Package ‘simplifyEnrichment’

March 30, 2021

Type Package

Title Simplify Functional Enrichment Results
Version 1.0.0

Date 2020-10-07

Author Zuguang Gu

Maintainer Zuguang Gu <z.gu@dkfz.de>
Depends R (>= 3.6.0), BiocGenerics, grid

Imports GOSemSim, ComplexHeatmap (>= 2.5.4), circlize, GetoptLong,
digest, tm, GO.db, org.Hs.eg.db, AnnotationDbi, slam, methods,
clue, grDevices, graphics, stats, utils, proxyC, Matrix,
cluster (>=1.14.2)

Suggests knitr, ggplot2, cowplot, mclust, apcluster, MCL, dbscan,
igraph, gridExtra, dynamicTreeCut, testthat, gridGraphics,
clusterProfiler, msigdbr, DOSE, DO.db, reactome.db, flexclust,
BiocManager

Description A new method (binary cut) is proposed to effectively cluster
GO terms into groups from the semantic similarity matrix.
Summaries of GO terms in each cluster are visualized by word clouds.

biocViews Software, Visualization, GO, Clustering, GeneSetEnrichment

URL https://github.com/jokergoo/simplifyEnrichment,
https://simplifyEnrichment.github.io

VignetteBuilder knitr

License MIT + file LICENSE

git_url https://git.bioconductor.org/packages/simplifyEnrichment

git_branch RELEASE_3_12

git_last_commit 8e81880

git_last_commit_date 2020-10-27

Date/Publication 2021-03-29

R topics documented:

all_clustering_methods
binary_cut e

https://github.com/jokergoo/simplifyEnrichment
https://simplifyEnrichment.github.io

Index

R topics documented:

cluster_by_apcluster 4
cluster_by_dynamicTreeCut 5
cluster_by_hdbscan 6
cluster_by_igraph L 6
cluster_by_kmeans 7
cluster_ by MCL e 8
cluster_by_mclust 8
cluster_terms e e 9
cmp_make_clusters 10
cmp_make_plot 11
compare_clustering_methods 12
count_ word L L L e e e 13
dend_node_apply 14
difference_score e e e e e e e e 15
DO_similarity e e 16
editnode e 16
GO_similarity e e e e e 17
QUESS_ONE .+ o v v v vt e e e e e e e e e e e e e 18
heightDetails.word_cloud L 19
ht_clusters e 19
partition_by_hclust 21
partition_by_kmeans 21
partition_by_kmeanspp L. e e 22
partition_by_pam e e 22
plot_binary_cut e e e e e e 23
random_DO 24
random_GO e s 24
register_clustering_methods oL 25
remove_clustering_methods L. oL 26
reset_clustering_methods Lo 26
scale_fontsize e 27
select_cutoff L e 28
simplifyEnrichment 28
simplifyGO L 29
subset_enrichResult 30
term_similarity 31
term_similarity_from_enrichResult oL 31
term_similarity_from_gmt oL 32
term_similarity_from_KEGG o 33
term_similarity_from_MSigDB oo 33
term_similarity_from_Reactome 34
widthDetails.word_cloud e 34
word_cloud_grob 35

37

all_clustering_methods

all_clustering_methods
All clustering methods

Description

All clustering methods

Usage

all_clustering_methods()

Details

The default clustering methods are:

kmeans see cluster_by_kmeans.

dynamicTreeCut see cluster_by_dynamicTreeCut.
mclust see cluster_by_mclust.

apcluster see cluster_by_apcluster.

hdbscan see cluster_by_hdbscan.

fast_greedy see cluster_by_igraph.
leading_eigen see cluster_by_igraph.

louvain see cluster_by_igraph.

walktrap see cluster_by_igraph.

MCL see cluster_by_MCL.

binary_cut see binary_cut.

Value

A vector of method names.

See Also

New methods can be added by register_clustering_methods.

Examples

all_clustering_methods()

4 cluster_by_apcluster

binary_cut Cluster functional terms by recursively binary cutting the similarity
matrix

Description

Cluster functional terms by recursively binary cutting the similarity matrix

Usage

binary_cut(mat, value_fun = median, partition_fun = partition_by_pam,
cutoff = 0.85, cache = FALSE, try_all_partition_fun = FALSE)

Arguments
mat A similarity matrix.
value_fun Value function to calculate the score for each node in the dendrogram.

partition_fun A function to split each node into two groups. Pre-defined functions in this pack-
age are partition_by_kmeanspp, partition_by_pamandpartition_by_hclust.

cutoff The cutoff for splitting the dendrogram.

cache Whether the dendrogram should be cached. Internally used.

try_all_partition_fun
Different partition_fun gives different clusterings. If the vaule of try_all_partition_fun
is set to TRUE, the similarity matrix is clustered by three partitioning method:
partition_by_pam, partition_by_kmeanspp and partition_by_hclust. The
clustering with the highest difference score is finally selected as the final clus-
tering.

Value

A vector of cluster labels (in numeric).

Examples

mat = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds",
package = "simplifyEnrichment"))
binary_cut(mat)

cluster_by_apcluster Cluster similarity matrix by apcluster

Description

Cluster similarity matrix by apcluster

Usage

cluster_by_apcluster(mat, s = apcluster::negDistMat(r = 2), ...)

cluster_by_dynamicTreeCut

Arguments
mat The similarity matrix.
s Passed to the s argument in apcluster.
Other arguments passed to apcluster.
Value

A vector of cluster labels (in numeric).

