cellCellSimulate
functionscTensor 2.0.0
Here, we explain the way to generate CCI simulation data.
scTensor has a function cellCellSimulate
to generate the simulation data.
The simplest way to generate such data is cellCellSimulate
with default parameters.
suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
This function internally generate the parameter sets by newCCSParams
,
and the values of the parameter can be changed, and specified as the input of cellCellSimulate
by users as follows.
# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
## ..@ nGene : num 1000
## ..@ nCell : num [1:3] 50 50 50
## ..@ cciInfo:List of 4
## .. ..$ nPair: num 500
## .. ..$ CCI1 :List of 4
## .. .. ..$ LPattern: num [1:3] 1 0 0
## .. .. ..$ RPattern: num [1:3] 0 1 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI2 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 1 0
## .. .. ..$ RPattern: num [1:3] 0 0 1
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI3 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 0 1
## .. .. ..$ RPattern: num [1:3] 1 0 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## ..@ lambda : num 1
## ..@ seed : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
nPair=500, # Total number of L-R pairs
# 1st CCI
CCI1=list(
LPattern=c(1,0,0), # Only 1st cell type has this pattern
RPattern=c(0,1,0), # Only 2nd cell type has this pattern
nGene=50, # 50 pairs are generated as CCI1
fc="E10"), # Degree of differential expression (Fold Change)
# 2nd CCI
CCI2=list(
LPattern=c(0,1,0),
RPattern=c(0,0,1),
nGene=30,
fc="E100")
)
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123
# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
The output object sim has some attributes as follows.
Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.
dim(sim$input)
## [1] 1000 60
sim$input[1:2,1:3]
## Cell1 Cell2 Cell3
## Gene1 9105 2 0
## Gene2 4 37 850
Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.
dim(sim$LR)
## [1] 500 2
sim$LR[1:10,]
## GENEID_L GENEID_R
## 1 Gene1 Gene81
## 2 Gene2 Gene82
## 3 Gene3 Gene83
## 4 Gene4 Gene84
## 5 Gene5 Gene85
## 6 Gene6 Gene86
## 7 Gene7 Gene87
## 8 Gene8 Gene88
## 9 Gene9 Gene89
## 10 Gene10 Gene90
sim$LR[46:55,]
## GENEID_L GENEID_R
## 46 Gene46 Gene126
## 47 Gene47 Gene127
## 48 Gene48 Gene128
## 49 Gene49 Gene129
## 50 Gene50 Gene130
## 51 Gene51 Gene131
## 52 Gene52 Gene132
## 53 Gene53 Gene133
## 54 Gene54 Gene134
## 55 Gene55 Gene135
sim$LR[491:500,]
## GENEID_L GENEID_R
## 491 Gene571 Gene991
## 492 Gene572 Gene992
## 493 Gene573 Gene993
## 494 Gene574 Gene994
## 495 Gene575 Gene995
## 496 Gene576 Gene996
## 497 Gene577 Gene997
## 498 Gene578 Gene998
## 499 Gene579 Gene999
## 500 Gene580 Gene1000
Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.
