Ruby  1.9.3p448(2013-06-27revision41675)
object.c
Go to the documentation of this file.
00001 /**********************************************************************
00002 
00003   object.c -
00004 
00005   $Author: usa $
00006   created at: Thu Jul 15 12:01:24 JST 1993
00007 
00008   Copyright (C) 1993-2007 Yukihiro Matsumoto
00009   Copyright (C) 2000  Network Applied Communication Laboratory, Inc.
00010   Copyright (C) 2000  Information-technology Promotion Agency, Japan
00011 
00012 **********************************************************************/
00013 
00014 #include "ruby/ruby.h"
00015 #include "ruby/st.h"
00016 #include "ruby/util.h"
00017 #include <stdio.h>
00018 #include <errno.h>
00019 #include <ctype.h>
00020 #include <math.h>
00021 #include <float.h>
00022 #include "constant.h"
00023 #include "internal.h"
00024 
00025 VALUE rb_cBasicObject;
00026 VALUE rb_mKernel;
00027 VALUE rb_cObject;
00028 VALUE rb_cModule;
00029 VALUE rb_cClass;
00030 VALUE rb_cData;
00031 
00032 VALUE rb_cNilClass;
00033 VALUE rb_cTrueClass;
00034 VALUE rb_cFalseClass;
00035 
00036 static ID id_eq, id_eql, id_match, id_inspect;
00037 static ID id_init_copy, id_init_clone, id_init_dup;
00038 
00039 /*
00040  *  call-seq:
00041  *     obj === other   -> true or false
00042  *
00043  *  Case Equality---For class <code>Object</code>, effectively the same
00044  *  as calling  <code>#==</code>, but typically overridden by descendants
00045  *  to provide meaningful semantics in <code>case</code> statements.
00046  */
00047 
00048 VALUE
00049 rb_equal(VALUE obj1, VALUE obj2)
00050 {
00051     VALUE result;
00052 
00053     if (obj1 == obj2) return Qtrue;
00054     result = rb_funcall(obj1, id_eq, 1, obj2);
00055     if (RTEST(result)) return Qtrue;
00056     return Qfalse;
00057 }
00058 
00059 int
00060 rb_eql(VALUE obj1, VALUE obj2)
00061 {
00062     return RTEST(rb_funcall(obj1, id_eql, 1, obj2));
00063 }
00064 
00065 /*
00066  *  call-seq:
00067  *     obj == other        -> true or false
00068  *     obj.equal?(other)   -> true or false
00069  *     obj.eql?(other)     -> true or false
00070  *
00071  *  Equality---At the <code>Object</code> level, <code>==</code> returns
00072  *  <code>true</code> only if <i>obj</i> and <i>other</i> are the
00073  *  same object. Typically, this method is overridden in descendant
00074  *  classes to provide class-specific meaning.
00075  *
00076  *  Unlike <code>==</code>, the <code>equal?</code> method should never be
00077  *  overridden by subclasses: it is used to determine object identity
00078  *  (that is, <code>a.equal?(b)</code> iff <code>a</code> is the same
00079  *  object as <code>b</code>).
00080  *
00081  *  The <code>eql?</code> method returns <code>true</code> if
00082  *  <i>obj</i> and <i>anObject</i> have the same value. Used by
00083  *  <code>Hash</code> to test members for equality.  For objects of
00084  *  class <code>Object</code>, <code>eql?</code> is synonymous with
00085  *  <code>==</code>. Subclasses normally continue this tradition, but
00086  *  there are exceptions. <code>Numeric</code> types, for example,
00087  *  perform type conversion across <code>==</code>, but not across
00088  *  <code>eql?</code>, so:
00089  *
00090  *     1 == 1.0     #=> true
00091  *     1.eql? 1.0   #=> false
00092  */
00093 
00094 VALUE
00095 rb_obj_equal(VALUE obj1, VALUE obj2)
00096 {
00097     if (obj1 == obj2) return Qtrue;
00098     return Qfalse;
00099 }
00100 
00101 /*
00102  * Generates a <code>Fixnum</code> hash value for this object.
00103  * This function must have the property that a.eql?(b) implies
00104  * a.hash <code>==</code> b.hash.
00105  * The hash value is used by class <code>Hash</code>.
00106  * Any hash value that exceeds the capacity of a <code>Fixnum</code> will be
00107  * truncated before being used.
00108  *
00109  *      "waffle".hash #=> -910576647
00110  */
00111 VALUE
00112 rb_obj_hash(VALUE obj)
00113 {
00114     VALUE oid = rb_obj_id(obj);
00115 #if SIZEOF_LONG == SIZEOF_VOIDP
00116     st_index_t index = NUM2LONG(oid);
00117 #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
00118     st_index_t index = NUM2LL(oid);
00119 #else
00120 # error not supported
00121 #endif
00122     st_index_t h = rb_hash_end(rb_hash_start(index));
00123     return LONG2FIX(h);
00124 }
00125 
00126 /*
00127  *  call-seq:
00128  *     !obj    -> true or false
00129  *
00130  *  Boolean negate.
00131  */
00132 
00133 VALUE
00134 rb_obj_not(VALUE obj)
00135 {
00136     return RTEST(obj) ? Qfalse : Qtrue;
00137 }
00138 
00139 /*
00140  *  call-seq:
00141  *     obj != other        -> true or false
00142  *
00143  *  Returns true if two objects are not-equal, otherwise false.
00144  */
00145 
00146 VALUE
00147 rb_obj_not_equal(VALUE obj1, VALUE obj2)
00148 {
00149     VALUE result = rb_funcall(obj1, id_eq, 1, obj2);
00150     return RTEST(result) ? Qfalse : Qtrue;
00151 }
00152 
00153 VALUE
00154 rb_class_real(VALUE cl)
00155 {
00156     if (cl == 0)
00157         return 0;
00158     while ((RBASIC(cl)->flags & FL_SINGLETON) || BUILTIN_TYPE(cl) == T_ICLASS) {
00159         cl = RCLASS_SUPER(cl);
00160     }
00161     return cl;
00162 }
00163 
00164 /*
00165  *  call-seq:
00166  *     obj.class    -> class
00167  *
00168  *  Returns the class of <i>obj</i>. This method must always be
00169  *  called with an explicit receiver, as <code>class</code> is also a
00170  *  reserved word in Ruby.
00171  *
00172  *     1.class      #=> Fixnum
00173  *     self.class   #=> Object
00174  */
00175 
00176 VALUE
00177 rb_obj_class(VALUE obj)
00178 {
00179     return rb_class_real(CLASS_OF(obj));
00180 }
00181 
00182 /*
00183  *  call-seq:
00184  *     obj.singleton_class    -> class
00185  *
00186  *  Returns the singleton class of <i>obj</i>.  This method creates
00187  *  a new singleton class if <i>obj</i> does not have it.
00188  *
00189  *  If <i>obj</i> is <code>nil</code>, <code>true</code>, or
00190  *  <code>false</code>, it returns NilClass, TrueClass, or FalseClass,
00191  *  respectively.
00192  *  If <i>obj</i> is a Fixnum or a Symbol, it raises a TypeError.
00193  *
00194  *     Object.new.singleton_class  #=> #<Class:#<Object:0xb7ce1e24>>
00195  *     String.singleton_class      #=> #<Class:String>
00196  *     nil.singleton_class         #=> NilClass
00197  */
00198 
00199 static VALUE
00200 rb_obj_singleton_class(VALUE obj)
00201 {
00202     return rb_singleton_class(obj);
00203 }
00204 
00205 static void
00206 init_copy(VALUE dest, VALUE obj)
00207 {
00208     if (OBJ_FROZEN(dest)) {
00209         rb_raise(rb_eTypeError, "[bug] frozen object (%s) allocated", rb_obj_classname(dest));
00210     }
00211     RBASIC(dest)->flags &= ~(T_MASK|FL_EXIVAR);
00212     RBASIC(dest)->flags |= RBASIC(obj)->flags & (T_MASK|FL_EXIVAR|FL_TAINT|FL_UNTRUSTED);
00213     rb_copy_generic_ivar(dest, obj);
00214     rb_gc_copy_finalizer(dest, obj);
00215     switch (TYPE(obj)) {
00216       case T_OBJECT:
00217         if (!(RBASIC(dest)->flags & ROBJECT_EMBED) && ROBJECT_IVPTR(dest)) {
00218             xfree(ROBJECT_IVPTR(dest));
00219             ROBJECT(dest)->as.heap.ivptr = 0;
00220             ROBJECT(dest)->as.heap.numiv = 0;
00221             ROBJECT(dest)->as.heap.iv_index_tbl = 0;
00222         }
00223         if (RBASIC(obj)->flags & ROBJECT_EMBED) {
00224             MEMCPY(ROBJECT(dest)->as.ary, ROBJECT(obj)->as.ary, VALUE, ROBJECT_EMBED_LEN_MAX);
00225             RBASIC(dest)->flags |= ROBJECT_EMBED;
00226         }
00227         else {
00228             long len = ROBJECT(obj)->as.heap.numiv;
00229             VALUE *ptr = ALLOC_N(VALUE, len);
00230             MEMCPY(ptr, ROBJECT(obj)->as.heap.ivptr, VALUE, len);
00231             ROBJECT(dest)->as.heap.ivptr = ptr;
00232             ROBJECT(dest)->as.heap.numiv = len;
00233             ROBJECT(dest)->as.heap.iv_index_tbl = ROBJECT(obj)->as.heap.iv_index_tbl;
00234             RBASIC(dest)->flags &= ~ROBJECT_EMBED;
00235         }
00236         break;
00237       case T_CLASS:
00238       case T_MODULE:
00239         if (RCLASS_IV_TBL(dest)) {
00240             st_free_table(RCLASS_IV_TBL(dest));
00241             RCLASS_IV_TBL(dest) = 0;
00242         }
00243         if (RCLASS_CONST_TBL(dest)) {
00244             rb_free_const_table(RCLASS_CONST_TBL(dest));
00245             RCLASS_CONST_TBL(dest) = 0;
00246         }
00247         if (RCLASS_IV_TBL(obj)) {
00248             RCLASS_IV_TBL(dest) = st_copy(RCLASS_IV_TBL(obj));
00249         }
00250         break;
00251     }
00252 }
00253 
00254 /*
00255  *  call-seq:
00256  *     obj.clone -> an_object
00257  *
00258  *  Produces a shallow copy of <i>obj</i>---the instance variables of
00259  *  <i>obj</i> are copied, but not the objects they reference. Copies
00260  *  the frozen and tainted state of <i>obj</i>. See also the discussion
00261  *  under <code>Object#dup</code>.