Examples

There is no example
NULL

cluster_by_dynamicTreeCut
Cluster similarity matrix by dynamicTreeCut

Description

Cluster similarity matrix by dynamicTreeCut

Usage

cluster_by_dynamicTreeCut(mat, minClusterSize = 5, ...)
Arguments

mat The similarity matrix.

minClusterSize Minimal number of objects in a cluster. Pass to cutreeDynamic.

Other arguments passed to cutreeDynamic.

Value

A vector of cluster labels (in numeric).

Examples

There is no example
NULL

6 cluster_by_igraph

cluster_by_hdbscan Cluster similarity matrix by hdbscan

Description

Cluster similarity matrix by hdbscan

Usage
cluster_by_hdbscan(mat, minPts = 5, ...)
Arguments
mat The similarity matrix.
minPts Passed to the minPts argument in hdbscan.
Other arguments passed to hdbscan.
Value

A vector of cluster labels (in numeric).

Examples

There is no example
NULL

cluster_by_igraph Cluster similarity matrix by graph community detection methods

Description

Cluster similarity matrix by graph community detection methods

Usage

cluster_by_igraph(mat,
method = c("cluster_fast_greedy”,
"cluster_leading_eigen”,
"cluster_louvain”,
"cluster_walktrap”),

L)
Arguments
mat The similarity matrix.
method The community detection method.

Other arguments passed to the corresponding community detection function, see

Details.

cluster_by_kmeans 7

Details

The symmetric similarity matrix can be treated as an adjacency matrix and constructed as a graph/network
with the similarity values as the weight of hte edges. Thus, clustering the similarity matrix can be
treated as detecting clusters/modules/communities from the graph.

Four methods implemented in igraph package can be used here:

cluster_fast_greedy uses cluster_fast_greedy.
cluster_leading_eigen uses cluster_leading_eigen.
cluster_louvain uses cluster_louvain.

cluster_walktrap uses cluster_walktrap.

Value

A vector of cluster labels (in numeric).

Examples

There is no example
NULL

cluster_by_kmeans Cluster similarity matrix by k-means clustering

Description

Cluster similarity matrix by k-means clustering

Usage
cluster_by_kmeans(mat, max_k = max(2, min(round(nrow(mat)/5), 100)), ...)
Arguments
mat The similarity matrix.
max_k maximal k for k-means clustering.
Other arguments passed to kmeans.
Details

The best number of k for k-means clustering is identified according to the "elbow" or "knee" method
on the distribution of within-cluster sum of squares (WSS) at each k.
Value

A vector of cluster labels (in numeric).

Examples

There is no example
NULL

8 cluster_by_mclust

cluster_by_MCL Cluster similarity matrix by MCL

Description

Cluster similarity matrix by MCL

Usage
cluster_by_MCL(mat, addLoops = FALSE, ...)
Arguments
mat The similarity matrix.
addLoops Passed to the addLoops argument in mc1.
Other arguments passed to mc1.
Value

A vector of cluster labels (in numeric).

Examples

There is no example
NULL

cluster_by_mclust Cluster similarity matrix by mclust

Description

Cluster similarity matrix by mclust

Usage
cluster_by_mclust(mat, G = seqg_len(max(2, min(round(nrow(mat)/5), 100))), ...)
Arguments
mat The similarity matrix.
G Passed to the G argument in Mclust.
Other arguments passed to Mclust.
Value

A vector of cluster labels (in numeric).

cluster_terms 9

Examples

There is no example
NULL

cluster_terms Cluster functional terms

Description

Cluster functional terms

Usage

cluster_terms(mat, method = "binary_cut”, control = list(), catch_error = FALSE,
verbose = TRUE)

Arguments
mat A similarity matrix.
method Method for clustering the matrix.
control A list of parameters passed to the corresponding clustering function.
catch_error Internally used.
verbose Whether to print messages.
Details

The following methods are the default:

kmeans see cluster_by_kmeans.

dynamicTreeCut see cluster_by_dynamicTreeCut.
mclust see cluster_by_mclust.

apcluster see cluster_by_apcluster.

hdbscan see cluster_by_hdbscan.

fast_greedy see cluster_by_igraph.
leading_eigen see cluster_by_igraph.

louvain see cluster_by_igraph.

walktrap see cluster_by_igraph.

MCL see cluster_by_MCL.

binary_cut see binary_cut.

Also the user-defined methods in all_clustering_methods can be used here.
New clustering methods can be registered by register_clustering_methods.

Please note it is better to directly call cluster_terms for clustering while not the individual
cluster_by_x* functions because cluster_terms does additional cluster label adjustment.

10 cmp_make_clusters

Value

A numeric vector of cluster labels (in numeric).

If catch_error is set to TRUE and if the clustering produces an error, the function returns a try-error
object.

Examples

There is no example
NULL

cmp_make_clusters Apply various clustering methods

Description

Apply various clustering methods

Usage

cmp_make_clusters(mat, method = setdiff(all_clustering_methods(), "mclust"),
verbose = TRUE)

Arguments
mat The similarity matrix.
method Which methods to compare. All available methods are in all_clustering_methods.
A value of all takes all available methods. By default mclust is excluded be-
cause its long runtime.
verbose Whether to print messages.
Details

The function compares following default clustering methods by default:

kmeans see cluster_by_kmeans.

dynamicTreeCut see cluster_by_dynamicTreeCut.

mclust see cluster_by_mclust. By default it is not included.
apcluster see cluster_by_apcluster.

hdbscan see cluster_by_hdbscan.

fast_greedy see cluster_by_igraph.

leading_eigen see cluster_by_igraph.

louvain see cluster_by_igraph.

walktrap see cluster_by_igraph.

