From: Eric W. Biederman Here is the architecture independent part of kexec. Signed-off-by: Andrew Morton --- 25-akpm/MAINTAINERS | 11 25-akpm/include/linux/kexec.h | 56 +++ 25-akpm/include/linux/reboot.h | 2 25-akpm/kernel/Makefile | 1 25-akpm/kernel/kexec.c | 640 +++++++++++++++++++++++++++++++++++++++++ 25-akpm/kernel/sys.c | 20 + 25-akpm/kernel/sys_ni.c | 1 7 files changed, 731 insertions(+) diff -puN /dev/null include/linux/kexec.h --- /dev/null 2003-09-15 06:40:47.000000000 -0700 +++ 25-akpm/include/linux/kexec.h 2005-01-13 22:30:12.438069256 -0800 @@ -0,0 +1,56 @@ +#ifndef LINUX_KEXEC_H +#define LINUX_KEXEC_H + +#if CONFIG_KEXEC +#include +#include +#include + +/* + * This structure is used to hold the arguments that are used when loading + * kernel binaries. + */ + +typedef unsigned long kimage_entry_t; +#define IND_DESTINATION 0x1 +#define IND_INDIRECTION 0x2 +#define IND_DONE 0x4 +#define IND_SOURCE 0x8 + +#define KEXEC_SEGMENT_MAX 8 +struct kexec_segment { + void *buf; + size_t bufsz; + void *mem; + size_t memsz; +}; + +struct kimage { + kimage_entry_t head; + kimage_entry_t *entry; + kimage_entry_t *last_entry; + + unsigned long destination; + + unsigned long start; + struct page *control_code_page; + + unsigned long nr_segments; + struct kexec_segment segment[KEXEC_SEGMENT_MAX]; + + struct list_head control_pages; + struct list_head dest_pages; + struct list_head unuseable_pages; +}; + + +/* kexec interface functions */ +extern void machine_kexec(struct kimage *image); +extern int machine_kexec_prepare(struct kimage *image); +extern void machine_kexec_cleanup(struct kimage *image); +extern asmlinkage long sys_kexec(unsigned long entry, long nr_segments, + struct kexec_segment *segments); +extern struct page *kimage_alloc_control_pages(struct kimage *image, unsigned int order); +extern struct kimage *kexec_image; +#endif +#endif /* LINUX_KEXEC_H */ diff -puN include/linux/reboot.h~kexec-kexec-generic include/linux/reboot.h --- 25/include/linux/reboot.h~kexec-kexec-generic 2005-01-13 22:30:12.427070928 -0800 +++ 25-akpm/include/linux/reboot.h 2005-01-13 22:30:12.438069256 -0800 @@ -51,6 +51,8 @@ extern void machine_restart(char *cmd); extern void machine_halt(void); extern void machine_power_off(void); +extern void machine_shutdown(void); + #endif #endif /* _LINUX_REBOOT_H */ diff -puN /dev/null kernel/kexec.c --- /dev/null 2003-09-15 06:40:47.000000000 -0700 +++ 25-akpm/kernel/kexec.c 2005-01-13 22:30:12.441068800 -0800 @@ -0,0 +1,640 @@ +/* + * kexec.c - kexec system call + * Copyright (C) 2002-2004 Eric Biederman + * + * This source code is licensed under the GNU General Public License, + * Version 2. See the file COPYING for more details. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* + * When kexec transitions to the new kernel there is a one-to-one + * mapping between physical and virtual addresses. On processors + * where you can disable the MMU this is trivial, and easy. For + * others it is still a simple predictable page table to setup. + * + * In that environment kexec copies the new kernel to its final + * resting place. This means I can only support memory whose + * physical address can fit in an unsigned long. In particular + * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. + * If the assembly stub has more restrictive requirements + * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be + * defined more restrictively in . + * + * The code for the transition from the current kernel to the + * the new kernel is placed in the control_code_buffer, whose size + * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single + * page of memory is necessary, but some architectures require more. + * Because this memory must be identity mapped in the transition from + * virtual to physical addresses it must live in the range + * 0 - TASK_SIZE, as only the user space mappings are arbitrarily + * modifiable. + * + * The assembly stub in the control code buffer is passed a linked list + * of descriptor pages detailing the source pages of the new kernel, + * and the destination addresses of those source pages. As this data + * structure is not used in the context of the current OS, it must + * be self-contained. + * + * The code has been made to work with highmem pages and will use a + * destination page in its final resting