00262  *
00263  *     class Klass
00264  *        attr_accessor :str
00265  *     end
00266  *     s1 = Klass.new      #=> #<Klass:0x401b3a38>
00267  *     s1.str = "Hello"    #=> "Hello"
00268  *     s2 = s1.clone       #=> #<Klass:0x401b3998 @str="Hello">
00269  *     s2.str[1,4] = "i"   #=> "i"
00270  *     s1.inspect          #=> "#<Klass:0x401b3a38 @str=\"Hi\">"
00271  *     s2.inspect          #=> "#<Klass:0x401b3998 @str=\"Hi\">"
00272  *
00273  *  This method may have class-specific behavior.  If so, that
00274  *  behavior will be documented under the #+initialize_copy+ method of
00275  *  the class.
00276  */
00277 
00278 VALUE
00279 rb_obj_clone(VALUE obj)
00280 {
00281     VALUE clone;
00282 
00283     if (rb_special_const_p(obj)) {
00284         rb_raise(rb_eTypeError, "can't clone %s", rb_obj_classname(obj));
00285     }
00286     clone = rb_obj_alloc(rb_obj_class(obj));
00287     RBASIC(clone)->klass = rb_singleton_class_clone(obj);
00288     RBASIC(clone)->flags = (RBASIC(obj)->flags | FL_TEST(clone, FL_TAINT) | FL_TEST(clone, FL_UNTRUSTED)) & ~(FL_FREEZE|FL_FINALIZE|FL_MARK);
00289     init_copy(clone, obj);
00290     rb_funcall(clone, id_init_clone, 1, obj);
00291     RBASIC(clone)->flags |= RBASIC(obj)->flags & FL_FREEZE;
00292 
00293     return clone;
00294 }
00295 
00296 /*
00297  *  call-seq:
00298  *     obj.dup -> an_object
00299  *
00300  *  Produces a shallow copy of <i>obj</i>---the instance variables of
00301  *  <i>obj</i> are copied, but not the objects they reference.
00302  *  <code>dup</code> copies the tainted state of <i>obj</i>. See also
00303  *  the discussion under <code>Object#clone</code>. In general,
00304  *  <code>clone</code> and <code>dup</code> may have different semantics
00305  *  in descendant classes. While <code>clone</code> is used to duplicate
00306  *  an object, including its internal state, <code>dup</code> typically
00307  *  uses the class of the descendant object to create the new instance.
00308  *
00309  *  This method may have class-specific behavior.  If so, that
00310  *  behavior will be documented under the #+initialize_copy+ method of
00311  *  the class.
00312  */
00313 
00314 VALUE
00315 rb_obj_dup(VALUE obj)
00316 {
00317     VALUE dup;
00318 
00319     if (rb_special_const_p(obj)) {
00320         rb_raise(rb_eTypeError, "can't dup %s", rb_obj_classname(obj));
00321     }
00322     dup = rb_obj_alloc(rb_obj_class(obj));
00323     init_copy(dup, obj);
00324     rb_funcall(dup, id_init_dup, 1, obj);
00325 
00326     return dup;
00327 }
00328 
00329 /* :nodoc: */
00330 VALUE
00331 rb_obj_init_copy(VALUE obj, VALUE orig)
00332 {
00333     if (obj == orig) return obj;
00334     rb_check_frozen(obj);
00335     if (TYPE(obj) != TYPE(orig) || rb_obj_class(obj) != rb_obj_class(orig)) {
00336         rb_raise(rb_eTypeError, "initialize_copy should take same class object");
00337     }
00338     return obj;
00339 }
00340 
00341 /* :nodoc: */
00342 VALUE
00343 rb_obj_init_dup_clone(VALUE obj, VALUE orig)
00344 {
00345     rb_funcall(obj, id_init_copy, 1, orig);
00346     return obj;
00347 }
00348 
00349 /*
00350  *  call-seq:
00351  *     obj.to_s    -> string
00352  *
00353  *  Returns a string representing <i>obj</i>. The default
00354  *  <code>to_s</code> prints the object's class and an encoding of the
00355  *  object id. As a special case, the top-level object that is the
00356  *  initial execution context of Ruby programs returns ``main.''
00357  */
00358 
00359 VALUE
00360 rb_any_to_s(VALUE obj)
00361 {
00362     const char *cname = rb_obj_classname(obj);
00363     VALUE str;
00364 
00365     str = rb_sprintf("#<%s:%p>", cname, (void*)obj);
00366     OBJ_INFECT(str, obj);
00367 
00368     return str;
00369 }
00370 
00371 VALUE
00372 rb_inspect(VALUE obj)
00373 {
00374     return rb_obj_as_string(rb_funcall(obj, id_inspect, 0, 0));
00375 }
00376 
00377 static int
00378 inspect_i(ID id, VALUE value, VALUE str)
00379 {
00380     VALUE str2;
00381     const char *ivname;
00382 
00383     /* need not to show internal data */
00384     if (CLASS_OF(value) == 0) return ST_CONTINUE;
00385     if (!rb_is_instance_id(id)) return ST_CONTINUE;
00386     if (RSTRING_PTR(str)[0] == '-') { /* first element */
00387         RSTRING_PTR(str)[0] = '#';
00388         rb_str_cat2(str, " ");
00389     }
00390     else {
00391         rb_str_cat2(str, ", ");
00392     }
00393     ivname = rb_id2name(id);
00394     rb_str_cat2(str, ivname);
00395     rb_str_cat2(str, "=");
00396     str2 = rb_inspect(value);
00397     rb_str_append(str, str2);
00398     OBJ_INFECT(str, str2);
00399 
00400     return ST_CONTINUE;
00401 }
00402 
00403 static VALUE
00404 inspect_obj(VALUE obj, VALUE str, int recur)
00405 {
00406     if (recur) {
00407         rb_str_cat2(str, " ...");
00408     }
00409     else {
00410         rb_ivar_foreach(obj, inspect_i, str);
00411     }
00412     rb_str_cat2(str, ">");
00413     RSTRING_PTR(str)[0] = '#';
00414     OBJ_INFECT(str, obj);
00415 
00416     return str;
00417 }
00418 
00419 /*
00420  *  call-seq:
00421  *     obj.inspect   -> string
00422  *
00423  *  Returns a string containing a human-readable representation of
00424  *  <i>obj</i>. If not overridden and no instance variables, uses the
00425  *  <code>to_s</code> method to generate the string.
00426  *  <i>obj</i>.  If not overridden, uses the <code>to_s</code> method to
00427  *  generate the string.
00428  *
00429  *     [ 1, 2, 3..4, 'five' ].inspect   #=> "[1, 2, 3..4, \"five\"]"
00430  *     Time.new.inspect                 #=> "2008-03-08 19:43:39 +0900"
00431  */
00432 
00433 static VALUE
00434 rb_obj_inspect(VALUE obj)
00435 {
00436     if (TYPE(obj) == T_OBJECT && rb_obj_basic_to_s_p(obj)) {
00437         int has_ivar = 0;
00438         VALUE *ptr = ROBJECT_IVPTR(obj);
00439         long len = ROBJECT_NUMIV(obj);
00440         long i;
00441 
00442         for (i = 0; i < len; i++) {
00443             if (ptr[i] != Qundef) {
00444                 has_ivar = 1;
00445                 break;
00446             }
00447         }
00448 
00449         if (has_ivar) {
00450             VALUE str;
00451             const char *c = rb_obj_classname(obj);
00452 
00453             str = rb_sprintf("-<%s:%p", c, (void*)obj);
00454             return rb_exec_recursive(inspect_obj, obj, str);
00455         }
00456         return rb_any_to_s(obj);
00457     }
00458     return rb_funcall(obj, rb_intern("to_s"), 0, 0);
00459 }
00460 
00461 
00462 /*
00463  *  call-seq:
00464  *     obj.instance_of?(class)    -> true or false
00465  *
00466  *  Returns <code>true</code> if <i>obj</i> is an instance of the given
00467  *  class. See also <code>Object#kind_of?</code>.