MCL see cluster_by_MCL.

binary_cut see binary_cut.

Also the user-defined methods in all_clustering_methods are also compared.

cmp_make_plot 11

Value

A list of cluster label vectors for different clustering methods.

Examples

Not run:

mat = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds",
package = "simplifyEnrichment"))

clt = cmp_make_clusters(mat)

End(Not run)

cmp_make_plot Make plots for comparing clustering methods

Description

Make plots for comparing clustering methods

Usage

cmp_make_plot(mat, clt, plot_type = c("mixed”, "heatmap”), nrow = 3)

Arguments

mat A similarity matrix.

clt A list of clusterings from cmp_make_clusters.

plot_type What type of plots to make. See Details.

nrow Number of rows of the layout when plot_type is set to heatmap.
Details

If plot_type is the default value mixed, a figure with three panels generated:

* A heatmap of the similarity matrix with different classifications as row annotations.
* A heatmap of the pair-wise concordance of the classifications of every two clustering methods.

* Barplots of the difference scores for each method (calculated by difference_score), the
number of clusters (total clusters and the clusters with size >= 5) and the mean similarity of
the terms that are in the same clusters.

If plot_type is heatmap. There are heatmaps for the similarity matrix under clusterings from
different methods. The last panel is a table with the number of clusters under different clusterings.

Value

No value is returned.

12 compare_clustering_methods

Examples

Not run:

mat = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds",
package = "simplifyEnrichment”))

clt = cmp_make_clusters(mat)

cmp_make_plot(mat, clt)

cmp_make_plot(mat, clt, plot_type = "heatmap”)

End(Not run)

compare_clustering_methods
Compare clustering methods

Description

Compare clustering methods

Usage

compare_clustering_methods(mat, method = setdiff(all_clustering_methods(), "mclust"),
plot_type = c("mixed”, "heatmap"), nrow = 3, verbose = TRUE)

Arguments
mat The similarity matrix.
method Which methods to compare. All available methods arein all_clustering_methods.
A value of all takes all available methods. By default mclust is excluded be-
cause its long runtime.
plot_type See explanation in cmp_make_plot.
nrow Number of rows of the layout when plot_type is set to heatmap.
verbose Whether to print messages.
Details

The function compares following clustering methods by default:

kmeans see cluster_by_kmeans.

dynamicTreeCut see cluster_by_dynamicTreeCut.

mclust see cluster_by_mclust. By default it is not included.
apcluster see cluster_by_apcluster.

hdbscan see cluster_by_hdbscan.

fast_greedy see cluster_by_igraph.

leading_eigen see cluster_by_igraph.

louvain see cluster_by_igraph.

walktrap see cluster_by_igraph.

MCL see cluster_by_MCL.

count_word 13

binary_cut see binary_cut.
This functon is basically a wrapper function. It calls the following two functions:

e cmp_make_clusters: applies clustering with different methods.

* cmp_make_plot: makes the plots.

Value

No value is returned.

Examples

Not run:

mat = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds",
package = "simplifyEnrichment"”))

compare_clustering_methods(mat)

compare_clustering_methods(mat, plot_type = "heatmap”)

End(Not run)

count_word Calculate word frequency

Description

Calculate word frequency

Usage

count_word(go_id, term = NULL, exclude_words = NULL)

Arguments
go_id A vector of GO IDs.
term The corresponding names or description of terms if the input are not GO terms.

exclude_words The words that should be excluded.

Details

The input can be simply set with a vector of GO id to go_id argument that the GO names are
automatically extracted. If the input are not GO terms, users need to provide a vector of long
names/descriptions by term argument.

n on

If the input is GO id, the following words are excluded: c("via”, "protein”,"factor”,"side", "type", "specific")
They are analyzed by simplifyEnrichment:::all_GO_word_count().

The text preprocessing followings the instructions from http://www.sthda.com/english/wiki/
word-cloud-generator-in-r-one-killer-function-to-do-everything-you-need.

Value

A data frame with words and frequencies.

http://www.sthda.com/english/wiki/word-cloud-generator-in-r-one-killer-function-to-do-everything-you-need
http://www.sthda.com/english/wiki/word-cloud-generator-in-r-one-killer-function-to-do-everything-you-need

14

Examples

go_id = random_G0(500)
head(count_word(go_id))

dend_node_apply

dend_node_apply Apply functions on every node in a dendrogram

Description

Apply functions on every node in a dendrogram

Usage

dend_node_apply(dend, fun)

Arguments

dend A dendrogram.

fun A self-defined function.
Details

The function returns a vector or a list as the same length as the number of nodes in the dendrogram.