place (if it happens + * to allocate it). The end product of this is that most of the + * physical address space, and most of RAM can be used. + * + * Future directions include: + * - allocating a page table with the control code buffer identity + * mapped, to simplify machine_kexec and make kexec_on_panic more + * reliable. + */ + +/* + * KIMAGE_NO_DEST is an impossible destination address..., for + * allocating pages whose destination address we do not care about. + */ +#define KIMAGE_NO_DEST (-1UL) + +static int kimage_is_destination_range( + struct kimage *image, unsigned long start, unsigned long end); +static struct page *kimage_alloc_page(struct kimage *image, unsigned int gfp_mask, unsigned long dest); + + +static int kimage_alloc(struct kimage **rimage, + unsigned long nr_segments, struct kexec_segment *segments) +{ + int result; + struct kimage *image; + size_t segment_bytes; + unsigned long i; + + /* Allocate a controlling structure */ + result = -ENOMEM; + image = kmalloc(sizeof(*image), GFP_KERNEL); + if (!image) { + goto out; + } + memset(image, 0, sizeof(*image)); + image->head = 0; + image->entry = &image->head; + image->last_entry = &image->head; + + /* Initialize the list of control pages */ + INIT_LIST_HEAD(&image->control_pages); + + /* Initialize the list of destination pages */ + INIT_LIST_HEAD(&image->dest_pages); + + /* Initialize the list of unuseable pages */ + INIT_LIST_HEAD(&image->unuseable_pages); + + /* Read in the segments */ + image->nr_segments = nr_segments; + segment_bytes = nr_segments * sizeof*segments; + result = copy_from_user(image->segment, segments, segment_bytes); + if (result) + goto out; + + /* + * Verify we have good destination addresses. The caller is + * responsible for making certain we don't attempt to load + * the new image into invalid or reserved areas of RAM. This + * just verifies it is an address we can use. + */ + result = -EADDRNOTAVAIL; + for (i = 0; i < nr_segments; i++) { + unsigned long mend; + mend = ((unsigned long)(image->segment[i].mem)) + + image->segment[i].memsz; + if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) + goto out; + } + + /* + * Find a location for the control code buffer, and add it + * the vector of segments so that it's pages will also be + * counted as destination pages. + */ + result = -ENOMEM; + image->control_code_page = kimage_alloc_control_pages(image, + get_order(KEXEC_CONTROL_CODE_SIZE)); + if (!image->control_code_page) { + printk(KERN_ERR "Could not allocate control_code_buffer\n"); + goto out; + } + + result = 0; + out: + if (result == 0) { + *rimage = image; + } else { + kfree(image); + } + return result; +} + +static int kimage_is_destination_range( + struct kimage *image, unsigned long start, unsigned long end) +{ + unsigned long i; + + for (i = 0; i < image->nr_segments; i++) { + unsigned long mstart, mend; + mstart = (unsigned long)image->segment[i].mem; + mend = mstart + image->segment[i].memsz; + if ((end > mstart) && (start < mend)) { + return 1; + } + } + return 0; +} + +static struct page *kimage_alloc_pages(unsigned int gfp_mask, unsigned int order) +{ + struct page *pages; + pages = alloc_pages(gfp_mask, order); + if (pages) { + unsigned int count, i; + pages->mapping = NULL; + pages->private = order; + count = 1 << order; + for(i = 0; i < count; i++) { + SetPageReserved(pages + i); + } + } + return pages; +} + +static void kimage_free_pages(struct page *page) +{ + unsigned int order, count, i; + order = page->private; + count = 1 << order; + for(i = 0; i < count; i++) { + ClearPageReserved(page + i); + } + __free_pages(page, order); +} + +static void kimage_free_page_list(struct list_head *list) +{ + struct list_head *pos, *next; + list_for_each_safe(pos, next, list) { + struct page *page; + + page = list_entry(pos, struct page, lru); + list_del(&page->lru); + + kimage_free_pages(page); + } +} + +struct page *kimage_alloc_control_pages(struct kimage *image, unsigned int order) +{ + /* Control pages are special, they are the intermediaries + * that are needed while we copy the rest of the pages + * to their final resting place. As such they must + * not conflict with either the destination addresses + * or memory the kernel is already using. + * + * The only case where we really need more than one of + * these are for architectures where we