with 800 rows and 2 columns
##             x         y
##     <integer> <integer>
## 1           1         1
## 2           2         1
## 3           3         1
## 4           4         1
## 5           5         1
## ...       ...       ...
## 796        16        20
## 797        17        20
## 798        18        20
## 799        19        20
## 800        20        20

The run() accessor specifically extracts the vector of experimental runs.

run(mse)[1:10]
##  [1] run0 run0 run0 run0 run0 run0 run0 run0 run0 run0
## Levels: run0 run1

3.3 Feature metadata with MassDataFrame

The featureData() accessor extracts the feature information for an MSImagingExperiment. The feature data are stored in a MassDataFrame object, which is a type of data frame that separately tracks the m/z-values associated with the mass spectral features.

featureData(mse)
## MassDataFrame with 3919 rows and 0 columns
##           :mz:
##      <numeric>
## 1      426.529
## 2      426.699
## 3      426.870
## 4      427.041
## 5      427.211
## ...        ...
## 3915   2041.17
## 3916   2041.99
## 3917   2042.81
## 3918   2043.62
## 3919   2044.44

The mz() accessor specifically extracts the vector of m/z-values.

mz(mse)[1:10]
##  [1] 426.5285 426.6991 426.8699 427.0406 427.2115 427.3824 427.5534 427.7245
##  [9] 427.8956 428.0668

3.4 Accessing spectra and image data

The imageData() accessor extracts the image data for an MSImagingExperiment. The data are stored in an ImageArrayList, which is a list of matrix-like objects.

It is possible to store multiple matrices of intensities in this list. Typically, only the first entry will be used by pre-processing and analysis methods.

imageData(mse)
## MSContinuousImagingSpectraList of length 1 
##  names(1):    intensity
##  class(1):       matrix
##    dim(1): <3919 x 800>
##    mem(1):      25.1 MB

Entries in this list can be extracted by name with iData().

iData(mse, "intensity")

The spectra() accessor is a shortcut for accessing the first data matrix.

spectra(mse)[1:5, 1:5]
##           [,1]      [,2]      [,3]      [,4]      [,5]
## [1,] 0.9295940 0.9779923 0.9415157 0.9115036 0.8960595
## [2,] 1.0087009 1.3108664 1.0928983 1.0243944 1.0706272
## [3,] 1.0578001 1.0625834 1.2407371 0.9319758 0.8822412
## [4,] 0.8949165 1.1568158 0.9250994 0.9499621 1.0127282
## [5,] 1.0660395 1.0123048 1.0291570 0.8999156 1.1126816

Rows of these matrices correspond to mass features. Columns correspond to pixels. In other words, each column is a mass spectrum, and each row is a flattened vector of images.

3.5 Specialized classes

In order to specialize to the needs of different datasets, Cardinal provides specialized versions of MSImagingExperiment that reflect different spectra storage strategies.

3.5.1 “Continuous” MS imaging experiments

MSContinuousImagingExperiment is a specialization that enforces the data matrices be stored as dense, column-major matrices. These include R’s native matrix and matter_matc objects from the matter package.

mse
## An object of class 'MSContinuousImagingExperiment'
##   <3919 feature, 800 pixel> imaging dataset
##     imageData(1): intensity
##     featureData(0):
##     pixelData(1): circle
##     metadata(1): design
##     run(2): run0 run1
##     raster dimensions: 20 x 20
##     coord(2): x = 1..20, y = 1..20
##     mass range:  426.5285 to 2044.4400 
##     centroided: FALSE
imageData(mse)
## MSContinuousImagingSpectraList of length 1 
##  names(1):    intensity
##  class(1):       matrix
##    dim(1): <3919 x 800>
##    mem(1):      25.1 MB

3.5.2 “Processed” MS imaging experiments

MSProcessedImagingExperiment is a specialization that enforces the data matrices be stored as sparse, column-major matrices. These include sparse_matc objects from the matter package. This specialization is useful for processed data.

set.seed(2020)
mse2 <- simulateImage(preset=3, npeaks=10, nruns=2)
mse3 <- as(mse2, "MSProcessedImagingExperiment")
mse3
## An object of class 'MSProcessedImagingExperiment'
##   <3919 feature, 800 pixel> imaging dataset
##     imageData(1): intensity
##     featureData(0):
##     pixelData(3): square1 square2 circle
##     metadata(1): design
##     run(2): run0 run1
##     raster dimensions: 20 x 20
##     coord(2): x = 1..20, y = 1..20
##     mass range:  426.5285 to 2044.4400 
##     centroided: FALSE
imageData(mse3)
## MSProcessedImagingSpectraList of length 1 
##  names(1):    intensity
##  class(1):  sparse_matc
##    dim(1): <3919 x 800>
##    mem(1):      25.2 MB

Because the data is stored sparsely, spectra from MSProcessedImagingExperiment objects are binned on-the-fly to the m/z-values specified by mz().