The self-defined function can have one single argument which is the sub-dendrogram at a certain

node. E.g. to get the number of members at every node:

dend_node_apply(dend, function(d) attr(d, "members"))

The self-defined function can have a second argument, which is the index of current sub-dendrogram
in the complete dendrogram. E.g. dend[[11]] is the first child node of the complete dendrogram
and dend[[c(1,2)1] is the second child node of dend[[1]], et al. This makes that at a certain

node, it is possible to get information of its child nodes and parent nodes.

dend_node_apply(dend, function(d, index) {

dend[[c(index, 1)]1] # is the first child node of d, or simply d[[1]]

dend[[index[-length(index)]1]] # is the parent node of d

D

Note for the top node, the value of index is NULL.

Value

A vector or a list, depends on whether fun returns a scalar or more complex values.

difference_score 15

Examples

mat = matrix(rnorm(100), 10)

dend = as.dendrogram(hclust(dist(mat)))

number of members on every node

dend_node_apply(dend, function(d) attr(d, "members”))
the depth on every node

dend_node_apply(dend, function(d, index) length(index))

difference_score Difference score

Description

Difference score

Usage

difference_score(mat, cl)

Arguments
mat The similarity matrix.
cl Cluster labels.
Details

This function measures the different between the similarity values for the terms that belong to the
same clusters and in different clusters. The difference score is the Kolmogorov-Smirnov statistic
between the two distributions.

Value

A numeric scalar.

Examples

mat = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds",
package = "simplifyEnrichment"))

cl = binary_cut(mat)

difference_score(mat, cl)

16 edit_node

DO_similarity Calculate Disease Ontology (DO) semantic similarity matrix

Description

Calculate Disease Ontology (DO) semantic similarity matrix

Usage

DO_similarity(do_id, measure = "Rel")
Arguments

do_id A vector of DO IDs.

measure Semantic measurement for the DO similarity, pass to doSim.
Details

This function is basically a wrapper on doSim.

Value

A symmetric matrix.

Examples

require(DOSE)
do_id = random_DO(10)
DO_similarity(do_id)

edit_node Modify nodes in a dendrogram

Description

Modify nodes in a dendrogram

Usage

edit_node(dend, fun = function(d, index) d)

Arguments

dend A dendrogram.

fun A self-defined function.

GO_similarity 17

Details

if fun only has one argument, it is basically the same as dendrapply, but it can have a second argu-
ment which is the index of the node in the dendrogram, which makes it possible to get information
of child nodes and parent nodes for a specific node.

As an example, we first assign random values to every node in the dendrogram:

mat = matrix(rnorm(100), 10)
dend = as.dendrogram(hclust(dist(mat)))
dend = edit_node(dend, function(d) {attr(d, 'score') = runif(1); d})

Then for every node, we take the maximal absolute difference to all its child nodes and parent node
as the attribute abs_diff

dend = edit_node(dend, function(d, index) {
n = length(index)
s = attr(d, "score")
if(is.null(index)) { # d is the top node
s_children = sapply(d, function(x) attr(x, "score"))
s_parent = NULL
} else if(is.leaf(d)) { # d is the leaf
s_children = NULL
s_parent = attr(dend[[index[-n]]], "score")
} else {
s_children = sapply(d, function(x) attr(x, "score"))
s_parent = attr(dend[[index[-n]]], "score")
3
abs_diff = max(abs(s - c(s_children, s_parent)))
attr(d, "abs_diff"”) = abs_diff
return(d)
b))

Value

A dendrogram object.

Examples

There is no example
NULL

GO_similarity Calculate Gene Ontology (GO) semantic similarity matrix

Description

Calculate Gene Ontology (GO) semantic similarity matrix

Usage

GO_similarity(go_id, ont, db = 'org.Hs.eg.db', measure = "Rel")

18 guess_ont

Arguments
go_id A vector of GO IDs.
ont GO ontology. Value should be one of "BP", "CC" or "MF". If it is not specified,
the function automatically identifies it by random sampling 10 IDs from go_id
(see guess_ont).
db Annotation database. It should be from https://bioconductor.org/packages/
3.10/BiocViews.html#___OrgDb
measure Semantic measurement for the GO similarity, pass to termSim.
Details

This function is basically a wrapper on termSim.

Value

A symmetric matrix.

Examples

go_id = random_GO(100)
mat = GO_similarity(go_id)

guess_ont Guess the ontology of the input GO IDs

Description

Guess the ontology of the input GO IDs

Usage
guess_ont(go_id, db = 'org.Hs.eg.db")

Arguments
go_id A vector of GO IDs.
db Annotation database. It should be from https://bioconductor.org/packages/
3.10/BiocViews.html#___OrgDb
Details

10 GO IDs are randomly sampled and checked.

Value

A single character scalar of "BP", "CC" or "MF".

If there are more than one ontologies detected. It returns NULL.

https://bioconductor.org/packages/3.10/BiocViews.html#___OrgDb
https://bioconductor.org/packages/3.10/BiocViews.html#___OrgDb
https://bioconductor.org/packages/3.10/BiocViews.html#___OrgDb
https://bioconductor.org/packages/3.10/BiocViews.html#___OrgDb

heightDetails.word_cloud

Examples

go_id = random_GO(100)
guess_ont(go_id)

19

heightDetails.word_cloud
Height for word_cloud grob

Description

Height for word_cloud grob

Usage

S3 method for class 'word_cloud’

heightDetails(x)
Arguments

X The word_cloud grob returned by word_cloud_grob.
Value

A unit object.