cannot disable + * the MMU and must instead generate an identity mapped + * page table for all of the memory. + * + * At worst this runs in O(N) of the image size. + */ + struct list_head extra_pages; + struct page *pages; + unsigned int count; + + count = 1 << order; + INIT_LIST_HEAD(&extra_pages); + + /* Loop while I can allocate a page and the page allocated + * is a destination page. + */ + do { + unsigned long pfn, epfn, addr, eaddr; + pages = kimage_alloc_pages(GFP_KERNEL, order); + if (!pages) + break; + pfn = page_to_pfn(pages); + epfn = pfn + count; + addr = pfn << PAGE_SHIFT; + eaddr = epfn << PAGE_SHIFT; + if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || + kimage_is_destination_range(image, addr, eaddr)) + { + list_add(&pages->lru, &extra_pages); + pages = NULL; + } + } while(!pages); + if (pages) { + /* Remember the allocated page... */ + list_add(&pages->lru, &image->control_pages); + + /* Because the page is already in it's destination + * location we will never allocate another page at + * that address. Therefore kimage_alloc_pages + * will not return it (again) and we don't need + * to give it an entry in image->segment[]. + */ + } + /* Deal with the destination pages I have inadvertently allocated. + * + * Ideally I would convert multi-page allocations into single + * page allocations, and add everyting to image->dest_pages. + * + * For now it is simpler to just free the pages. + */ + kimage_free_page_list(&extra_pages); + return pages; + +} + +static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) +{ + if (*image->entry != 0) { + image->entry++; + } + if (image->entry == image->last_entry) { + kimage_entry_t *ind_page; + struct page *page; + page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); + if (!page) { + return -ENOMEM; + } + ind_page = page_address(page); + *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; + image->entry = ind_page; + image->last_entry = + ind_page + ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); + } + *image->entry = entry; + image->entry++; + *image->entry = 0; + return 0; +} + +static int kimage_set_destination( + struct kimage *image, unsigned long destination) +{ + int result; + + destination &= PAGE_MASK; + result = kimage_add_entry(image, destination | IND_DESTINATION); + if (result == 0) { + image->destination = destination; + } + return result; +} + + +static int kimage_add_page(struct kimage *image, unsigned long page) +{ + int result; + + page &= PAGE_MASK; + result = kimage_add_entry(image, page | IND_SOURCE); + if (result == 0) { + image->destination += PAGE_SIZE; + } + return result; +} + + +static void kimage_free_extra_pages(struct kimage *image) +{ + /* Walk through and free any extra destination pages I may have */ + kimage_free_page_list(&image->dest_pages); + + /* Walk through and free any unuseable pages I have cached */ + kimage_free_page_list(&image->unuseable_pages); + +} +static int kimage_terminate(struct kimage *image) +{ + int result; + + result = kimage_add_entry(image, IND_DONE); + if (result == 0) { + /* Point at the terminating element */ + image->entry--; + kimage_free_extra_pages(image); + } + return result; +} + +#define for_each_kimage_entry(image, ptr, entry) \ + for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ + ptr = (entry & IND_INDIRECTION)? \ + phys_to_virt((entry & PAGE_MASK)): ptr +1) + +static void kimage_free_entry(kimage_entry_t entry) +{ + struct page *page; + + page = pfn_to_page(entry >> PAGE_SHIFT); + kimage_free_pages(page); +} + +static void kimage_free(struct kimage *image) +{ + kimage_entry_t *ptr, entry; + kimage_entry_t ind = 0; + + if (!image) + return; + kimage_free_extra_pages(image); + for_each_kimage_entry(image, ptr, entry) { + if (entry & IND_INDIRECTION) { + /* Free the previous indirection page */ + if (ind & IND_INDIRECTION) { + kimage_free_entry(ind); + } + /* Save this indirection page until we are + * done with it. + */ + ind = entry; + } + else if (entry & IND_SOURCE) { + kimage_free_entry(entry); + } + } + /* Free the final indirection page */ + if (ind & IND_INDIRECTION) { + kimage_free_entry(ind); + } + + /* Handle any machine specific cleanup */ + machine_kexec_cleanup(image); + + /* Free the kexec control pages... */ + kimage_free_page_list(&image->control_pages); + kfree(image); +} + +static