The resolution of the binning can be accessed by resolution().

resolution(mse3)
## ppm 
## 400

The resolution can be set to change how the binning is performed.

resolution(mse3) <- c(ppm=400)
## nrows changed from 3919 to 3918

Changing the binned mass resolution will typically change the effective dimensions of the experiment.

dim(mse2)
## Features   Pixels 
##     3919      800
dim(mse3)
## Features   Pixels 
##     3918      800

The effective m/z-values are also updated to reflect the new bins.

mz(mse2)[1:10]
##  [1] 426.5285 426.6991 426.8699 427.0406 427.2115 427.3824 427.5534 427.7245
##  [9] 427.8956 428.0668
mz(mse3)[1:10]
##  [1] 426.5285 426.6991 426.8699 427.0406 427.2115 427.3824 427.5534 427.7245
##  [9] 427.8956 428.0668

Note that the underlying data will remain unchanged, but the binned values for the intensities will be different.

4 Data import and export

Cardinal 2 natively supports reading and writing imzML (both “continuous” and “processed” versions) and Analyze 7.5 formats via the readMSIData() and writeMSIData() functions.

We will focus on imzML.

The imzML format is an open standard designed specifically for interchange of mass spectrometry imaging datasets. Many other formats can be converted to imzML with the help of free applications available online at .

Let’s create a small image to demonstrate data import/export.

set.seed(2020)
tiny <- simulateImage(preset=1, from=500, to=600, dim=c(3,3))
tiny
## An object of class 'MSContinuousImagingExperiment'
##   <456 feature, 9 pixel> imaging dataset
##     imageData(1): intensity
##     featureData(0):
##     pixelData(1): circle
##     metadata(1): design
##     run(1): run0
##     raster dimensions: 3 x 3
##     coord(2): x = 1..3, y = 1..3
##     mass range: 500.0000 to 599.8071 
##     centroided: FALSE

We’ll also create a “processed” version for writing “processed” imzML.

tiny2 <- as(tiny, "MSProcessedImagingExperiment")
tiny2
## An object of class 'MSProcessedImagingExperiment'
##   <456 feature, 9 pixel> imaging dataset
##     imageData(1): intensity
##     featureData(0):
##     pixelData(1): circle
##     metadata(1): design
##     run(1): run0
##     raster dimensions: 3 x 3
##     coord(2): x = 1..3, y = 1..3
##     mass range: 500.0000 to 599.8071 
##     centroided: FALSE

Note that despite the name, the only difference between “continuous” and “processed” imzML is how the data are stored, rather than what processing has been applied to the data. “Continuous” imzML stores spectra densely, with each spectrum sharing the same m/z-values. “Processed” imzML stores spectra sparsely, and each spectrum can have its own distinct m/z-values.

4.1 Writing imzML

Use writeMSIData() to write datasets to imzML and Analyze formats.

4.1.1 Writing “continuous” imzML

Internally, writeMSIData() will call either writeImzML() or writeAnalyze() depending on the value of outformat. The default is outformat="imzML".

path <- tempfile()
writeMSIData(tiny, file=path, outformat="imzML")
## Warning in .Call("C_setVector", x, value, PACKAGE = "matter"): converting NULL
## pointer to R NULL

## Warning in .Call("C_setVector", x, value, PACKAGE = "matter"): converting NULL
## pointer to R NULL
## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

Two files are produced with extensions “.imzML” and “.ibd”. The former contains an XML description of the dataset, and the latter contains the actual intensity data.

## [1] "file2d2a566d893d34.ibd"   "file2d2a566d893d34.imzML"

Because tiny is a MSContinuousImagingExperiment, it is written as “continuous” imzML.

mzml <- readLines(paste0(path, ".imzML"))
grep("continuous", mzml, value=TRUE)
## [1] "\t\t\t<cvParam cvRef=\"IMS\" accession=\"IMS:1000030\" name=\"continuous\" value=\"\" />"

4.1.2 Writing “processed” imzML

We can also write “processed” imzML if we export a MSProcessedImagingExperiment file.

path2 <- tempfile()
writeMSIData(tiny2, file=path2, outformat="imzML")
## Warning in .Call("C_setVector", x, value, PACKAGE = "matter"): converting NULL
## pointer to R NULL
## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL

## Warning in .Call("C_setListElements", x, i - 1, NULL, value, PACKAGE =
## "matter"): converting NULL pointer to R NULL
mzml2 <- readLines(paste0(path2, ".imzML"))
grep("processed", mzml2, value=TRUE)
## [1] "\t\t\t<cvParam cvRef=\"IMS\" accession=\"IMS:1000031\" name=\"processed\" value=\"\" />"

