Node.js v0.10.41 Manual & Documentation
Table of Contents
Cluster#
Stability: 1 - Experimental
A single instance of Node runs in a single thread. To take advantage of multi-core systems the user will sometimes want to launch a cluster of Node processes to handle the load.
The cluster module allows you to easily create child processes that all share server ports.
var cluster = require('cluster');
var http = require('http');
var numCPUs = require('os').cpus().length;
if (cluster.isMaster) {
// Fork workers.
for (var i = 0; i < numCPUs; i++) {
cluster.fork();
}
cluster.on('exit', function(worker, code, signal) {
console.log('worker ' + worker.process.pid + ' died');
});
} else {
// Workers can share any TCP connection
// In this case its a HTTP server
http.createServer(function(req, res) {
res.writeHead(200);
res.end("hello world\n");
}).listen(8000);
}
Running node will now share port 8000 between the workers:
% NODE_DEBUG=cluster node server.js
23521,Master Worker 23524 online
23521,Master Worker 23526 online
23521,Master Worker 23523 online
23521,Master Worker 23528 online
This feature was introduced recently, and may change in future versions. Please try it out and provide feedback.
Also note that, on Windows, it is not yet possible to set up a named pipe server in a worker.
How It Works#
The worker processes are spawned using the child_process.fork
method,
so that they can communicate with the parent via IPC and pass server
handles back and forth.
When you call server.listen(...)
in a worker, it serializes the
arguments and passes the request to the master process. If the master
process already has a listening server matching the worker's
requirements, then it passes the handle to the worker. If it does not
already have a listening server matching that requirement, then it will
create one, and pass the handle to the worker.
This causes potentially surprising behavior in three edge cases:
server.listen({fd: 7})
Because the message is passed to the master, file descriptor 7 in the parent will be listened on, and the handle passed to the worker, rather than listening to the worker's idea of what the number 7 file descriptor references.server.listen(handle)
Listening on handles explicitly will cause the worker to use the supplied handle, rather than talk to the master process. If the worker already has the handle, then it's presumed that you know what you are doing.server.listen(0)
Normally, this will cause servers to listen on a random port. However, in a cluster, each worker will receive the same "random" port each time they dolisten(0)
. In essence, the port is random the first time, but predictable thereafter. If you want to listen on a unique port, generate a port number based on the cluster worker ID.
When multiple processes are all accept()
ing on the same underlying
resource, the operating system load-balances across them very
efficiently. There is no routing logic in Node.js, or in your program,
and no shared state between the workers. Therefore, it is important to
design your program such that it does not rely too heavily on in-memory
data objects for things like sessions and login.
Because workers are all separate processes, they can be killed or re-spawned depending on your program's needs, without affecting other workers. As long as there are some workers still alive, the server will continue to accept connections. Node does not automatically manage the number of workers for you, however. It is your responsibility to manage the worker pool for your application's needs.
cluster.settings#
- Object
execArgv
Array list of string arguments passed to the node executable. (Default=process.execArgv
)exec
String file path to worker file. (Default=process.argv[1]
)args
Array string arguments passed to worker. (Default=process.argv.slice(2)
)silent
Boolean whether or not to send output to parent's stdio. (Default=false
)
After calling .setupMaster()
(or .fork()
) this settings object will contain
the settings, including the default values.
It is effectively frozen after being set, because .setupMaster()
can
only be called once.
This object is not supposed to be changed or set manually, by you.
cluster.isMaster#
- Boolean
True if the process is a master. This is determined
by the process.env.NODE_UNIQUE_ID
. If process.env.NODE_UNIQUE_ID
is
undefined, then isMaster
is true
.
cluster.isWorker#
- Boolean
True if the process is not a master (it is the negation of cluster.isMaster
).
Event: 'fork'#
worker
Worker object
When a new worker is forked the cluster module will emit a 'fork' event. This can be used to log worker activity, and create your own timeout.
var timeouts = [];
function errorMsg() {
console.error("Something must be wrong with the connection ...");
}
cluster.on('fork', function(worker) {
timeouts[worker.id] = setTimeout(errorMsg, 2000);
});
cluster.on('listening', function(worker, address) {
clearTimeout(timeouts[worker.id]);
});
cluster.on('exit', function(worker, code, signal) {
clearTimeout(timeouts[worker.id]);
errorMsg();
});
Event: 'online'#
worker
Worker object
After forking a new worker, the worker should respond with an online message. When the master receives an online message it will emit this event. The difference between 'fork' and 'online' is that fork is emitted when the master forks a worker, and 'online' is emitted when the worker is running.
cluster.on('online', function(worker) {
console.log("Yay, the worker responded after it was forked");
});
Event: 'listening'#
worker
Worker objectaddress
Object
After calling listen()
from a worker, when the 'listening' event is emitted on
the server, a listening event will also be emitted on cluster
in the master.