Examples

There is no example
NULL

ht_clusters Visualize the similarity matrix and the clustering

Description

Visualize the similarity matrix and the clustering

Usage

ht_clusters(mat, cl, dend = NULL, col = c("white", "red"),
draw_word_cloud = is_GO_id(rownames(mat)[1]) || !is.null(term),
term = NULL, min_term = 5,
order_by_size = FALSE, cluster_slices = FALSE,
exclude_words = character(@), max_words = 10,
word_cloud_grob_param = list(), fontsize_range = c(4, 16),
column_title = NULL, ht_list = NULL, use_raster = TRUE, ...)

20

Arguments

mat

cl

dend

col

draw_word_cloud

term

min_term

order_by_size

cluster_slices
exclude_words

max_words

ht_clusters

A similarity matrix.

Cluster labels inferred from the similarity matrix, e.g. from cluster_terms or
binary_cut.

Used internally.

A vector of colors that map from O to the 95*th percentile of the similarity
values.

Whether to draw the word clouds.
The full name or the description of the corresponding GO IDs.

Minimal number of functional terms in a cluster. All the clusters with size less
than min_term are all merged into one separated cluster in the heatmap.

Whether to reorder clusters by their sizes. The cluster that is merged from small
clusters (size < min_term) is always put to the bottom of the heatmap.

Whether to cluster slices.
Words that are excluded in the word cloud.

Maximal number of words visualized in the word cloud.

word_cloud_grob_param

fontsize_range

column_title

ht_list
use_raster
Value

A list of graphic parameters passed to word_cloud_grob.

The range of the font size. The value should be a numeric vector with length
two. The minimal font size is mapped to word frequency value of 1 and the
maximal font size is mapped to the maximal word frequency. The font size
interlopation is linear.

Column title for the heatmap.
A list of additional heatmaps added to the left of the similarity heatmap.
Whether to write the heatmap as a raster image.

Other arguments passed to draw,HeatmapList-method.

A HeatmapList-class object.

Examples

mat = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds",
package = "simplifyEnrichment”))
cl = binary_cut(mat)

ht_clusters(mat,
ht_clusters(mat,

80))
80),

cl, word_cloud_grob_param = list(max_width
cl, word_cloud_grob_param = list(max_width

order_by_size = TRUE)

partition_by_hclust 21

partition_by_hclust Fartition by hclust

Description

Partition by hclust

Usage

partition_by_hclust(mat)

Arguments

mat The similarity matrix.

Details

The "ward.D2" clusering method was used.

This function is used to set to the partition_fun argument in binary_cut.

Examples

There is no example
NULL

partition_by_kmeans Partition by kmeans

Description

Partition by kmeans

Usage

partition_by_kmeans(mat, n_repeats = 10)

Arguments

mat The similarity matrix.

n_repeats Number of repeated runs of k-means.
Details

Since k-means clustering brings randomness, this function performs k-means clustering several
times and uses the final consensus partitioning.

This function is used to set to the partition_fun argument in binary_cut.

22 partition_by_pam

Examples

There is no example
NULL

partition_by_kmeanspp Partition by kimeans++

Description

Partition by kmeans++

Usage

partition_by_kmeanspp(mat)

Arguments

mat The similarity matrix.

Details

This function is used to set to the partition_fun argument in binary_cut.

Examples

There is no example
NULL

partition_by_pam Partition by PAM

Description

Partition by PAM

Usage

partition_by_pam(mat)

Arguments

mat The similarity matrix.

Details

The clustering is performed by pam with setting pamonce argument to 5.

This function is used to set to the partition_fun argument in binary_cut.

plot_binary_cut 23

Examples

There is no example
NULL

plot_binary_cut Visualize the process of binary cut

Description

Visualize the process of binary cut

Usage

plot_binary_cut(mat, value_fun = median, cutoff = 0.85,
partition_fun = partition_by_pam, dend = NULL, dend_width = unit(3, "cm"),

depth = NULL, show_heatmap_legend = TRUE, ...)
Arguments
mat The similarity matrix.
value_fun Value function to calculate the score for each node in the dendrogram.
cutoff The cutoff for splitting the dendrogram.

partition_fun A function to split each node into two groups. Pre-defined functions in this pack-
age are partition_by_kmeanspp, partition_by_pamandpartition_by_hclust.

dend A dendrogram object, used internally.
depth Depth of the recursive binary cut process.
dend_width Width of the dendrogram.

show_heatmap_legend
Whether to show the heatmap legend.

Other arguments.

Details

After the functions which performs clustering are executed, such as simplifyGO or binary_cut,
the dendrogram is temporarily saved and plot_binary_cut directly uses this dendrogram. So, if
the partition function brings randomness, it makes sure the clustering is the same as the one made
by e.g. simplifyGO.

Examples

mat = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds",
package = "simplifyEnrichment"”))

plot_binary_cut(mat, depth = 1)

plot_binary_cut(mat, depth = 2)

plot_binary_cut(mat)

24 random_GO

random_DO Generate random Disease Ontology (DO) IDs

Description

Generate random Disease Ontology (DO) IDs

Usage

random_DO(n)

Arguments

n Number of DO IDs.

Details
DO. db package should be installed.

Value

A vector of DO IDs.