4.1.3 Writing datasets with multiple runs

If an experiment contains multiple runs, then each run will be written to a separate imzML file.

set.seed(2020)
tiny3 <- simulateImage(preset=1, from=500, to=600, dim=c(3,3), nruns=2)
runNames(tiny3)
## [1] "run0" "run1"
path3 <- tempfile()
writeMSIData(tiny3, file=path3, outformat="imzML")
## Warning in .Call("C_setVector", x, value, PACKAGE = "matter"): converting NULL
## pointer to R NULL

## Warning in .Call("C_setVector", x, value, PACKAGE = "matter"): converting NULL
## pointer to R NULL
## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL
## Warning in .Call("C_setVector", x, value, PACKAGE = "matter"): converting NULL
## pointer to R NULL

## Warning in .Call("C_setVector", x, value, PACKAGE = "matter"): converting NULL
## pointer to R NULL
## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL

## Warning in .Call("C_setMatrixCols", x, j - 1, value, PACKAGE = "matter"):
## converting NULL pointer to R NULL
## [1] "file2d2a561361deb2-run0.ibd"   "file2d2a561361deb2-run0.imzML"
## [3] "file2d2a561361deb2-run1.ibd"   "file2d2a561361deb2-run1.imzML"

4.2 Reading imzML

Use readMSIData() to read datasets in imzML or Analyze formats.

4.2.1 Reading “continuous” imzML

Internally, readMSIData() will guess the format based on the file extension (which must be included) and call either readImzML() or readAnalyze().

path_in <- paste0(path, ".imzML")
tiny_in <- readMSIData(path_in, attach.only=TRUE)
tiny_in
## An object of class 'MSContinuousImagingExperiment'
##   <456 feature, 9 pixel> imaging dataset
##     imageData(1): intensity
##     featureData(0):
##     pixelData(2): 3DPositionX 3DPositionY
##     metadata(8): spectrum representation ibd binary type ... files name
##     run(1): file2d2a566d893d34
##     raster dimensions: 3 x 3
##     coord(2): x = 1..3, y = 1..3
##     mass range: 500.0000 to 599.8071 
##     centroided: FALSE

The attach.only argument is used to specify that the intensity data should not be loaded into memory, but instead attached as a file-based matrix using the matter package.

Starting in Cardinal 2, the default is attach.only=TRUE. This is more memory-efficient, but some methods may be more time-consuming due to the file I/O.

imageData(tiny_in)
## MSContinuousImagingSpectraList of length 1 
##  names(1):   intensity
##  class(1): matter_matc
##    dim(1):   <456 x 9>
##    mem(1):     10.6 KB
spectra(tiny_in)
## <456 row, 9 column> matter_matc :: out-of-memory numeric matrix
##                   [,1]               [,2]               [,3]               [,4]
## [1,]                 0 0.0408783257007599                  0                  0
## [2,]                 0  0.162409648299217                  0                  0
## [3,]                 0                  0 0.0359107814729214 0.0125106507912278
## [4,] 0.187441676855087 0.0405706577003002 0.0885359272360802 0.0557640492916107
## [5,]                 0  0.193072378635406                  0  0.124683283269405
## [6,]  0.30000975728035                  0 0.0878914147615433                  0
## ...                ...                ...                ...                ...
##                    [,5]               [,6] ...
## [1,] 0.0166400671005249 0.0327425710856915 ...
## [2,]                  0                  0 ...
## [3,] 0.0794587582349777 0.0879494920372963 ...
## [4,]                  0 0.0971635207533836 ...
## [5,]                  0  0.117957629263401 ...
## [6,]  0.115523137152195 0.0507860481739044 ...
## ...                 ...                ... ...
## (10.6 KB real | 16.4 KB virtual)

An out-of-memory matter matrix can be subsetted like an ordinary R matrix. The data values are only read from file and loaded into memory when they are requested (via subsetting).

spectra(tiny_in)[1:5, 1:5]
##           [,1]       [,2]       [,3]       [,4]       [,5]
## [1,] 0.0000000 0.04087833 0.00000000 0.00000000 0.01664007
## [2,] 0.0000000 0.16240965 0.00000000 0.00000000 0.00000000
## [3,] 0.0000000 0.00000000 0.03591078 0.01251065 0.07945876
## [4,] 0.1874417 0.04057066 0.08853593 0.05576405 0.00000000
## [5,] 0.0000000 0.19307238 0.00000000 0.12468328 0.00000000

If loading the data fully into memory is desired, either set attach.only=FALSE when reading the data, or use as.matrix() on the intensity matrix.

spectra(tiny_in) <- as.matrix(spectra(tiny_in))
imageData(tiny_in)
## MSContinuousImagingSpectraList of length 1 
##  names(1): intensity
##  class(1):    matrix
##    dim(1): <456 x 9>
##    mem(1):     33 KB