00468  *
00469  *     class A;     end
00470  *     class B < A; end
00471  *     class C < B; end
00472  *
00473  *     b = B.new
00474  *     b.instance_of? A   #=> false
00475  *     b.instance_of? B   #=> true
00476  *     b.instance_of? C   #=> false
00477  */
00478 
00479 VALUE
00480 rb_obj_is_instance_of(VALUE obj, VALUE c)
00481 {
00482     switch (TYPE(c)) {
00483       case T_MODULE:
00484       case T_CLASS:
00485       case T_ICLASS:
00486         break;
00487       default:
00488         rb_raise(rb_eTypeError, "class or module required");
00489     }
00490 
00491     if (rb_obj_class(obj) == c) return Qtrue;
00492     return Qfalse;
00493 }
00494 
00495 
00496 /*
00497  *  call-seq:
00498  *     obj.is_a?(class)       -> true or false
00499  *     obj.kind_of?(class)    -> true or false
00500  *
00501  *  Returns <code>true</code> if <i>class</i> is the class of
00502  *  <i>obj</i>, or if <i>class</i> is one of the superclasses of
00503  *  <i>obj</i> or modules included in <i>obj</i>.
00504  *
00505  *     module M;    end
00506  *     class A
00507  *       include M
00508  *     end
00509  *     class B < A; end
00510  *     class C < B; end
00511  *
00512  *     b = B.new
00513  *     b.is_a? A          #=> true
00514  *     b.is_a? B          #=> true
00515  *     b.is_a? C          #=> false
00516  *     b.is_a? M          #=> true
00517  *
00518  *     b.kind_of? A       #=> true
00519  *     b.kind_of? B       #=> true
00520  *     b.kind_of? C       #=> false
00521  *     b.kind_of? M       #=> true
00522  */
00523 
00524 VALUE
00525 rb_obj_is_kind_of(VALUE obj, VALUE c)
00526 {
00527     VALUE cl = CLASS_OF(obj);
00528 
00529     switch (TYPE(c)) {
00530       case T_MODULE:
00531       case T_CLASS:
00532       case T_ICLASS:
00533         break;
00534 
00535       default:
00536         rb_raise(rb_eTypeError, "class or module required");
00537     }
00538 
00539     while (cl) {
00540         if (cl == c || RCLASS_M_TBL(cl) == RCLASS_M_TBL(c))
00541             return Qtrue;
00542         cl = RCLASS_SUPER(cl);
00543     }
00544     return Qfalse;
00545 }
00546 
00547 
00548 /*
00549  *  call-seq:
00550  *     obj.tap{|x|...}    -> obj
00551  *
00552  *  Yields <code>x</code> to the block, and then returns <code>x</code>.
00553  *  The primary purpose of this method is to "tap into" a method chain,
00554  *  in order to perform operations on intermediate results within the chain.
00555  *
00556  *      (1..10)                .tap {|x| puts "original: #{x.inspect}"}
00557  *        .to_a                .tap {|x| puts "array: #{x.inspect}"}
00558  *        .select {|x| x%2==0} .tap {|x| puts "evens: #{x.inspect}"}
00559  *        .map { |x| x*x }     .tap {|x| puts "squares: #{x.inspect}"}
00560  *
00561  */
00562 
00563 VALUE
00564 rb_obj_tap(VALUE obj)
00565 {
00566     rb_yield(obj);
00567     return obj;
00568 }
00569 
00570 
00571 /*
00572  * Document-method: inherited
00573  *
00574  * call-seq:
00575  *    inherited(subclass)
00576  *
00577  * Callback invoked whenever a subclass of the current class is created.
00578  *
00579  * Example:
00580  *
00581  *    class Foo
00582  *       def self.inherited(subclass)
00583  *          puts "New subclass: #{subclass}"
00584  *       end
00585  *    end
00586  *
00587  *    class Bar < Foo
00588  *    end
00589  *
00590  *    class Baz < Bar
00591  *    end
00592  *
00593  * produces:
00594  *
00595  *    New subclass: Bar
00596  *    New subclass: Baz
00597  */
00598 
00599 /* Document-method: method_added
00600  *
00601  * call-seq:
00602  *   method_added(method_name)
00603  *
00604  * Invoked as a callback whenever an instance method is added to the
00605  * receiver.
00606  *
00607  *   module Chatty
00608  *     def self.method_added(method_name)
00609  *       puts "Adding #{method_name.inspect}"
00610  *     end
00611  *     def self.some_class_method() end
00612  *     def some_instance_method() end
00613  *   end
00614  *
00615  * produces:
00616  *
00617  *   Adding :some_instance_method
00618  *
00619  */
00620 
00621 /* Document-method: method_removed
00622  *
00623  * call-seq:
00624  *   method_removed(method_name)
00625  *
00626  * Invoked as a callback whenever an instance method is removed from the
00627  * receiver.
00628  *
00629  *   module Chatty
00630  *     def self.method_removed(method_name)
00631  *       puts "Removing #{method_name.inspect}"
00632  *     end
00633  *     def self.some_class_method() end
00634  *     def some_instance_method() end
00635  *     class << self
00636  *       remove_method :some_class_method
00637  *     end
00638  *     remove_method :some_instance_method
00639  *   end
00640  *
00641  * produces:
00642  *
00643  *   Removing :some_instance_method
00644  *
00645  */
00646 
00647 /*
00648  * Document-method: singleton_method_added
00649  *
00650  *  call-seq:
00651  *     singleton_method_added(symbol)
00652  *
00653  *  Invoked as a callback whenever a singleton method is added to the
00654  *  receiver.
00655  *
00656  *     module Chatty
00657  *       def Chatty.singleton_method_added(id)
00658  *         puts "Adding #{id.id2name}"
00659  *       end
00660  *       def self.one()     end
00661  *       def two()          end
00662  *       def Chatty.three() end
00663  *     end
00664  *
00665  *  <em>produces:</em>
00666  *
00667  *     Adding singleton_method_added
00668  *     Adding one
00669  *     Adding three
00670  *
00671  */
00672 
00673 /*
00674  * Document-method: singleton_method_removed
00675  *
00676  *  call-seq:
00677  *     singleton_method_removed(symbol)
00678  *
00679  *  Invoked as a callback whenever a singleton method is removed from
00680  *  the receiver.
00681  *
00682  *     module Chatty
00683  *       def Chatty.singleton_method_removed(id)
00684  *         puts "Removing #{id.id2name}"
00685  *       end
00686  *       def self.one()     end
00687  *       def two()          end
00688  *       def Chatty.three() end
00689  *       class << self
00690  *         remove_method :three
00691  *         remove_method :one
00692  *       end
00693  *     end
00694  *
00695  *  <em>produces:</em>
00696  *
00697  *     Removing three
00698  *     Removing one
00699  */
00700 
00701 /*
00702  * Document-method: singleton_method_undefined
00703  *
00704  *  call-seq:
00705  *     singleton_method_undefined(symbol)
00706  *
00707  *  Invoked as a callback whenever a singleton method is undefined in
00708  *  the receiver.
00709  *
00710  *     module Chatty
00711  *       def Chatty.singleton_method_undefined(id)
00712  *         puts "Undefining #{id.id2name}"
00713  *       end
00714  *       def Chatty.one()   end
00715  *       class << self
00716  *          undef_method(:one)
00717  *       end
00718  *     end
00719  *
00720  *  <em>produces:</em>
00721  *
00722  *     Undefining one
00723  */
00724 
00725 
00726 /*
00727  * Document-method: included
00728  *
00729  * call-seq:
00730  *    included( othermod )
00731  *
00732  * Callback invoked whenever the receiver is included in another
00733  * module or class. This should be used in preference to
00734  * <tt>Module.append_features</tt> if your code wants to perform some
00735  * action when a module is included in another.
00736  *
00737  *        module A
00738  *          def A.included(mod)
00739  *            puts "#{self} included in #{mod}"
00740  *          end
00741  *        end
00742  *        module Enumerable
00743  *          include A
00744  *        end
00745  */
00746 
00747 /*
00748  * Document-method: initialize
00749  *
00750  * call-seq:
00751  *    BasicObject.new
00752  *
00753  * Returns a new BasicObject.
00754  */
00755 
00756 /*
00757  * Not documented
00758  */
00759 
00760 static VALUE
00761 rb_obj_dummy(void)
00762 {
00763     return Qnil;
00764 }
00765 
00766 /*
00767  *  call-seq:
00768  *     obj.tainted?    -> true or false
00769  *
00770  *  Returns <code>true</code> if the object is tainted.
00771  */
00772 
00773 VALUE
00774 rb_obj_tainted(VALUE obj)
00775 {
00776     if (OBJ_TAINTED(obj))
00777         return Qtrue;
00778     return Qfalse;
00779 }
00780 
00781 /*
00782  *  call-seq:
00783  *     obj.taint -> obj
00784  *
00785  *  Marks <i>obj</i> as tainted---if the <code>$SAFE</code> level is
00786  *  set appropriately, many method calls which might alter the running
00787  *  programs environment will refuse to accept tainted strings.
00788  */
00789 
00790 VALUE
00791 rb_obj_taint(VALUE obj)
00792 {
00793     rb_secure(4);
00794     if (!OBJ_TAINTED(obj)) {
00795         rb_check_frozen(obj);
00796         OBJ_TAINT(obj);
00797     }
00798     return obj;
00799 }
00800 
00801 
00802 /*
00803  *  call-seq:
00804  *     obj.untaint    -> obj
00805  *
00806  *  Removes the taint from <i>obj</i>.
00807  */
00808 
00809 VALUE
00810 rb_obj_untaint(VALUE obj)
00811 {
00812     rb_secure(3);
00813     if (OBJ_TAINTED(obj)) {
00814         rb_check_frozen(obj);
00815         FL_UNSET(obj, FL_TAINT);
00816     }
00817     return obj;
00818 }
00819 
00820 /*
00821  *  call-seq:
00822  *     obj.untrusted?    -> true or false
00823  *
00824  *  Returns <code>true</code> if the object is untrusted.