Examples

random_DO(100)

random_GO Generate random GO IDs

Description

Generate random GO IDs

Usage
random_GO(n, ont = "BP", db = 'org.Hs.eg.db')

Arguments
n Number of GO IDs.
ont GO ontology. Value should be one of "BP", "CC" or "MF".
db Annotation database. It should be from https://bioconductor.org/packages/
3.10/BiocViews.html#___OrgDb
Value

A vector of GO IDs.

https://bioconductor.org/packages/3.10/BiocViews.html#___OrgDb
https://bioconductor.org/packages/3.10/BiocViews.html#___OrgDb

register_clustering_methods 25

Examples

random_GO(100)

register_clustering_methods
Register new clustering methods

Description

Register new clustering methods

Usage

register_clustering_methods(...)

Arguments
A named list of clustering functions, see Details.
Details
The user-defined functions should accept at least one argument which is the input matrix. The
second optional argument should always be . .. so that parameters for the clustering function can
be passed by control argument from cluster_terms, simplifyGO or simplifyEnrichment. If
users forget to add . . ., it is added internally.

Please note, the user-defined function should automatically identify the optimized number of clus-
ters.

The function should return a vector of cluster labels. Internally it is converted to numeric labels.

Value

No value is returned.

Examples

register_clustering_methods(

assume there are 5 groups

random = function(mat, ...) sample(5, nrow(mat), replace = TRUE)
)

all_clustering_methods()

remove_clustering_methods(”random”)

26

reset_clustering_methods

remove_clustering_methods
Remove clustering methods

Description

Remove clustering methods

Usage

remove_clustering_methods(method)

Arguments

method A vector of method names.

Value

No value is returned.

Examples

There is no example
NULL

reset_clustering_methods
Reset to default clustering methods

Description

Reset to default clustering methods

Usage

reset_clustering_methods()

Details

The default methods are:

kmeans see cluster_by_kmeans.

dynamicTreeCut see cluster_by_dynamicTreeCut.
mclust see cluster_by_mclust.

apcluster see cluster_by_apcluster.

hdbscan see cluster_by_hdbscan.

fast_greedy see cluster_by_igraph.

scale_fontsize

leading_eigen see cluster_by_igraph.
louvain see cluster_by_igraph.
walktrap see cluster_by_igraph.

MCL see cluster_by_MCL.

binary_cut see binary_cut.

Value

No value is returned.

Examples

all_clustering_methods()
remove_clustering_methods(c("kmeans"”, "mclust”))
all_clustering_methods()
reset_clustering_methods()
all_clustering_methods()

27

scale_fontsize Scale font size

Description

Scale font size

Usage

scale_fontsize(x, rg = c(1, 30), fs = c(4, 16))

Arguments

X A numeric vector.

rg The range.

fs Range of the font size.
Value

A numeric vector.

Detaisl

It is a linear interpolation.

Examples

X = runif (10, min = 1, max = 20)
scale x to fontsize 4 to 16.
scale_fontsize(x)

28 simplifyEnrichment

select_cutoff Select the cutoff for binary cut

Description

Select the cutoff for binary cut

Usage
select_cutoff(mat, cutoff = seq(@.6, ©.98, by = 0.01), verbose = TRUE, ...)
Arguments
mat A similarity matrix.
cutoff A list of cutoffs to test. Note the range of the cutoff values should be inside [0.5,
1].
verbose Whether to print messages.
Pass to binary_cut.
Details

Binary cut is applied to each of the cutoff and the clustering results are evaluated by following
metrics:

» difference score, calculated by difference_score.
e number of clusters.

* block mean, which is the mean similarity in the blocks in the diagonal of the heatmap.

Examples

mat = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds",
package = "simplifyEnrichment"))
select_cutoff(mat)

simplifyEnrichment Simplify functional enrichment results

Description

Simplify functional enrichment results

Usage

simplifyEnrichment(mat, method = "binary_cut”, control = list(),
plot = TRUE, term = NULL, verbose = TRUE,
column_title = gqq("@{nrow(mat)} terms clustered by '@{method}'"),
ht_list = NULL, ...)

simplifyGO 29

Arguments
mat A similarity matrix.
method Method for clustering the matrix. See cluster_terms.
control A list of parameters for controlling the clustering method, passed to cluster_terms.
plot Whether to make the heatmap.
term The full name or the description of the corresponding terms.

column_title Column title for the heatmap.

verbose Whether to print messages.

ht_list A list of additional heatmaps added to the left of the similarity heatmap.
Arguments passed to ht_clusters.

Details
The usage is the same as simplifyGO, except you need to manually provide the term names by
term argument if you want to draw the word clouds.

Examples

There is no example
NULL

simplifyGO Simplify Gene Ontology (GO) enrichment results

Description

Simplify Gene Ontology (GO) enrichment results

Usage

simplifyGO(mat, method = "binary_cut”, control = list(),
plot = TRUE, term = NULL, verbose = TRUE,
column_title = gq("@{nrow(mat)} GO terms clustered by '@{method}'"),

ht_list = NULL, ...)
Arguments
mat A GO similarity matrix.
method Method for clustering the matrix. See cluster_terms.
control A list of parameters for controlling the clustering method, passed to cluster_terms.
plot Whether to make the heatmap.
term The full name or the description of the corresponding GO IDs. The values are

automatically extracted if it is not provided.
column_title Column title for the heatmap.
verbose Whether to print messages.
ht_list A list of additional heatmaps added to the left of the similarity heatmap.

Arguments passed to ht_clusters.

30 subset_enrichResult

Details
This is basically a wrapper function that it first runs cluster_terms to cluster GO terms and then
runs ht_clusters to visualize the clustering.