Using collect() on the MSImagingExperiment will also load all data into memory.

tiny_in <- collect(tiny_in)

4.2.2 Reading “processed” imzML

For “processed” imzML files, the spectra must be binned to common m/z-values. By default, readImzML() will detect the mass range from the data. This requires reading a large proportion of data from the file, even if attach.only=TRUE.

path2_in <- paste0(path2, ".imzML")
tiny2_in <- readMSIData(path2_in)
tiny2_in
## An object of class 'MSProcessedImagingExperiment'
##   <456 feature, 9 pixel> imaging dataset
##     imageData(1): intensity
##     featureData(0):
##     pixelData(2): 3DPositionX 3DPositionY
##     metadata(8): spectrum representation ibd binary type ... files name
##     run(1): file2d2a5611077e3f
##     raster dimensions: 3 x 3
##     coord(2): x = 1..3, y = 1..3
##     mass range: 500.0000 to 599.8071 
##     centroided: FALSE

If known, it can be much more efficient to specify mass.range when importing “processed” imzML data. This can also be used to pre-filter the data to a smaller mass range.

The size of the m/z bins can be changed with the resolution argument.

tiny2_in <- readMSIData(path2_in, mass.range=c(510,590),
                        resolution=100, units="ppm")
tiny2_in
## An object of class 'MSProcessedImagingExperiment'
##   <1458 feature, 9 pixel> imaging dataset
##     imageData(1): intensity
##     featureData(0):
##     pixelData(2): 3DPositionX 3DPositionY
##     metadata(8): spectrum representation ibd binary type ... files name
##     run(1): file2d2a5611077e3f
##     raster dimensions: 3 x 3
##     coord(2): x = 1..3, y = 1..3
##     mass range: 510.000 to 589.993 
##     centroided: FALSE

The resolution for the m/z bins can be changed after importing the data by setting the resolution() of the dataset.

resolution(tiny2_in) <- c(ppm=400)
## nrows changed from 1458 to 365

4.3 Building from scratch

While importing formats besides imzML and Analyze are not explicitly supported by Cardinal, if the data can be read into R, it is easy to construct a MSImagingExperiment object from its components.

set.seed(2020)
s <- simulateSpectrum(n=9, peaks=10, from=500, to=600)

coord <- expand.grid(x=1:3, y=1:3)
run <- factor(rep("run0", nrow(coord)))

fdata <- MassDataFrame(mz=s$mz)
pdata <- PositionDataFrame(run=run, coord=coord)

out <- MSImagingExperiment(imageData=s$intensity,
                            featureData=fdata,
                            pixelData=pdata)
out
## An object of class 'MSContinuousImagingExperiment'
##   <456 feature, 9 pixel> imaging dataset
##     imageData(1): intensity
##     featureData(0):
##     pixelData(0):
##     run(1): run0
##     raster dimensions: 3 x 3
##     coord(2): x = 1..3, y = 1..3
##     mass range: 500.0000 to 599.8071 
##     centroided: FALSE

For loading data into R, read.csv() and read.table() can be used to read CSV and tab-delimited text files, respectively.

Likewise, write.csv() and write.table() can be used to write pixel metadata and feature metadata after coercing them to an ordinary R data.frame with as.data.frame().

Use saveRDS() and readRDS() to save and read and entire R object such as a MSImagingExperiment. Note that if intensity data is to be saved as well, it should be pulled into memory and coerced to an R matrix with as.matrix() first.

5 Visualization

Visualization of mass spectra and molecular ion images is vital for exploratory analysis of MS imaging experiments. Cardinal provides a plot() method for plotting mass spectra and an image() method for plotting ion images.

Cardinal 2 provides some useful visualization updates compared to previous versions:

5.1 Visualizing mass spectra with plot()

Use plot() to plot mass spectra. Either pixel or coord can be specified to determine which mass spectra should be plotted.

plot(mse, pixel=c(211, 611))

The plusminus argument can be used to specify that multiple spectra should be averaged and plotted together.

plot(mse, coord=list(x=10, y=10), plusminus=1, fun=mean)

A formula can be specified to further customize mass spectra plotting. The LHS of the formula should specify one or more elements of imageData() and the RHS of the formula should be a variable in featureData().

plot(mse, intensity + I(-log1p(intensity)) ~ mz, pixel=211, superpose=TRUE)

5.2 Visualizing images with image()

Use image() to plot ion images. Either feature or mz can be specified to determine which mass features should be plotted.

image(mse, mz=1200)

The plusminus argument can be used to specify that multiple mass features should be averaged and plotted together.

image(mse, mz=1227, plusminus=0.5, fun=mean)

By default, images from all experimental runs are plotted. If this is not desired, a subset can be specified instead.

image(mse, mz=1227, subset=run(mse) == "run0")