00825  */
00826 
00827 VALUE
00828 rb_obj_untrusted(VALUE obj)
00829 {
00830     if (OBJ_UNTRUSTED(obj))
00831         return Qtrue;
00832     return Qfalse;
00833 }
00834 
00835 /*
00836  *  call-seq:
00837  *     obj.untrust -> obj
00838  *
00839  *  Marks <i>obj</i> as untrusted.
00840  */
00841 
00842 VALUE
00843 rb_obj_untrust(VALUE obj)
00844 {
00845     rb_secure(4);
00846     if (!OBJ_UNTRUSTED(obj)) {
00847         rb_check_frozen(obj);
00848         OBJ_UNTRUST(obj);
00849     }
00850     return obj;
00851 }
00852 
00853 
00854 /*
00855  *  call-seq:
00856  *     obj.trust    -> obj
00857  *
00858  *  Removes the untrusted mark from <i>obj</i>.
00859  */
00860 
00861 VALUE
00862 rb_obj_trust(VALUE obj)
00863 {
00864     rb_secure(3);
00865     if (OBJ_UNTRUSTED(obj)) {
00866         rb_check_frozen(obj);
00867         FL_UNSET(obj, FL_UNTRUSTED);
00868     }
00869     return obj;
00870 }
00871 
00872 void
00873 rb_obj_infect(VALUE obj1, VALUE obj2)
00874 {
00875     OBJ_INFECT(obj1, obj2);
00876 }
00877 
00878 static st_table *immediate_frozen_tbl = 0;
00879 
00880 /*
00881  *  call-seq:
00882  *     obj.freeze    -> obj
00883  *
00884  *  Prevents further modifications to <i>obj</i>. A
00885  *  <code>RuntimeError</code> will be raised if modification is attempted.
00886  *  There is no way to unfreeze a frozen object. See also
00887  *  <code>Object#frozen?</code>.
00888  *
00889  *  This method returns self.
00890  *
00891  *     a = [ "a", "b", "c" ]
00892  *     a.freeze
00893  *     a << "z"
00894  *
00895  *  <em>produces:</em>
00896  *
00897  *     prog.rb:3:in `<<': can't modify frozen array (RuntimeError)
00898  *      from prog.rb:3
00899  */
00900 
00901 VALUE
00902 rb_obj_freeze(VALUE obj)
00903 {
00904     if (!OBJ_FROZEN(obj)) {
00905         if (rb_safe_level() >= 4 && !OBJ_UNTRUSTED(obj)) {
00906             rb_raise(rb_eSecurityError, "Insecure: can't freeze object");
00907         }
00908         OBJ_FREEZE(obj);
00909         if (SPECIAL_CONST_P(obj)) {
00910             if (!immediate_frozen_tbl) {
00911                 immediate_frozen_tbl = st_init_numtable();
00912             }
00913             st_insert(immediate_frozen_tbl, obj, (st_data_t)Qtrue);
00914         }
00915     }
00916     return obj;
00917 }
00918 
00919 /*
00920  *  call-seq:
00921  *     obj.frozen?    -> true or false
00922  *
00923  *  Returns the freeze status of <i>obj</i>.
00924  *
00925  *     a = [ "a", "b", "c" ]
00926  *     a.freeze    #=> ["a", "b", "c"]
00927  *     a.frozen?   #=> true
00928  */
00929 
00930 VALUE
00931 rb_obj_frozen_p(VALUE obj)
00932 {
00933     if (OBJ_FROZEN(obj)) return Qtrue;
00934     if (SPECIAL_CONST_P(obj)) {
00935         if (!immediate_frozen_tbl) return Qfalse;
00936         if (st_lookup(immediate_frozen_tbl, obj, 0)) return Qtrue;
00937     }
00938     return Qfalse;
00939 }
00940 
00941 
00942 /*
00943  * Document-class: NilClass
00944  *
00945  *  The class of the singleton object <code>nil</code>.
00946  */
00947 
00948 /*
00949  *  call-seq:
00950  *     nil.to_i -> 0
00951  *
00952  *  Always returns zero.
00953  *
00954  *     nil.to_i   #=> 0
00955  */
00956 
00957 
00958 static VALUE
00959 nil_to_i(VALUE obj)
00960 {
00961     return INT2FIX(0);
00962 }
00963 
00964 /*
00965  *  call-seq:
00966  *     nil.to_f    -> 0.0
00967  *
00968  *  Always returns zero.
00969  *
00970  *     nil.to_f   #=> 0.0
00971  */
00972 
00973 static VALUE
00974 nil_to_f(VALUE obj)
00975 {
00976     return DBL2NUM(0.0);
00977 }
00978 
00979 /*
00980  *  call-seq:
00981  *     nil.to_s    -> ""
00982  *
00983  *  Always returns the empty string.
00984  */
00985 
00986 static VALUE
00987 nil_to_s(VALUE obj)
00988 {
00989     return rb_usascii_str_new(0, 0);
00990 }
00991 
00992 /*
00993  * Document-method: to_a
00994  *
00995  *  call-seq:
00996  *     nil.to_a    -> []
00997  *
00998  *  Always returns an empty array.
00999  *
01000  *     nil.to_a   #=> []
01001  */
01002 
01003 static VALUE
01004 nil_to_a(VALUE obj)
01005 {
01006     return rb_ary_new2(0);
01007 }
01008 
01009 /*
01010  *  call-seq:
01011  *    nil.inspect  -> "nil"
01012  *
01013  *  Always returns the string "nil".
01014  */
01015 
01016 static VALUE
01017 nil_inspect(VALUE obj)
01018 {
01019     return rb_usascii_str_new2("nil");
01020 }
01021 
01022 /***********************************************************************
01023  *  Document-class: TrueClass
01024  *
01025  *  The global value <code>true</code> is the only instance of class
01026  *  <code>TrueClass</code> and represents a logically true value in
01027  *  boolean expressions. The class provides operators allowing
01028  *  <code>true</code> to be used in logical expressions.
01029  */
01030 
01031 
01032 /*
01033  * call-seq:
01034  *   true.to_s   ->  "true"
01035  *
01036  * The string representation of <code>true</code> is "true".
01037  */
01038 
01039 static VALUE
01040 true_to_s(VALUE obj)
01041 {
01042     return rb_usascii_str_new2("true");
01043 }
01044 
01045 
01046 /*
01047  *  call-seq:
01048  *     true & obj    -> true or false
01049  *
01050  *  And---Returns <code>false</code> if <i>obj</i> is
01051  *  <code>nil</code> or <code>false</code>, <code>true</code> otherwise.
01052  */
01053 
01054 static VALUE
01055 true_and(VALUE obj, VALUE obj2)
01056 {
01057     return RTEST(obj2)?Qtrue:Qfalse;
01058 }
01059 
01060 /*
01061  *  call-seq:
01062  *     true | obj   -> true
01063  *
01064  *  Or---Returns <code>true</code>. As <i>anObject</i> is an argument to
01065  *  a method call, it is always evaluated; there is no short-circuit
01066  *  evaluation in this case.
01067  *
01068  *     true |  puts("or")
01069  *     true || puts("logical or")
01070  *
01071  *  <em>produces:</em>
01072  *
01073  *     or
01074  */
01075 
01076 static VALUE
01077 true_or(VALUE obj, VALUE obj2)
01078 {
01079     return Qtrue;
01080 }
01081 
01082 
01083 /*
01084  *  call-seq:
01085  *     true ^ obj   -> !obj
01086  *
01087  *  Exclusive Or---Returns <code>true</code> if <i>obj</i> is
01088  *  <code>nil</code> or <code>false</code>, <code>false</code>
01089  *  otherwise.
01090  */
01091 
01092 static VALUE
01093 true_xor(VALUE obj, VALUE obj2)
01094 {
01095     return RTEST(obj2)?Qfalse:Qtrue;
01096 }
01097 
01098 
01099 /*
01100  *  Document-class: FalseClass
01101  *
01102  *  The global value <code>false</code> is the only instance of class
01103  *  <code>FalseClass</code> and represents a logically false value in
01104  *  boolean expressions. The class provides operators allowing
01105  *  <code>false</code> to participate correctly in logical expressions.
01106  *
01107  */
01108 
01109 /*
01110  * call-seq:
01111  *   false.to_s   ->  "false"
01112  *
01113  * 'nuf said...
01114  */
01115 
01116 static VALUE
01117 false_to_s(VALUE obj)
01118 {
01119     return rb_usascii_str_new2("false");
01120 }
01121 
01122 /*
01123  *  call-seq:
01124  *     false & obj   -> false
01125  *     nil & obj     -> false
01126  *
01127  *  And---Returns <code>false</code>. <i>obj</i> is always
01128  *  evaluated as it is the argument to a method call---there is no
01129  *  short-circuit evaluation in this case.
01130  */
01131 
01132 static VALUE
01133 false_and(VALUE obj, VALUE obj2)
01134 {
01135     return Qfalse;
01136 }
01137 
01138 
01139 /*
01140  *  call-seq:
01141  *     false | obj   ->   true or false
01142  *     nil   | obj   ->   true or false
01143  *
01144  *  Or---Returns <code>false</code> if <i>obj</i> is
01145  *  <code>nil</code> or <code>false</code>; <code>true</code> otherwise.