The arguments in simplifyGO passed to ht_clusters are:

draw_word_cloud Whether to draw the word clouds.

min_term Minimal number of GO terms in a cluster. All the clusters with size less than min_term
are all merged into one single cluster in the heatmap.

order_by_size Whether to reorder GO clusters by their sizes. The cluster that is merged from
small clusters (size < min_term) is always put to the bottom of the heatmap.

exclude_words Words that are excluded in the word cloud.
max_words Maximal number of words visualized in the word cloud.
word_cloud_grob_param A list of graphic parameters passed to word_cloud_grob.

fontsize_range The range of the font size. The value should be a numeric vector with length
two. The minimal font size is mapped to word frequency value of 1 and the maximal font size
is mapped to the maximal word frequency. The font size interlopation is linear.

Value

A data frame with three columns: GO IDs, GO term names and cluster labels.

Examples

set.seed(123)

go_id = random_G0(500)

mat = GO_similarity(go_id)

df = simplifyGO(mat, word_cloud_grob_param = list(max_width = 80))
head(df)

subset_enrichResult Subset method of the enrichResult class

Description

Subset method of the enrichResult class

Usage

subset_enrichResult(x, i)

Arguments
X A enrichResult object from ’clusterProfiler’ or other related packages.
i Row indices.

Value

Still a enrichResult object but with the selected subset of rows.

term_similarity 31

Examples

There is no example
NULL

term_similarity Similarity between terms based on the overlap of genes

Description

Similarity between terms based on the overlap of genes

Usage

term_similarity(gl, method = c("kappa”, "jaccard”, "dice", "overlap"))
Arguments

gl A list of genes that are in the terms.

method The similarity measurement.
Details

The definition of the four similarity measurements can be found at https://simplifyenrichment.
github.io/supplementary/suppli_coefficient_definition/suppli_coefficient_definition.
html .

Value

A symmetric matrix.

Examples

There is no example
NULL

term_similarity_from_enrichResult
Similarity between terms in the enrichResult class

Description

Similarity between terms in the enrichResult class

Usage

term_similarity_from_enrichResult(x, ...)

https://simplifyenrichment.github.io/supplementary/suppl1_coefficient_definition/suppl1_coefficient_definition.html
https://simplifyenrichment.github.io/supplementary/suppl1_coefficient_definition/suppl1_coefficient_definition.html
https://simplifyenrichment.github.io/supplementary/suppl1_coefficient_definition/suppl1_coefficient_definition.html

32 term_similarity_from_gmt

Arguments
X A enrichResult object from ’clusterProfiler’ or other related packages.
Pass to term_similarity.
Details

The object is normally from the ’clusterProfiler’, "’DOSE’, “meshes’ or ’'ReactomePA’ package.

Value

A symmetric matrix.

Examples

There is no example
NULL

term_similarity_from_gmt
Similarity between terms from a gmt file

Description

Similarity between terms from a gmt file

Usage

term_similarity_from_gmt(term_id, gmt, extract_term_id = NULL, ...)
Arguments

term_id A vector of terms.

gmt The path of the gmt file.

extract_term_id
If the term ID in contained in the first column only as a substring, setting a
function to extract this substring.

Pass to term_similarity.

Value

A symmetric matrix.

Examples

There is no example
NULL

term_similarity_from_KEGG

33

term_similarity_from_KEGG
Similarity between KEGG terms

Description

Similarity between KEGG terms

Usage
term_similarity_from_KEGG(term_id, ...)
Arguments
term_id A vector of KEGG IDs, e.g., hsa0O01.
Pass to term_similarity.
Value

A symmetric matrix.

Examples

There is no example
NULL

term_similarity_from_MSigDB
Similarity between MSigDB terms

Description

Similarity between MSigDB terms

Usage

term_similarity_from_MSigDB(term_id, category = NULL, subcategory = NULL,

Arguments
term_id A vector of MSigDB gene set names.
category E.g.,’CI’,’C2’, pass to msigdbr.

subcategory E.g.,"CGP’, 'BP’, pass to msigdbr.

Pass to term_similarity.

Value

A symmetric matrix.

.2

34

Examples

There is no example
NULL

widthDetails.word_cloud

term_similarity_from_Reactome
Similarity between Reactome terms

Description

Similarity between Reactome terms

Usage
term_similarity_from_Reactome(term_id, ...)
Arguments
term_id A vector of Reactome IDs.
Pass to term_similarity.
Value

A symmetric matrix.

Examples

There is no example
NULL

widthDetails.word_cloud
Width for word_cloud grob

Description

Width for word_cloud grob

Usage

S3 method for class 'word_cloud'
widthDetails(x)

Arguments

X The word_cloud grob returned by word_cloud_grob.

word_cloud_grob 35

Value

A unit object.