The event handler is executed with two arguments, the worker
contains the worker
object and the address
object contains the following connection properties:
address
, port
and addressType
. This is very useful if the worker is listening
on more than one address.
cluster.on('listening', function(worker, address) {
console.log("A worker is now connected to " + address.address + ":" + address.port);
});
The addressType
is one of:
4
(TCPv4)6
(TCPv6)-1
(unix domain socket)"udp4"
or"udp6"
(UDP v4 or v6)
Event: 'disconnect'#
worker
Worker object
Emitted after the worker IPC channel has disconnected. This can occur when a worker exits gracefully, is killed, or is disconnected manually (such as with worker.disconnect()).
There may be a delay between the disconnect
and exit
events. These events
can be used to detect if the process is stuck in a cleanup or if there are
long-living connections.
cluster.on('disconnect', function(worker) {
console.log('The worker #' + worker.id + ' has disconnected');
});
Event: 'exit'#
worker
Worker objectcode
Number the exit code, if it exited normally.signal
String the name of the signal (eg.'SIGHUP'
) that caused the process to be killed.
When any of the workers die the cluster module will emit the 'exit' event.
This can be used to restart the worker by calling .fork()
again.
cluster.on('exit', function(worker, code, signal) {
console.log('worker %d died (%s). restarting...',
worker.process.pid, signal || code);
cluster.fork();
});
See child_process event: 'exit'.
Event: 'setup'#
Emitted the first time that .setupMaster()
is called.
cluster.setupMaster([settings])#
settings
Objectexec
String file path to worker file. (Default=process.argv[1]
)args
Array string arguments passed to worker. (Default=process.argv.slice(2)
)silent
Boolean whether or not to send output to parent's stdio. (Default=false
)
setupMaster
is used to change the default 'fork' behavior. Once called,
the settings will be present in cluster.settings
.
Note that:
- Only the first call to
.setupMaster()
has any effect, subsequent calls are ignored - That because of the above, the only attribute of a worker that may be
customized per-worker is the
env
passed to.fork()
.fork()
calls.setupMaster()
internally to establish the defaults, so to have any effect,.setupMaster()
must be called before any calls to.fork()
Example:
var cluster = require("cluster");
cluster.setupMaster({
exec : "worker.js",
args : ["--use", "https"],
silent : true
});
cluster.fork();
This can only be called from the master process.
cluster.fork([env])#
env
Object Key/value pairs to add to worker process environment.- return Worker object
Spawn a new worker process.
This can only be called from the master process.
cluster.disconnect([callback])#
callback
Function called when all workers are disconnected and handles are closed
Calls .disconnect()
on each worker in cluster.workers
.
When they are disconnected all internal handles will be closed, allowing the master process to die gracefully if no other event is waiting.
The method takes an optional callback argument which will be called when finished.
This can only be called from the master process.
cluster.worker#
- Object
A reference to the current worker object. Not available in the master process.
var cluster = require('cluster');
if (cluster.isMaster) {
console.log('I am master');
cluster.fork();
cluster.fork();
} else if (cluster.isWorker) {
console.log('I am worker #' + cluster.worker.id);
}
cluster.workers#
- Object
A hash that stores the active worker objects, keyed by id
field. Makes it
easy to loop through all the workers. It is only available in the master
process.
A worker is removed from cluster.workers just before the 'disconnect'
or
'exit'
event is emitted.
// Go through all workers
function eachWorker(callback) {
for (var id in cluster.workers) {
callback(cluster.workers[id]);
}
}
eachWorker(function(worker) {
worker.send('big announcement to all workers');
});
Should you wish to reference a worker over a communication channel, using the worker's unique id is the easiest way to find the worker.
socket.on('data', function(id) {
var worker = cluster.workers[id];
});
Class: Worker#
A Worker object contains all public information and method about a worker.
In the master it can be obtained using cluster.workers
. In a worker
it can be obtained using cluster.worker
.
worker.id#
- String
Each new worker is given its own unique id, this id is stored in the
id
.
While a worker is alive, this is the key that indexes it in cluster.workers
worker.process#
- ChildProcess object
All workers are created using child_process.fork()
, the returned object
from this function is stored as .process
. In a worker, the global process
is stored.
See: Child Process module
Note that workers will call process.exit(0)
if the 'disconnect'
event occurs
on process
and .suicide
is not true
. This protects against accidental
disconnection.
worker.suicide#
- Boolean
Set by calling .kill()
or .disconnect()
, until then it is undefined
.
The boolean worker.suicide
lets you distinguish between voluntary and accidental
exit, the master may choose not to respawn a worker based on this value.
cluster.on('exit', function(worker, code, signal) {
if (worker.suicide === true) {
console.log('Oh, it was just suicide\' – no need to worry').