01146  */
01147 
01148 static VALUE
01149 false_or(VALUE obj, VALUE obj2)
01150 {
01151     return RTEST(obj2)?Qtrue:Qfalse;
01152 }
01153 
01154 
01155 
01156 /*
01157  *  call-seq:
01158  *     false ^ obj    -> true or false
01159  *     nil   ^ obj    -> true or false
01160  *
01161  *  Exclusive Or---If <i>obj</i> is <code>nil</code> or
01162  *  <code>false</code>, returns <code>false</code>; otherwise, returns
01163  *  <code>true</code>.
01164  *
01165  */
01166 
01167 static VALUE
01168 false_xor(VALUE obj, VALUE obj2)
01169 {
01170     return RTEST(obj2)?Qtrue:Qfalse;
01171 }
01172 
01173 /*
01174  * call_seq:
01175  *   nil.nil?               -> true
01176  *
01177  * Only the object <i>nil</i> responds <code>true</code> to <code>nil?</code>.
01178  */
01179 
01180 static VALUE
01181 rb_true(VALUE obj)
01182 {
01183     return Qtrue;
01184 }
01185 
01186 /*
01187  * call_seq:
01188  *   nil.nil?               -> true
01189  *   <anything_else>.nil?   -> false
01190  *
01191  * Only the object <i>nil</i> responds <code>true</code> to <code>nil?</code>.
01192  */
01193 
01194 
01195 static VALUE
01196 rb_false(VALUE obj)
01197 {
01198     return Qfalse;
01199 }
01200 
01201 
01202 /*
01203  *  call-seq:
01204  *     obj =~ other  -> nil
01205  *
01206  *  Pattern Match---Overridden by descendants (notably
01207  *  <code>Regexp</code> and <code>String</code>) to provide meaningful
01208  *  pattern-match semantics.
01209  */
01210 
01211 static VALUE
01212 rb_obj_match(VALUE obj1, VALUE obj2)
01213 {
01214     return Qnil;
01215 }
01216 
01217 /*
01218  *  call-seq:
01219  *     obj !~ other  -> true or false
01220  *
01221  *  Returns true if two objects do not match (using the <i>=~</i>
01222  *  method), otherwise false.
01223  */
01224 
01225 static VALUE
01226 rb_obj_not_match(VALUE obj1, VALUE obj2)
01227 {
01228     VALUE result = rb_funcall(obj1, id_match, 1, obj2);
01229     return RTEST(result) ? Qfalse : Qtrue;
01230 }
01231 
01232 
01233 /*
01234  *  call-seq:
01235  *     obj <=> other -> 0 or nil
01236  *
01237  *  Returns 0 if obj === other, otherwise nil.
01238  */
01239 static VALUE
01240 rb_obj_cmp(VALUE obj1, VALUE obj2)
01241 {
01242     if (obj1 == obj2 || rb_equal(obj1, obj2))
01243         return INT2FIX(0);
01244     return Qnil;
01245 }
01246 
01247 /***********************************************************************
01248  *
01249  * Document-class: Module
01250  *
01251  *  A <code>Module</code> is a collection of methods and constants. The
01252  *  methods in a module may be instance methods or module methods.
01253  *  Instance methods appear as methods in a class when the module is
01254  *  included, module methods do not. Conversely, module methods may be
01255  *  called without creating an encapsulating object, while instance
01256  *  methods may not. (See <code>Module#module_function</code>)
01257  *
01258  *  In the descriptions that follow, the parameter <i>sym</i> refers
01259  *  to a symbol, which is either a quoted string or a
01260  *  <code>Symbol</code> (such as <code>:name</code>).
01261  *
01262  *     module Mod
01263  *       include Math
01264  *       CONST = 1
01265  *       def meth
01266  *         #  ...
01267  *       end
01268  *     end
01269  *     Mod.class              #=> Module
01270  *     Mod.constants          #=> [:CONST, :PI, :E]
01271  *     Mod.instance_methods   #=> [:meth]
01272  *
01273  */
01274 
01275 /*
01276  * call-seq:
01277  *   mod.to_s   -> string
01278  *
01279  * Return a string representing this module or class. For basic
01280  * classes and modules, this is the name. For singletons, we
01281  * show information on the thing we're attached to as well.
01282  */
01283 
01284 static VALUE
01285 rb_mod_to_s(VALUE klass)
01286 {
01287     if (FL_TEST(klass, FL_SINGLETON)) {
01288         VALUE s = rb_usascii_str_new2("#<");
01289         VALUE v = rb_iv_get(klass, "__attached__");
01290 
01291         rb_str_cat2(s, "Class:");
01292         switch (TYPE(v)) {
01293           case T_CLASS: case T_MODULE:
01294             rb_str_append(s, rb_inspect(v));
01295             break;
01296           default:
01297             rb_str_append(s, rb_any_to_s(v));
01298             break;
01299         }
01300         rb_str_cat2(s, ">");
01301 
01302         return s;
01303     }
01304     return rb_str_dup(rb_class_name(klass));
01305 }
01306 
01307 /*
01308  *  call-seq:
01309  *     mod.freeze       -> mod
01310  *
01311  *  Prevents further modifications to <i>mod</i>.
01312  *
01313  *  This method returns self.
01314  */
01315 
01316 static VALUE
01317 rb_mod_freeze(VALUE mod)
01318 {
01319     rb_class_name(mod);
01320     return rb_obj_freeze(mod);
01321 }
01322 
01323 /*
01324  *  call-seq:
01325  *     mod === obj    -> true or false
01326  *
01327  *  Case Equality---Returns <code>true</code> if <i>anObject</i> is an
01328  *  instance of <i>mod</i> or one of <i>mod</i>'s descendants. Of
01329  *  limited use for modules, but can be used in <code>case</code>
01330  *  statements to classify objects by class.
01331  */
01332 
01333 static VALUE
01334 rb_mod_eqq(VALUE mod, VALUE arg)
01335 {
01336     return rb_obj_is_kind_of(arg, mod);
01337 }
01338 
01339 /*
01340  * call-seq:
01341  *   mod <= other   ->  true, false, or nil
01342  *
01343  * Returns true if <i>mod</i> is a subclass of <i>other</i> or
01344  * is the same as <i>other</i>. Returns
01345  * <code>nil</code> if there's no relationship between the two.
01346  * (Think of the relationship in terms of the class definition:
01347  * "class A<B" implies "A<B").
01348  *
01349  */
01350 
01351 VALUE
01352 rb_class_inherited_p(VALUE mod, VALUE arg)
01353 {
01354     VALUE start = mod;
01355 
01356     if (mod == arg) return Qtrue;
01357     switch (TYPE(arg)) {
01358       case T_MODULE:
01359       case T_CLASS:
01360         break;
01361       default:
01362         rb_raise(rb_eTypeError, "compared with non class/module");
01363     }
01364     while (mod) {
01365         if (RCLASS_M_TBL(mod) == RCLASS_M_TBL(arg))
01366             return Qtrue;
01367         mod = RCLASS_SUPER(mod);
01368     }
01369     /* not mod < arg; check if mod > arg */
01370     while (arg) {
01371         if (RCLASS_M_TBL(arg) == RCLASS_M_TBL(start))
01372             return Qfalse;
01373         arg = RCLASS_SUPER(arg);
01374     }
01375     return Qnil;
01376 }
01377 
01378 /*
01379  * call-seq:
01380  *   mod < other   ->  true, false, or nil
01381  *
01382  * Returns true if <i>mod</i> is a subclass of <i>other</i>. Returns
01383  * <code>nil</code> if there's no relationship between the two.
01384  * (Think of the relationship in terms of the class definition:
01385  * "class A<B" implies "A<B").
01386  *
01387  */
01388 
01389 static VALUE
01390 rb_mod_lt(VALUE mod, VALUE arg)
01391 {
01392     if (mod == arg) return Qfalse;
01393     return rb_class_inherited_p(mod, arg);
01394 }
01395 
01396 
01397 /*
01398  * call-seq:
01399  *   mod >= other   ->  true, false, or nil
01400  *
01401  * Returns true if <i>mod</i> is an ancestor of <i>other</i>, or the
01402  * two modules are the same. Returns
01403  * <code>nil</code> if there's no relationship between the two.
01404  * (Think of the relationship in terms of the class definition:
01405  * "class A<B" implies "B>A").
01406  *
01407  */
01408 
01409 static VALUE
01410 rb_mod_ge(VALUE mod, VALUE arg)
01411 {
01412     switch (TYPE(arg)) {
01413       case T_MODULE:
01414       case T_CLASS:
01415         break;
01416       default:
01417         rb_raise(rb_eTypeError, "compared with non class/module");
01418     }
01419 
01420     return rb_class_inherited_p(arg, mod);
01421 }
01422 
01423 /*
01424  * call-seq:
01425  *   mod > other   ->  true, false, or nil
01426  *
01427  * Returns true if <i>mod</i> is an ancestor of <i>other</i>. Returns
01428  * <code>nil</code> if there's no relationship between the two.
01429  * (Think of the relationship in terms of the class definition:
01430  * "class A<B" implies "B>A").
01431  *
01432  */
01433 
01434 static VALUE
01435 rb_mod_gt(VALUE mod, VALUE arg)
01436 {
01437     if (mod == arg) return Qfalse;
01438     return rb_mod_ge(mod, arg);
01439 }
01440 
01441 /*
01442  *  call-seq:
01443  *     mod <=> other_mod   -> -1, 0, +1, or nil
01444  *
01445  *  Comparison---Returns -1 if <i>mod</i> includes <i>other_mod</i>, 0 if
01446  *  <i>mod</i> is the same as <i>other_mod</i>, and +1 if <i>mod</i> is
01447  *  included by <i>other_mod</i>. Returns <code>nil</code> if <i>mod</i>
01448  *  has no relationship with <i>other_mod</i> or if <i>other_mod</i> is
01449  *  not a module.
