| dropna {SparkR} | R Documentation | 
Returns a new DataFrame omitting rows with null values.
Replace null values.
## S4 method for signature 'DataFrame'
dropna(x, how = c("any", "all"), minNonNulls = NULL,
  cols = NULL)
## S4 method for signature 'DataFrame'
na.omit(object, how = c("any", "all"),
  minNonNulls = NULL, cols = NULL)
## S4 method for signature 'DataFrame'
fillna(x, value, cols = NULL)
dropna(x, how = c("any", "all"), minNonNulls = NULL, cols = NULL)
na.omit(object, ...)
fillna(x, value, cols = NULL)
| x | A SparkSQL DataFrame. | 
| how | "any" or "all". if "any", drop a row if it contains any nulls. if "all", drop a row only if all its values are null. if minNonNulls is specified, how is ignored. | 
| minNonNulls | If specified, drop rows that have less than minNonNulls non-null values. This overwrites the how parameter. | 
| cols | Optional list of column names to consider. | 
| value | Value to replace null values with. Should be an integer, numeric, character or named list. If the value is a named list, then cols is ignored and value must be a mapping from column name (character) to replacement value. The replacement value must be an integer, numeric or character. | 
| x | A SparkSQL DataFrame. | 
| cols | optional list of column names to consider. Columns specified in cols that do not have matching data type are ignored. For example, if value is a character, and subset contains a non-character column, then the non-character column is simply ignored. | 
A DataFrame
A DataFrame
## Not run: 
##D sc <- sparkR.init()
##D sqlCtx <- sparkRSQL.init(sc)
##D path <- "path/to/file.json"
##D df <- jsonFile(sqlCtx, path)
##D dropna(df)
## End(Not run)
## Not run: 
##D sc <- sparkR.init()
##D sqlCtx <- sparkRSQL.init(sc)
##D path <- "path/to/file.json"
##D df <- jsonFile(sqlCtx, path)
##D fillna(df, 1)
##D fillna(df, list("age" = 20, "name" = "unknown"))
## End(Not run)