}
});
// kill worker
worker.kill();
worker.send(message, [sendHandle])#
message
ObjectsendHandle
Handle object
This function is equal to the send methods provided by
child_process.fork()
. In the master you should use this function to
send a message to a specific worker.
In a worker you can also use process.send(message)
, it is the same function.
This example will echo back all messages from the master:
if (cluster.isMaster) {
var worker = cluster.fork();
worker.send('hi there');
} else if (cluster.isWorker) {
process.on('message', function(msg) {
process.send(msg);
});
}
worker.kill([signal='SIGTERM'])#
signal
String Name of the kill signal to send to the worker process.
This function will kill the worker. In the master, it does this by disconnecting
the worker.process
, and once disconnected, killing with signal
. In the
worker, it does it by disconnecting the channel, and then exiting with code 0
.
Causes .suicide
to be set.
This method is aliased as worker.destroy()
for backwards compatibility.
Note that in a worker, process.kill()
exists, but it is not this function,
it is kill.
worker.disconnect()#
In a worker, this function will close all servers, wait for the 'close' event on those servers, and then disconnect the IPC channel.
In the master, an internal message is sent to the worker causing it to call
.disconnect()
on itself.
Causes .suicide
to be set.
Note that after a server is closed, it will no longer accept new connections, but connections may be accepted by any other listening worker. Existing connections will be allowed to close as usual. When no more connections exist, see server.close(), the IPC channel to the worker will close allowing it to die gracefully.
The above applies only to server connections, client connections are not automatically closed by workers, and disconnect does not wait for them to close before exiting.
Note that in a worker, process.disconnect
exists, but it is not this function,
it is disconnect.
Because long living server connections may block workers from disconnecting, it
may be useful to send a message, so application specific actions may be taken to
close them. It also may be useful to implement a timeout, killing a worker if
the disconnect
event has not been emitted after some time.
if (cluster.isMaster) {
var worker = cluster.fork();
var timeout;
worker.on('listening', function(address) {
worker.send('shutdown');
worker.disconnect();
timeout = setTimeout(function() {
worker.kill();
}, 2000);
});
worker.on('disconnect', function() {
clearTimeout(timeout);
});
} else if (cluster.isWorker) {
var net = require('net');
var server = net.createServer(function(socket) {
// connections never end
});
server.listen(8000);
process.on('message', function(msg) {
if(msg === 'shutdown') {
// initiate graceful close of any connections to server
}
});
}
Event: 'message'#
message
Object
This event is the same as the one provided by child_process.fork()
.
In a worker you can also use process.on('message')
.
As an example, here is a cluster that keeps count of the number of requests in the master process using the message system:
var cluster = require('cluster');
var http = require('http');
if (cluster.isMaster) {
// Keep track of http requests
var numReqs = 0;
setInterval(function() {
console.log("numReqs =", numReqs);
}, 1000);
// Count requestes
function messageHandler(msg) {
if (msg.cmd && msg.cmd == 'notifyRequest') {
numReqs += 1;
}
}
// Start workers and listen for messages containing notifyRequest
var numCPUs = require('os').cpus().length;
for (var i = 0; i < numCPUs; i++) {
cluster.fork();
}
Object.keys(cluster.workers).forEach(function(id) {
cluster.workers[id].on('message', messageHandler);
});
} else {
// Worker processes have a http server.
http.Server(function(req, res) {
res.writeHead(200);
res.end("hello world\n");
// notify master about the request
process.send({ cmd: 'notifyRequest' });
}).listen(8000);
}
Event: 'online'#
Similar to the cluster.on('online')
event, but specific to this worker.
cluster.fork().on('online', function() {
// Worker is online
});
It is not emitted in the worker.
Event: 'listening'#
address
Object
Similar to the cluster.on('listening')
event, but specific to this worker.
cluster.fork().on('listening', function(address) {
// Worker is listening
});
It is not emitted in the worker.
Event: 'disconnect'#
Similar to the cluster.on('disconnect')
event, but specfic to this worker.
cluster.fork().on('disconnect', function() {
// Worker has disconnected
});
Event: 'exit'#
code
Number the exit code, if it exited normally.signal
String the name of the signal (eg.'SIGHUP'
) that caused the process to be killed.
Similar to the cluster.on('exit')
event, but specific to this worker.
var worker = cluster.fork();
worker.on('exit', function(code, signal) {
if( signal ) {
console.log("worker was killed by signal: "+signal);
} else if( code !== 0 ) {
console.log("worker exited with error code: "+code);
} else {
console.log("worker success!");
}
});
Event: 'error'#
This event is the same as the one provided by child_process.fork()
.
In a worker you can also use process.on('error')
.