01450  */
01451 
01452 static VALUE
01453 rb_mod_cmp(VALUE mod, VALUE arg)
01454 {
01455     VALUE cmp;
01456 
01457     if (mod == arg) return INT2FIX(0);
01458     switch (TYPE(arg)) {
01459       case T_MODULE:
01460       case T_CLASS:
01461         break;
01462       default:
01463         return Qnil;
01464     }
01465 
01466     cmp = rb_class_inherited_p(mod, arg);
01467     if (NIL_P(cmp)) return Qnil;
01468     if (cmp) {
01469         return INT2FIX(-1);
01470     }
01471     return INT2FIX(1);
01472 }
01473 
01474 static VALUE
01475 rb_module_s_alloc(VALUE klass)
01476 {
01477     VALUE mod = rb_module_new();
01478 
01479     RBASIC(mod)->klass = klass;
01480     return mod;
01481 }
01482 
01483 static VALUE
01484 rb_class_s_alloc(VALUE klass)
01485 {
01486     return rb_class_boot(0);
01487 }
01488 
01489 /*
01490  *  call-seq:
01491  *    Module.new                  -> mod
01492  *    Module.new {|mod| block }   -> mod
01493  *
01494  *  Creates a new anonymous module. If a block is given, it is passed
01495  *  the module object, and the block is evaluated in the context of this
01496  *  module using <code>module_eval</code>.
01497  *
01498  *     fred = Module.new do
01499  *       def meth1
01500  *         "hello"
01501  *       end
01502  *       def meth2
01503  *         "bye"
01504  *       end
01505  *     end
01506  *     a = "my string"
01507  *     a.extend(fred)   #=> "my string"
01508  *     a.meth1          #=> "hello"
01509  *     a.meth2          #=> "bye"
01510  *
01511  *  Assign the module to a constant (name starting uppercase) if you
01512  *  want to treat it like a regular module.
01513  */
01514 
01515 static VALUE
01516 rb_mod_initialize(VALUE module)
01517 {
01518     if (rb_block_given_p()) {
01519         rb_mod_module_exec(1, &module, module);
01520     }
01521     return Qnil;
01522 }
01523 
01524 /*
01525  *  call-seq:
01526  *     Class.new(super_class=Object)               -> a_class
01527  *     Class.new(super_class=Object) { |mod| ... } -> a_class
01528  *
01529  *  Creates a new anonymous (unnamed) class with the given superclass
01530  *  (or <code>Object</code> if no parameter is given). You can give a
01531  *  class a name by assigning the class object to a constant.
01532  *
01533  *  If a block is given, it is passed the class object, and the block
01534  *  is evaluated in the context of this class using
01535  *  <code>class_eval</code>.
01536  *
01537  *     fred = Class.new do
01538  *       def meth1
01539  *         "hello"
01540  *       end
01541  *       def meth2
01542  *         "bye"
01543  *       end
01544  *     end
01545  *
01546  *     a = fred.new     #=> #<#<Class:0x100381890>:0x100376b98>
01547  *     a.meth1          #=> "hello"
01548  *     a.meth2          #=> "bye"
01549  *
01550  *  Assign the class to a constant (name starting uppercase) if you
01551  *  want to treat it like a regular class.
01552  */
01553 
01554 static VALUE
01555 rb_class_initialize(int argc, VALUE *argv, VALUE klass)
01556 {
01557     VALUE super;
01558 
01559     if (RCLASS_SUPER(klass) != 0 || klass == rb_cBasicObject) {
01560         rb_raise(rb_eTypeError, "already initialized class");
01561     }
01562     if (argc == 0) {
01563         super = rb_cObject;
01564     }
01565     else {
01566         rb_scan_args(argc, argv, "01", &super);
01567         rb_check_inheritable(super);
01568     }
01569     RCLASS_SUPER(klass) = super;
01570     rb_make_metaclass(klass, RBASIC(super)->klass);
01571     rb_class_inherited(super, klass);
01572     rb_mod_initialize(klass);
01573 
01574     return klass;
01575 }
01576 
01577 /*
01578  *  call-seq:
01579  *     class.allocate()   ->   obj
01580  *
01581  *  Allocates space for a new object of <i>class</i>'s class and does not
01582  *  call initialize on the new instance. The returned object must be an
01583  *  instance of <i>class</i>.
01584  *
01585  *      klass = Class.new do
01586  *        def initialize(*args)
01587  *          @initialized = true
01588  *        end
01589  *
01590  *        def initialized?
01591  *          @initialized || false
01592  *        end
01593  *      end
01594  *
01595  *      klass.allocate.initialized? #=> false
01596  *
01597  */
01598 
01599 VALUE
01600 rb_obj_alloc(VALUE klass)
01601 {
01602     VALUE obj;
01603 
01604     if (RCLASS_SUPER(klass) == 0 && klass != rb_cBasicObject) {
01605         rb_raise(rb_eTypeError, "can't instantiate uninitialized class");
01606     }
01607     if (FL_TEST(klass, FL_SINGLETON)) {
01608         rb_raise(rb_eTypeError, "can't create instance of singleton class");
01609     }
01610     obj = rb_funcall(klass, ID_ALLOCATOR, 0, 0);
01611     if (rb_obj_class(obj) != rb_class_real(klass)) {
01612         rb_raise(rb_eTypeError, "wrong instance allocation");
01613     }
01614     return obj;
01615 }
01616 
01617 static VALUE
01618 rb_class_allocate_instance(VALUE klass)
01619 {
01620     NEWOBJ(obj, struct RObject);
01621     OBJSETUP(obj, klass, T_OBJECT);
01622     return (VALUE)obj;
01623 }
01624 
01625 /*
01626  *  call-seq:
01627  *     class.new(args, ...)    ->  obj
01628  *
01629  *  Calls <code>allocate</code> to create a new object of
01630  *  <i>class</i>'s class, then invokes that object's
01631  *  <code>initialize</code> method, passing it <i>args</i>.
01632  *  This is the method that ends up getting called whenever
01633  *  an object is constructed using .new.
01634  *
01635  */
01636 
01637 VALUE
01638 rb_class_new_instance(int argc, VALUE *argv, VALUE klass)
01639 {
01640     VALUE obj;
01641 
01642     obj = rb_obj_alloc(klass);
01643     rb_obj_call_init(obj, argc, argv);
01644 
01645     return obj;
01646 }
01647 
01648 /*
01649  *  call-seq:
01650  *     class.superclass -> a_super_class or nil
01651  *
01652  *  Returns the superclass of <i>class</i>, or <code>nil</code>.
01653  *
01654  *     File.superclass          #=> IO
01655  *     IO.superclass            #=> Object
01656  *     Object.superclass        #=> BasicObject
01657  *     class Foo; end
01658  *     class Bar < Foo; end
01659  *     Bar.superclass           #=> Foo
01660  *
01661  *  returns nil when the given class hasn't a parent class:
01662  *
01663  *     BasicObject.superclass   #=> nil
01664  *
01665  */
01666 
01667 VALUE
01668 rb_class_superclass(VALUE klass)
01669 {
01670     VALUE super = RCLASS_SUPER(klass);
01671 
01672     if (!super) {
01673         if (klass == rb_cBasicObject) return Qnil;
01674         rb_raise(rb_eTypeError, "uninitialized class");
01675     }
01676     while (TYPE(super) == T_ICLASS) {
01677         super = RCLASS_SUPER(super);
01678     }
01679     if (!super) {
01680         return Qnil;
01681     }
01682     return super;
01683 }
01684 
01685 VALUE
01686 rb_class_get_superclass(VALUE klass)
01687 {
01688     return RCLASS_SUPER(klass);
01689 }
01690 
01691 /*
01692  *  call-seq:
01693  *     attr_reader(symbol, ...)    -> nil
01694  *     attr(symbol, ...)             -> nil
01695  *
01696  *  Creates instance variables and corresponding methods that return the
01697  *  value of each instance variable. Equivalent to calling
01698  *  ``<code>attr</code><i>:name</i>'' on each name in turn.
01699  */
01700 
01701 static VALUE
01702 rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass)
01703 {
01704     int i;
01705 
01706     for (i=0; i<argc; i++) {
01707         rb_attr(klass, rb_to_id(argv[i]), TRUE, FALSE, TRUE);
01708     }
01709     return Qnil;
01710 }
01711 
01712 VALUE
01713 rb_mod_attr(int argc, VALUE *argv, VALUE klass)
01714 {
01715     if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) {
01716         rb_warning("optional boolean argument is obsoleted");
01717         rb_attr(klass, rb_to_id(argv[0]), 1, RTEST(argv[1]), TRUE);
01718         return Qnil;
01719     }
01720     return rb_mod_attr_reader(argc, argv, klass);
01721 }
01722 
01723 /*
01724  *  call-seq:
01725  *      attr_writer(symbol, ...)    -> nil
01726  *
01727  *  Creates an accessor method to allow assignment to the attribute
01728  *  <i>aSymbol</i><code>.id2name</code>.