Examples

There is no example
NULL

word_cloud_grob A simple grob for the word cloud

Description

A simple grob for the word cloud

Usage

word_cloud_grob(text, fontsize,
line_space = unit(4, "pt"), word_space = unit(4, "pt"), max_width = unit(80, "mm"),
col = function(fs) circlize::rand_color(length(fs), luminosity = "dark"),
test = FALSE)

Arguments
text A vector of words.
fontsize The corresponding font size. With the frequency of the words known, scale_fontsize
can be used to linearly interpolate frequencies to font sizes.
line_space Space between lines. The value can be a unit object or a numeric scalar which
is measured in mm.
word_space Space between words. The value can be a unit object or a numeric scalar which
is measured in mm.
max_width The maximal width of the viewport to put the word cloud. The value can be a
unit object or a numeric scalar which is measured in mm. Note this might be
larger than the final width of the returned grob object.
col Colors for the words. The value can be a vector, in numeric or character, which
should have the same length as text. Or it is a self-defined function that takes
the font size vector as the only argument. The function should return a color
vector. See Examples.
test Internally used. It basically adds borders to the words and the viewport.
Value

A grob object. The width and height of the grob can be get by grobWidth and grobHeight.

36 word_cloud_grob

Examples

very old R versions do not have strrep() function
if(lexists("strrep”)) {

strrep = function(x, i) paste(rep(x, i), collapse = "")
}
words = sapply(1:30, function(x) strrep(sample(letters, 1), sample(3:10, 1)))
require(grid)

30),

gb = word_cloud_grob(words, fontsize = runif(3@, min = 5, max
max_width = 100)
grid.newpage(); grid.draw(gb)

color as a single scalar

gb = word_cloud_grob(words, fontsize = runif(30, min = 5, max = 30),
max_width = 100, col = 1)

grid.newpage(); grid.draw(gb)

color as a vector

gb = word_cloud_grob(words, fontsize = runif(30, min = 5, max = 30),
max_width = 100, col = 1:30)

grid.newpage(); grid.draw(gb)

color as a function

require(circlize)

col_fun = colorRamp2(c(5, 17, 30), c("blue”, "black”, "red"))

gb = word_cloud_grob(words, fontsize = runif (30, min = 5, max = 30),
max_width = 100, col = function(fs) col_fun(fs))

grid.newpage(); grid.draw(gb)

Index

all_clustering_methods, 3, 9, 10, 12
apcluster, 5

binary_cut, 3,4, 9, 10, 13, 20-23, 27, 28

cluster_by_apcluster, 3,4, 9, 10, 12, 26
cluster_by_dynamicTreeCut, 3, 5, 9, 10, 12,
26
cluster_by_hdbscan, 3,6, 9, 10, 12, 26
cluster_by_igraph, 3,6, 9, 10, 12, 26, 27
cluster_by_kmeans, 3,7, 9, 10, 12, 26
cluster_by_MCL, 3,8, 9, 10, 12,27
cluster_by_mclust, 3,8, 9, 10, 12, 26
cluster_fast_greedy, 7
cluster_leading_eigen, 7
cluster_louvain, 7
cluster_terms, 9,9, 20, 25, 29, 30
cluster_walktrap, 7
cmp_make_clusters, 10, 11, 13
cmp_make_plot, 11, 12, I3
compare_clustering_methods, 12
count_word, 13
cutreeDynamic, 5

dend_node_apply, 14
dendrapply, 17
difference_score, 11, 15,28
DO_similarity, 16

doSim, /16

edit_node, 16

GO_similarity, 17
grob, 35
grobHeight, 35
grobWidth, 35
guess_ont, 18, 18

hdbscan, 6
heightDetails.word_cloud, 19
ht_clusters, 19, 29, 30

kmeans, 7

mcl, 8

37

Mclust, 8
msigdbr, 33

pam, 22
partition_by_hclust, 4, 21, 23
partition_by_kmeans, 21
partition_by_kmeanspp, 4, 22, 23
partition_by_pam, 4, 22, 23
plot_binary_cut, 23,23

random_DO, 24

random_GO, 24
register_clustering_methods, 3, 9, 25
remove_clustering_methods, 26
reset_clustering_methods, 26

scale_fontsize, 27, 35
select_cutoff, 28
simplifyEnrichment, 25, 28
simplifyGoO, 23, 25, 29, 29, 30
subset_enrichResult, 30

term_similarity, 31, 32-34
term_similarity_from_enrichResult, 31
term_similarity_from_gmt, 32
term_similarity_from_KEGG, 33
term_similarity_from_MSigDB, 33
term_similarity_from_Reactome, 34
termSim, /8

unit, 79, 35

widthDetails.word_cloud, 34
word_cloud_grob, 19, 20, 30, 34, 35

	all_clustering_methods
	binary_cut
	cluster_by_apcluster
	cluster_by_dynamicTreeCut
	cluster_by_hdbscan
	cluster_by_igraph
	cluster_by_kmeans
	cluster_by_MCL
	cluster_by_mclust
	cluster_terms
	cmp_make_clusters
	cmp_make_plot
	compare_clustering_methods
	count_word
	dend_node_apply
	difference_score
	DO_similarity
	edit_node
	GO_similarity
	guess_ont
	heightDetails.word_cloud
	ht_clusters
	partition_by_hclust
	partition_by_kmeans
	partition_by_kmeanspp
	partition_by_pam
	plot_binary_cut
	random_DO
	random_GO
	register_clustering_methods
	remove_clustering_methods
	reset_clustering_methods
	scale_fontsize
	select_cutoff
	simplifyEnrichment
	simplifyGO
	subset_enrichResult
	term_similarity
	term_similarity_from_enrichResult
	term_similarity_from_gmt
	term_similarity_from_KEGG
	term_similarity_from_MSigDB
	term_similarity_from_Reactome
	widthDetails.word_cloud
	word_cloud_grob
	Index