length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1
## "Cell1" "Cell2" "Cell3" "Cell4" "Cell5" "Cell6"
table(names(sim$celltypes))
##
## Celltype1 Celltype2 Celltype3
## 20 20 20
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.5 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.12-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.12-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] AnnotationHub_2.22.0
## [2] BiocFileCache_1.14.0
## [3] dbplyr_1.4.4
## [4] scTGIF_1.4.0
## [5] Homo.sapiens_1.3.1
## [6] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [7] org.Hs.eg.db_3.12.0
## [8] GO.db_3.12.0
## [9] OrganismDbi_1.32.0
## [10] GenomicFeatures_1.42.0
## [11] AnnotationDbi_1.52.0
## [12] LRBase.Mmu.eg.db_1.2.0
## [13] SingleCellExperiment_1.12.0
## [14] SummarizedExperiment_1.20.0
## [15] Biobase_2.50.0
## [16] GenomicRanges_1.42.0
## [17] GenomeInfoDb_1.26.0
## [18] IRanges_2.24.0
## [19] S4Vectors_0.28.0
## [20] BiocGenerics_0.36.0
## [21] MatrixGenerics_1.2.0
## [22] matrixStats_0.57.0
## [23] scTensor_2.0.0
## [24] RSQLite_2.2.1
## [25] LRBase.Hsa.eg.db_1.2.0
## [26] LRBaseDbi_2.0.0
## [27] BiocStyle_2.18.0
##
## loaded via a namespace (and not attached):
## [1] rsvd_1.0.3 Hmisc_4.4-1
## [3] ica_1.0-2 Rsamtools_2.6.0
## [5] foreach_1.5.1 lmtest_0.9-38
## [7] crayon_1.3.4 MASS_7.3-53
## [9] nlme_3.1-150 backports_1.1.10
## [11] GOSemSim_2.16.0 MeSHDbi_1.26.0
## [13] rlang_0.4.8 XVector_0.30.0
## [15] ROCR_1.0-11 irlba_2.3.3
## [17] nnTensor_1.0.5 GOstats_2.56.0
## [19] BiocParallel_1.24.0 tagcloud_0.6
## [21] bit64_4.0.5 glue_1.4.2
## [23] sctransform_0.3.1 dotCall64_1.0-0
## [25] tcltk_4.0.3 DOSE_3.16.0
## [27] tidyselect_1.1.0 fitdistrplus_1.1-1
## [29] XML_3.99-0.5 tidyr_1.1.2
## [31] zoo_1.8-8 GenomicAlignments_1.26.0
## [33] xtable_1.8-4 magrittr_1.5
## [35] evaluate_0.14 ggplot2_3.3.2
## [37] zlibbioc_1.36.0 rstudioapi_0.11
## [39] miniUI_0.1.1.1 rpart_4.1-15
## [41] fastmatch_1.1-0 ensembldb_2.14.0
## [43] maps_3.3.0 fields_11.6
## [45] shiny_1.5.0 xfun_0.18
## [47] askpass_1.1 cluster_2.1.0
## [49] tidygraph_1.2.0 TSP_1.1-10
## [51] tibble_3.0.4 interactiveDisplayBase_1.28.0
## [53] ggrepel_0.8.2 biovizBase_1.38.0
## [55] listenv_0.8.0 dendextend_1.14.0
## [57] Biostrings_2.58.0 png_0.1-7
## [59] future_1.19.1 bitops_1.0-6
## [61] ggforce_0.3.2 RBGL_1.66.0
## [63] plyr_1.8.6 GSEABase_1.52.0
## [65] AnnotationFilter_1.14.0 pillar_1.4.6
## [67] graphite_1.36.0 vctrs_0.3.4
## [69] ellipsis_0.3.1 generics_0.0.2
## [71] plot3D_1.3 MeSH.Aca.eg.db_1.13.0
## [73] outliers_0.14 tools_4.0.3
## [75] foreign_0.8-80 entropy_1.2.1
## [77] munsell_0.5.0 tweenr_1.0.1
## [79] fgsea_1.16.0 