01729  */
01730 
01731 static VALUE
01732 rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass)
01733 {
01734     int i;
01735 
01736     for (i=0; i<argc; i++) {
01737         rb_attr(klass, rb_to_id(argv[i]), FALSE, TRUE, TRUE);
01738     }
01739     return Qnil;
01740 }
01741 
01742 /*
01743  *  call-seq:
01744  *     attr_accessor(symbol, ...)    -> nil
01745  *
01746  *  Defines a named attribute for this module, where the name is
01747  *  <i>symbol.</i><code>id2name</code>, creating an instance variable
01748  *  (<code>@name</code>) and a corresponding access method to read it.
01749  *  Also creates a method called <code>name=</code> to set the attribute.
01750  *
01751  *     module Mod
01752  *       attr_accessor(:one, :two)
01753  *     end
01754  *     Mod.instance_methods.sort   #=> [:one, :one=, :two, :two=]
01755  */
01756 
01757 static VALUE
01758 rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass)
01759 {
01760     int i;
01761 
01762     for (i=0; i<argc; i++) {
01763         rb_attr(klass, rb_to_id(argv[i]), TRUE, TRUE, TRUE);
01764     }
01765     return Qnil;
01766 }
01767 
01768 /*
01769  *  call-seq:
01770  *     mod.const_get(sym, inherit=true)    -> obj
01771  *
01772  *  Checks for a constant with the given name in <i>mod</i>
01773  *  If +inherit+ is set, the lookup will also search
01774  *  the ancestors (and +Object+ if <i>mod</i> is a +Module+.)
01775  *
01776  *  The value of the constant is returned if a definition is found,
01777  *  otherwise a +NameError+ is raised.
01778  *
01779  *     Math.const_get(:PI)   #=> 3.14159265358979
01780  */
01781 
01782 static VALUE
01783 rb_mod_const_get(int argc, VALUE *argv, VALUE mod)
01784 {
01785     VALUE name, recur;
01786     ID id;
01787 
01788     if (argc == 1) {
01789         name = argv[0];
01790         recur = Qtrue;
01791     }
01792     else {
01793         rb_scan_args(argc, argv, "11", &name, &recur);
01794     }
01795     id = rb_to_id(name);
01796     if (!rb_is_const_id(id)) {
01797         rb_name_error(id, "wrong constant name %s", rb_id2name(id));
01798     }
01799     return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
01800 }
01801 
01802 /*
01803  *  call-seq:
01804  *     mod.const_set(sym, obj)    -> obj
01805  *
01806  *  Sets the named constant to the given object, returning that object.
01807  *  Creates a new constant if no constant with the given name previously
01808  *  existed.
01809  *
01810  *     Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0)   #=> 3.14285714285714
01811  *     Math::HIGH_SCHOOL_PI - Math::PI              #=> 0.00126448926734968
01812  */
01813 
01814 static VALUE
01815 rb_mod_const_set(VALUE mod, VALUE name, VALUE value)
01816 {
01817     ID id = rb_to_id(name);
01818 
01819     if (!rb_is_const_id(id)) {
01820         rb_name_error(id, "wrong constant name %s", rb_id2name(id));
01821     }
01822     rb_const_set(mod, id, value);
01823     return value;
01824 }
01825 
01826 /*
01827  *  call-seq:
01828  *     mod.const_defined?(sym, inherit=true)   -> true or false
01829  *
01830  *  Checks for a constant with the given name in <i>mod</i>
01831  *  If +inherit+ is set, the lookup will also search
01832  *  the ancestors (and +Object+ if <i>mod</i> is a +Module+.)
01833  *
01834  *  Returns whether or not a definition is found:
01835  *
01836  *     Math.const_defined? "PI"   #=> true
01837  *     IO.const_defined? :SYNC   #=> true
01838  *     IO.const_defined? :SYNC, false   #=> false
01839  */
01840 
01841 static VALUE
01842 rb_mod_const_defined(int argc, VALUE *argv, VALUE mod)
01843 {
01844     VALUE name, recur;
01845     ID id;
01846 
01847     if (argc == 1) {
01848         name = argv[0];
01849         recur = Qtrue;
01850     }
01851     else {
01852         rb_scan_args(argc, argv, "11", &name, &recur);
01853     }
01854     id = rb_to_id(name);
01855     if (!rb_is_const_id(id)) {
01856         rb_name_error(id, "wrong constant name %s", rb_id2name(id));
01857     }
01858     return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id);
01859 }
01860 
01861 /*
01862  *  call-seq:
01863  *     obj.instance_variable_get(symbol)    -> obj
01864  *
01865  *  Returns the value of the given instance variable, or nil if the
01866  *  instance variable is not set. The <code>@</code> part of the
01867  *  variable name should be included for regular instance
01868  *  variables. Throws a <code>NameError</code> exception if the
01869  *  supplied symbol is not valid as an instance variable name.
01870  *
01871  *     class Fred
01872  *       def initialize(p1, p2)
01873  *         @a, @b = p1, p2
01874  *       end
01875  *     end
01876  *     fred = Fred.new('cat', 99)
01877  *     fred.instance_variable_get(:@a)    #=> "cat"
01878  *     fred.instance_variable_get("@b")   #=> 99
01879  */
01880 
01881 static VALUE
01882 rb_obj_ivar_get(VALUE obj, VALUE iv)
01883 {
01884     ID id = rb_to_id(iv);
01885 
01886     if (!rb_is_instance_id(id)) {
01887         rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id));
01888     }
01889     return rb_ivar_get(obj, id);
01890 }
01891 
01892 /*
01893  *  call-seq:
01894  *     obj.instance_variable_set(symbol, obj)    -> obj
01895  *
01896  *  Sets the instance variable names by <i>symbol</i> to
01897  *  <i>object</i>, thereby frustrating the efforts of the class's
01898  *  author to attempt to provide proper encapsulation. The variable
01899  *  did not have to exist prior to this call.
01900  *
01901  *     class Fred
01902  *       def initialize(p1, p2)
01903  *         @a, @b = p1, p2
01904  *       end
01905  *     end
01906  *     fred = Fred.new('cat', 99)
01907  *     fred.instance_variable_set(:@a, 'dog')   #=> "dog"
01908  *     fred.instance_variable_set(:@c, 'cat')   #=> "cat"
01909  *     fred.inspect                             #=> "#<Fred:0x401b3da8 @a=\"dog\", @b=99, @c=\"cat\">"
01910  */
01911 
01912 static VALUE
01913 rb_obj_ivar_set(VALUE obj, VALUE iv, VALUE val)
01914 {
01915     ID id = rb_to_id(iv);
01916 
01917     if (!rb_is_instance_id(id)) {
01918         rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id));
01919     }
01920     return rb_ivar_set(obj, id, val);
01921 }
01922 
01923 /*
01924  *  call-seq:
01925  *     obj.instance_variable_defined?(symbol)    -> true or false
01926  *
01927  *  Returns <code>true</code> if the given instance variable is
01928  *  defined in <i>obj</i>.
01929  *
01930  *     class Fred
01931  *       def initialize(p1, p2)
01932  *         @a, @b = p1, p2
01933  *       end
01934  *     end
01935  *     fred = Fred.new('cat', 99)
01936  *     fred.instance_variable_defined?(:@a)    #=> true
01937  *     fred.instance_variable_defined?("@b")   #=> true
01938  *     fred.instance_variable_defined?("@c")   #=> false
01939  */
01940 
01941 static VALUE
01942 rb_obj_ivar_defined(VALUE obj, VALUE iv)
01943 {
01944     ID id = rb_to_id(iv);
01945 
01946     if (!rb_is_instance_id(id)) {
01947         rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id));
01948     }
01949     return rb_ivar_defined(obj, id);
01950 }
01951 
01952 /*
01953  *  call-seq:
01954  *     mod.class_variable_get(symbol)    -> obj
01955  *
01956  *  Returns the value of the given class variable (or throws a
01957  *  <code>NameError</code> exception). The <code>@@</code> part of the
01958  *  variable name should be included for regular class variables
01959  *
01960  *     class Fred
01961  *       @@foo = 99
01962  *     end
01963  *     Fred.class_variable_get(:@@foo)     #=> 99
01964  */
01965 
01966 static VALUE
01967 rb_mod_cvar_get(VALUE obj, VALUE iv)
01968 {
01969     ID id = rb_to_id(iv);
01970 
01971     if (!rb_is_class_id(id)) {
01972         rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id));
01973     }
01974     return rb_cvar_get(obj, id);
01975 }
01976 
01977 /*
01978  *  call-seq:
01979  *     obj.class_variable_set(symbol, obj)    -> obj
01980  *
01981  *  Sets the class variable names by <i>symbol</i> to
01982  *  <i>object</i>.
01983  *
01984  *     class Fred
01985  *       @@foo = 99
01986  *       def foo
01987  *         @@foo
01988  *       end
01989  *     end
01990  *     Fred.class_variable_set(:@@foo, 101)     #=> 101
01991  *     Fred.new.foo                             #=> 101
01992  */
01993 
01994 static VALUE
01995 rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val)
01996 {
01997     ID id = rb_to_id(iv);
01998 
01999     if (!rb_is_class_id(id)) {
02000         rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id));
02001     }
02002     rb_cvar_set(obj, id, val);
02003     return val;
02004 }
02005 
02006 /*
02007  *  call-seq:
02008  *     obj.class_variable_defined?(symbol)    -> true or false
02009  *
02010  *  Returns <code>true</code> if the given class variable is defined
02011  *  in <i>obj</i>.
