dapplyCollect
dapplyCollect.RdApply a function to each partition of a SparkDataFrame and collect the result back to R as a data.frame.
Arguments
- x
A SparkDataFrame
- func
A function to be applied to each partition of the SparkDataFrame. func should have only one parameter, to which a R data.frame corresponds to each partition will be passed. The output of func should be a R data.frame.
See also
Other SparkDataFrame functions:
SparkDataFrame-class,
agg(),
alias(),
arrange(),
as.data.frame(),
attach,SparkDataFrame-method,
broadcast(),
cache(),
checkpoint(),
coalesce(),
collect(),
colnames(),
coltypes(),
createOrReplaceTempView(),
crossJoin(),
cube(),
dapply(),
describe(),
dim(),
distinct(),
dropDuplicates(),
dropna(),
drop(),
dtypes(),
exceptAll(),
except(),
explain(),
filter(),
first(),
gapplyCollect(),
gapply(),
getNumPartitions(),
group_by(),
head(),
hint(),
histogram(),
insertInto(),
intersectAll(),
intersect(),
isLocal(),
isStreaming(),
join(),
limit(),
localCheckpoint(),
merge(),
mutate(),
ncol(),
nrow(),
persist(),
printSchema(),
randomSplit(),
rbind(),
rename(),
repartitionByRange(),
repartition(),
rollup(),
sample(),
saveAsTable(),
schema(),
selectExpr(),
select(),
showDF(),
show(),
storageLevel(),
str(),
subset(),
summary(),
take(),
toJSON(),
unionAll(),
unionByName(),
union(),
unpersist(),
withColumn(),
withWatermark(),
with(),
write.df(),
write.jdbc(),
write.json(),
write.orc(),
write.parquet(),
write.stream(),
write.text()
Examples
if (FALSE) {
df <- createDataFrame(iris)
ldf <- dapplyCollect(df, function(x) { x })
# filter and add a column
df <- createDataFrame(
list(list(1L, 1, "1"), list(2L, 2, "2"), list(3L, 3, "3")),
c("a", "b", "c"))
ldf <- dapplyCollect(
df,
function(x) {
y <- x[x[1] > 1, ]
y <- cbind(y, y[1] + 1L)
})
# the result
# a b c d
# 2 2 2 3
# 3 3 3 4
}