DelayedArray_0.16.0
## [81] fastmap_1.0.1 compiler_4.0.3
## [83] abind_1.4-5 httpuv_1.5.4
## [85] rtracklayer_1.50.0 Gviz_1.34.0
## [87] plotly_4.9.2.1 GenomeInfoDbData_1.2.4
## [89] gridExtra_2.3 lattice_0.20-41
## [91] deldir_0.1-29 visNetwork_2.0.9
## [93] AnnotationForge_1.32.0 later_1.1.0.1
## [95] dplyr_1.0.2 jsonlite_1.7.1
## [97] concaveman_1.1.0 scales_1.1.1
## [99] graph_1.68.0 pbapply_1.4-3
## [101] genefilter_1.72.0 lazyeval_0.2.2
## [103] promises_1.1.1 spatstat_1.64-1
## [105] MeSH.db_1.13.0 latticeExtra_0.6-29
## [107] goftest_1.2-2 spatstat.utils_1.17-0
## [109] reticulate_1.18 checkmate_2.0.0
## [111] rmarkdown_2.5 cowplot_1.1.0
## [113] schex_1.4.0 MeSH.Syn.eg.db_1.13.0
## [115] webshot_0.5.2 Rtsne_0.15
## [117] dichromat_2.0-0 BSgenome_1.58.0
## [119] uwot_0.1.8 igraph_1.2.6
## [121] survival_3.2-7 yaml_2.2.1
## [123] plotrix_3.7-8 htmltools_0.5.0
## [125] memoise_1.1.0 VariantAnnotation_1.36.0
## [127] rTensor_1.4.1 Seurat_3.2.2
## [129] seriation_1.2-9 graphlayouts_0.7.1
## [131] viridisLite_0.3.0 digest_0.6.27
## [133] assertthat_0.2.1 ReactomePA_1.34.0
## [135] mime_0.9 rappdirs_0.3.1
## [137] registry_0.5-1 spam_2.5-1
## [139] future.apply_1.6.0 misc3d_0.9-0
## [141] data.table_1.13.2 blob_1.2.1
## [143] cummeRbund_2.32.0 splines_4.0.3
## [145] Formula_1.2-4 ProtGenerics_1.22.0
## [147] RCurl_1.98-1.2 hms_0.5.3
## [149] colorspace_1.4-1 base64enc_0.1-3
## [151] BiocManager_1.30.10 nnet_7.3-14
## [153] Rcpp_1.0.5 bookdown_0.21
## [155] RANN_2.6.1 MeSH.PCR.db_1.13.0
## [157] enrichplot_1.10.0 R6_2.4.1
## [159] grid_4.0.3 ggridges_0.5.2
## [161] lifecycle_0.2.0 curl_4.3
## [163] MeSH.Bsu.168.eg.db_1.13.0 leiden_0.3.3
## [165] MeSH.AOR.db_1.13.0 meshr_1.26.0
## [167] DO.db_2.9 Matrix_1.2-18
## [169] qvalue_2.22.0 RcppAnnoy_0.0.16
## [171] RColorBrewer_1.1-2 iterators_1.0.13
## [173] stringr_1.4.0 htmlwidgets_1.5.2
## [175] polyclip_1.10-0 biomaRt_2.46.0
## [177] purrr_0.3.4 shadowtext_0.0.7
## [179] reactome.db_1.74.0 mgcv_1.8-33
## [181] globals_0.13.1 openssl_1.4.3
## [183] htmlTable_2.1.0 patchwork_1.0.1
## [185] codetools_0.2-16 prettyunits_1.1.1
## [187] gtable_0.3.0 DBI_1.1.0
## [189] tensor_1.5 httr_1.4.2
## [191] highr_0.8 KernSmooth_2.23-17
## [193] stringi_1.5.3 progress_1.2.2
## [195] msigdbr_7.2.1 reshape2_1.4.4
## [197] farver_2.0.3 heatmaply_1.1.1
## [199] annotate_1.68.0 viridis_0.5.1
## [201] hexbin_1.28.1 fdrtool_1.2.15
## [203] Rgraphviz_2.34.0 magick_2.5.0
## [205] xml2_1.3.2 rvcheck_0.1.8
## [207] Category_2.56.0 BiocVersion_3.12.0
## [209] bit_4.0.4 scatterpie_0.1.5
## [211] jpeg_0.1-8.1 spatstat.data_1.4-3
## [213] ggraph_2.0.3 pkgconfig_2.0.3
## [215] MeSH.Hsa.eg.db_1.13.0 knitr_1.30