kimage_entry_t *kimage_dst_used(struct kimage *image, unsigned long page) +{ + kimage_entry_t *ptr, entry; + unsigned long destination = 0; + + for_each_kimage_entry(image, ptr, entry) { + if (entry & IND_DESTINATION) { + destination = entry & PAGE_MASK; + } + else if (entry & IND_SOURCE) { + if (page == destination) { + return ptr; + } + destination += PAGE_SIZE; + } + } + return 0; +} + +static struct page *kimage_alloc_page(struct kimage *image, unsigned int gfp_mask, unsigned long destination) +{ + /* + * Here we implement safeguards to ensure that a source page + * is not copied to its destination page before the data on + * the destination page is no longer useful. + * + * To do this we maintain the invariant that a source page is + * either its own destination page, or it is not a + * destination page at all. + * + * That is slightly stronger than required, but the proof + * that no problems will not occur is trivial, and the + * implementation is simply to verify. + * + * When allocating all pages normally this algorithm will run + * in O(N) time, but in the worst case it will run in O(N^2) + * time. If the runtime is a problem the data structures can + * be fixed. + */ + struct page *page; + unsigned long addr; + + /* + * Walk through the list of destination pages, and see if I + * have a match. + */ + list_for_each_entry(page, &image->dest_pages, lru) { + addr = page_to_pfn(page) << PAGE_SHIFT; + if (addr == destination) { + list_del(&page->lru); + return page; + } + } + page = NULL; + while (1) { + kimage_entry_t *old; + + /* Allocate a page, if we run out of memory give up */ + page = kimage_alloc_pages(gfp_mask, 0); + if (!page) { + return 0; + } + /* If the page cannot be used file it away */ + if (page_to_pfn(page) > (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { + list_add(&page->lru, &image->unuseable_pages); + continue; + } + addr = page_to_pfn(page) << PAGE_SHIFT; + + /* If it is the destination page we want use it */ + if (addr == destination) + break; + + /* If the page is not a destination page use it */ + if (!kimage_is_destination_range(image, addr, addr + PAGE_SIZE)) + break; + + /* + * I know that the page is someones destination page. + * See if there is already a source page for this + * destination page. And if so swap the source pages. + */ + old = kimage_dst_used(image, addr); + if (old) { + /* If so move it */ + unsigned long old_addr; + struct page *old_page; + + old_addr = *old & PAGE_MASK; + old_page = pfn_to_page(old_addr >> PAGE_SHIFT); + copy_highpage(page, old_page); + *old = addr | (*old & ~PAGE_MASK); + + /* The old page I have found cannot be a + * destination page, so return it. + */ + addr = old_addr; + page = old_page; + break; + } + else { + /* Place the page on the destination list I + * will use it later. + */ + list_add(&page->lru, &image->dest_pages); + } + } + return page; +} + +static int kimage_load_segment(struct kimage *image, + struct kexec_segment *segment) +{ + unsigned long mstart; + int result; + unsigned long offset; + unsigned long offset_end; + unsigned char *buf; + + result = 0; + buf = segment->buf; + mstart = (unsigned long)segment->mem; + + offset_end = segment->memsz; + + result = kimage_set_destination(image, mstart); + if (result < 0) { + goto out; + } + for (offset = 0; offset < segment->memsz; offset += PAGE_SIZE) { + struct page *page; + char *ptr; + size_t size, leader; + page = kimage_alloc_page(image, GFP_HIGHUSER, mstart + offset); + if (page == 0) { + result = -ENOMEM; + goto out; + } + result = kimage_add_page(image, page_to_pfn(page) << PAGE_SHIFT); + if (result < 0) { + goto out; + } + ptr = kmap(page); + if (segment->bufsz < offset) { + /* We are past the end zero the whole page */ + memset(ptr, 0, PAGE_SIZE); + kunmap(page); + continue; + } + size = PAGE_SIZE; + leader = 0; + if ((offset == 0)) { + leader = mstart & ~PAGE_MASK; + } + if (leader) { + /* We are on the first page zero the unused portion */ + memset(ptr, 0, leader); + size -= leader; + ptr += leader; + } + if (size > (segment->bufsz - offset)) { + size = segment->bufsz - offset; + } + if (size < (PAGE_SIZE - leader)) { + /* zero the trailing part of the page */ + memset(ptr + size, 0, (PAGE_SIZE - leader) - size); + } + result = copy_from_user(ptr, buf + offset, size); + kunmap(page); + if (result) { + result = (result < 0) ? result : -EIO; + goto out; + } + } + out: + return result; +} + +/* + * Exec Kernel system call: for obvious reasons only root may call it. + * + * This call breaks up into three pieces. + * - A generic part which loads the new kernel from the current + * address space, and very carefully places the data in the + * allocated pages. + * + * - A generic part that interacts with the kernel and tells all of + * the devices to shut down. Preventing on-going dmas, and placing + * the devices in a consistent state so a later kernel can + * reinitialize them. + * + * - A machine specific part that includes the syscall number + * and the copies the image to it's final destination. And + * jumps into the image at entry. + * + * kexec does not sync, or unmount filesystems so if you need + * that to happen you need to do that yourself. + */ +struct kimage *kexec_image = NULL; + +asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments, + struct kexec_segment *segments, unsigned long flags) +{ + struct kimage *image; + int result; + + /* We only trust the superuser with rebooting the system. */ + if (!capable(CAP_SYS_BOOT)) + return -EPERM; + + /* + * In case we need just a little bit of special behavior for + * reboot on panic. + */ + if (flags != 0) + return -EINVAL; + + if (nr_segments > KEXEC_SEGMENT_MAX) + return -EINVAL; + + image = NULL; + result = 0; + + if (nr_segments > 0) { + unsigned long i; + result = kimage_alloc(&image, nr_segments, segments); + if (result) { + goto out; + } + result = machine_kexec_prepare(image); + if (result) { + goto out; + } + image->start = entry; + for (i = 0; i < nr_segments; i++) { + result = kimage_load_segment(image, &image->segment[i]); + if (result) { + goto out; + } + } + result = kimage_terminate(image); + if (result) { + goto out; + } + } + + image = xchg(&kexec_image, image); + + out: + kimage_free(image); + return result; +} diff -puN kernel/Makefile~kexec-kexec-generic kernel/Makefile --- 25/kernel/Makefile~kexec-kexec-generic 2005-01-13 22:30:12.429070624 -0800 +++ 25-akpm/kernel/Makefile 2005-01-13 22:30:33.276901272 -0800 @@ -18,6 +18,7 @@ obj-$(CONFIG_KALLSYMS) += kallsyms.o obj-$(CONFIG_PM) += power/ obj-$(CONFIG_BSD_PROCESS_ACCT) += acct.o obj-$(CONFIG_LTT) += ltt-core.o +obj-$(CONFIG_KEXEC) += kexec.o obj-$(CONFIG_COMPAT) += compat.o obj-$(CONFIG_IKCONFIG) += configs.o obj-$(CONFIG_IKCONFIG_PROC) += configs.o diff -puN kernel/sys.c~kexec-kexec-generic kernel/sys.c --- 25/kernel/sys.c~kexec-kexec-generic 2005-01-13 22:30:12.431070320 -0800 +++ 25-akpm/kernel/sys.c 2005-01-13 22:30:12.443068496 -0800 @@ -16,6 +16,8 @@ #include #include #include +#include +#include #include #include #include @@ -433,6 +435,24 @@ asmlinkage long sys_reboot(int magic1, i machine_restart(buffer); break; +#ifdef CONFIG_KEXEC + case LINUX_REBOOT_CMD_KEXEC: + { + struct kimage *image; + image = xchg(&kexec_image, 0); + if (!image) { + unlock_kernel(); + return -EINVAL; + } + notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL); + system_state = SYSTEM_BOOTING; + device_shutdown(); + printk(KERN_EMERG "Starting new kernel\n"); + machine_shutdown(); + machine_kexec(image); + break; + } +#endif #ifdef CONFIG_SOFTWARE_SUSPEND case LINUX_REBOOT_CMD_SW_SUSPEND: { diff -puN MAINTAINERS~kexec-kexec-generic MAINTAINERS --- 25/MAINTAINERS~kexec-kexec-generic 2005-01-13 22:30:12.433070016 -0800 +++ 25-akpm/MAINTAINERS 2005-01-13 22:30:12.445068192 -0800 @@ -1311,6 +1311,17 @@ M: rml@novell.com L: linux-kernel@vger.kernel.org S: Maintained +KEXEC +P: Eric Biederman +P: Randy Dunlap +M: ebiederm@xmission.com +M: rddunlap@osdl.org +W: http://www.xmission.com/~ebiederm/files/kexec/ +W: http://developer.osdl.org/rddunlap/kexec/ +L: linux-kernel@vger.kernel.org +L: fastboot@osdl.org +S: Maintained + LANMEDIA WAN CARD DRIVER P: Andrew Stanley-Jones M: asj@lanmedia.com diff -puN kernel/sys_ni.c~kexec-kexec-generic kernel/sys_ni.c --- 25/kernel/sys_ni.c~kexec-kexec-generic 2005-01-13 22:30:12.434069864 -0800 +++ 25-akpm/kernel/sys_ni.c 2005-01-13 22:30:12.445068192 -0800 @@ -18,6 +18,7 @@ cond_syscall(sys_acct) cond_syscall(sys_lookup_dcookie) cond_syscall(sys_swapon) cond_syscall(sys_swapoff) +cond_syscall(sys_kexec_load) cond_syscall(sys_init_module) cond_syscall(sys_delete_module) cond_syscall(sys_socketpair) _