| spark.assignClusters {SparkR} | R Documentation | 
A scalable graph clustering algorithm. Users can call spark.assignClusters to
return a cluster assignment for each input vertex.
Run the PIC algorithm and returns a cluster assignment for each input vertex.
spark.assignClusters(data, ...)
## S4 method for signature 'SparkDataFrame'
spark.assignClusters(
  data,
  k = 2L,
  initMode = c("random", "degree"),
  maxIter = 20L,
  sourceCol = "src",
  destinationCol = "dst",
  weightCol = NULL
)
data | 
 a SparkDataFrame.  | 
... | 
 additional argument(s) passed to the method.  | 
k | 
 the number of clusters to create.  | 
initMode | 
 the initialization algorithm; "random" or "degree"  | 
maxIter | 
 the maximum number of iterations.  | 
sourceCol | 
 the name of the input column for source vertex IDs.  | 
destinationCol | 
 the name of the input column for destination vertex IDs  | 
weightCol | 
 weight column name. If this is not set or   | 
A dataset that contains columns of vertex id and the corresponding cluster for the id.
The schema of it will be: id: integer, cluster: integer
spark.assignClusters(SparkDataFrame) since 3.0.0
## Not run: 
##D df <- createDataFrame(list(list(0L, 1L, 1.0), list(0L, 2L, 1.0),
##D                            list(1L, 2L, 1.0), list(3L, 4L, 1.0),
##D                            list(4L, 0L, 0.1)),
##D                       schema = c("src", "dst", "weight"))
##D clusters <- spark.assignClusters(df, initMode = "degree", weightCol = "weight")
##D showDF(clusters)
## End(Not run)