02012  *
02013  *     class Fred
02014  *       @@foo = 99
02015  *     end
02016  *     Fred.class_variable_defined?(:@@foo)    #=> true
02017  *     Fred.class_variable_defined?(:@@bar)    #=> false
02018  */
02019 
02020 static VALUE
02021 rb_mod_cvar_defined(VALUE obj, VALUE iv)
02022 {
02023     ID id = rb_to_id(iv);
02024 
02025     if (!rb_is_class_id(id)) {
02026         rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id));
02027     }
02028     return rb_cvar_defined(obj, id);
02029 }
02030 
02031 static struct conv_method_tbl {
02032     const char *method;
02033     ID id;
02034 } conv_method_names[] = {
02035     {"to_int", 0},
02036     {"to_ary", 0},
02037     {"to_str", 0},
02038     {"to_sym", 0},
02039     {"to_hash", 0},
02040     {"to_proc", 0},
02041     {"to_io", 0},
02042     {"to_a", 0},
02043     {"to_s", 0},
02044     {NULL, 0}
02045 };
02046 
02047 static VALUE
02048 convert_type(VALUE val, const char *tname, const char *method, int raise)
02049 {
02050     ID m = 0;
02051     int i;
02052     VALUE r;
02053 
02054     for (i=0; conv_method_names[i].method; i++) {
02055         if (conv_method_names[i].method[0] == method[0] &&
02056             strcmp(conv_method_names[i].method, method) == 0) {
02057             m = conv_method_names[i].id;
02058             break;
02059         }
02060     }
02061     if (!m) m = rb_intern(method);
02062     r = rb_check_funcall(val, m, 0, 0);
02063     if (r == Qundef) {
02064         if (raise) {
02065             rb_raise(rb_eTypeError, "can't convert %s into %s",
02066                      NIL_P(val) ? "nil" :
02067                      val == Qtrue ? "true" :
02068                      val == Qfalse ? "false" :
02069                      rb_obj_classname(val),
02070                      tname);
02071         }
02072         return Qnil;
02073     }
02074     return r;
02075 }
02076 
02077 VALUE
02078 rb_convert_type(VALUE val, int type, const char *tname, const char *method)
02079 {
02080     VALUE v;
02081 
02082     if (TYPE(val) == type) return val;
02083     v = convert_type(val, tname, method, TRUE);
02084     if (TYPE(v) != type) {
02085         const char *cname = rb_obj_classname(val);
02086         rb_raise(rb_eTypeError, "can't convert %s to %s (%s#%s gives %s)",
02087                  cname, tname, cname, method, rb_obj_classname(v));
02088     }
02089     return v;
02090 }
02091 
02092 VALUE
02093 rb_check_convert_type(VALUE val, int type, const char *tname, const char *method)
02094 {
02095     VALUE v;
02096 
02097     /* always convert T_DATA */
02098     if (TYPE(val) == type && type != T_DATA) return val;
02099     v = convert_type(val, tname, method, FALSE);
02100     if (NIL_P(v)) return Qnil;
02101     if (TYPE(v) != type) {
02102         const char *cname = rb_obj_classname(val);
02103         rb_raise(rb_eTypeError, "can't convert %s to %s (%s#%s gives %s)",
02104                  cname, tname, cname, method, rb_obj_classname(v));
02105     }
02106     return v;
02107 }
02108 
02109 
02110 static VALUE
02111 rb_to_integer(VALUE val, const char *method)
02112 {
02113     VALUE v;
02114 
02115     if (FIXNUM_P(val)) return val;
02116     if (TYPE(val) == T_BIGNUM) return val;
02117     v = convert_type(val, "Integer", method, TRUE);
02118     if (!rb_obj_is_kind_of(v, rb_cInteger)) {
02119         const char *cname = rb_obj_classname(val);
02120         rb_raise(rb_eTypeError, "can't convert %s to Integer (%s#%s gives %s)",
02121                  cname, cname, method, rb_obj_classname(v));
02122     }
02123     return v;
02124 }
02125 
02126 VALUE
02127 rb_check_to_integer(VALUE val, const char *method)
02128 {
02129     VALUE v;
02130 
02131     if (FIXNUM_P(val)) return val;
02132     if (TYPE(val) == T_BIGNUM) return val;
02133     v = convert_type(val, "Integer", method, FALSE);
02134     if (!rb_obj_is_kind_of(v, rb_cInteger)) {
02135         return Qnil;
02136     }
02137     return v;
02138 }
02139 
02140 VALUE
02141 rb_to_int(VALUE val)
02142 {
02143     return rb_to_integer(val, "to_int");
02144 }
02145 
02146 static VALUE
02147 rb_convert_to_integer(VALUE val, int base)
02148 {
02149     VALUE tmp;
02150 
02151     switch (TYPE(val)) {
02152       case T_FLOAT:
02153         if (base != 0) goto arg_error;
02154         if (RFLOAT_VALUE(val) <= (double)FIXNUM_MAX
02155             && RFLOAT_VALUE(val) >= (double)FIXNUM_MIN) {
02156             break;
02157         }
02158         return rb_dbl2big(RFLOAT_VALUE(val));
02159 
02160       case T_FIXNUM:
02161       case T_BIGNUM:
02162         if (base != 0) goto arg_error;
02163         return val;
02164 
02165       case T_STRING:
02166       string_conv:
02167         return rb_str_to_inum(val, base, TRUE);
02168 
02169       case T_NIL:
02170         if (base != 0) goto arg_error;
02171         rb_raise(rb_eTypeError, "can't convert nil into Integer");
02172         break;
02173 
02174       default:
02175         break;
02176     }
02177     if (base != 0) {
02178         tmp = rb_check_string_type(val);
02179         if (!NIL_P(tmp)) goto string_conv;
02180       arg_error:
02181         rb_raise(rb_eArgError, "base specified for non string value");
02182     }
02183     tmp = convert_type(val, "Integer", "to_int", FALSE);
02184     if (NIL_P(tmp)) {
02185         return rb_to_integer(val, "to_i");
02186     }
02187     return tmp;
02188 
02189 }
02190 
02191 VALUE
02192 rb_Integer(VALUE val)
02193 {
02194     return rb_convert_to_integer(val, 0);
02195 }
02196 
02197 /*
02198  *  call-seq:
02199  *     Integer(arg,base=0)    -> integer
02200  *
02201  *  Converts <i>arg</i> to a <code>Fixnum</code> or <code>Bignum</code>.
02202  *  Numeric types are converted directly (with floating point numbers
02203  *  being truncated).    <i>base</i> (0, or between 2 and 36) is a base for
02204  *  integer string representation.  If <i>arg</i> is a <code>String</code>,
02205  *  when <i>base</i> is omitted or equals to zero, radix indicators
02206  *  (<code>0</code>, <code>0b</code>, and <code>0x</code>) are honored.
02207  *  In any case, strings should be strictly conformed to numeric
02208  *  representation. This behavior is different from that of
02209  *  <code>String#to_i</code>.  Non string values will be converted using
02210  *  <code>to_int</code>, and <code>to_i</code>.
02211  *
02212  *     Integer(123.999)    #=> 123
02213  *     Integer("0x1a")     #=> 26
02214  *     Integer(Time.new)   #=> 1204973019
02215  *     Integer("0930", 10) #=> 930
02216  *     Integer("111", 2)   #=> 7
02217  */
02218 
02219 static VALUE
02220 rb_f_integer(int argc, VALUE *argv, VALUE obj)
02221 {
02222     VALUE arg = Qnil;
02223     int base = 0;
02224 
02225     switch (argc) {
02226       case 2:
02227         base = NUM2INT(argv[1]);
02228       case 1:
02229         arg = argv[0];
02230         break;
02231       default:
02232         /* should cause ArgumentError */
02233         rb_scan_args(argc, argv, "11", NULL, NULL);
02234     }
02235     return rb_convert_to_integer(arg, base);
02236 }
02237 
02238 double
02239 rb_cstr_to_dbl(const char *p, int badcheck)
02240 {
02241     const char *q;
02242     char *end;
02243     double d;
02244     const char *ellipsis = "";
02245     int w;
02246     enum {max_width = 20};
02247 #define OutOfRange() ((end - p > max_width) ? \
02248                       (w = max_width, ellipsis = "...") : \
02249                       (w = (int)(end - p), ellipsis = ""))
02250 
02251     if (!p) return 0.0;
02252     q = p;
02253     while (ISSPACE(*p)) p++;
02254 
02255     if (!badcheck && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
02256         return 0.0;
02257     }
02258 
02259     d = strtod(p, &end);
02260     if (errno == ERANGE) {
02261         OutOfRange();
02262         rb_warning("Float %.*s%s out of range", w, p, ellipsis);
02263         errno = 0;
02264     }
02265     if (p == end) {
02266         if (badcheck) {
02267           bad:
02268             rb_invalid_str(q, "Float()");
02269         }
02270         return d;
02271     }
02272     if (*end) {
02273         char buf[DBL_DIG * 4 + 10];
02274         char *n = buf;
02275         char *e = buf + sizeof(buf) - 1;
02276         char prev = 0;
02277 
02278         while (p < end && n < e) prev = *n++ = *p++;
02279         while (*p) {
02280             if (*p == '_') {
02281                 /* remove underscores between digits */
02282                 if (badcheck) {
02283                     if (n == buf || !ISDIGIT(prev)) goto bad;
02284                     ++p;
02285                     if (!ISDIGIT(*p)) goto bad;
02286                 }
02287                 else {
02288                     while (*++p == '_');
02289                     continue;
02290                 }
02291             }
02292             prev = *p++;
02293             if (n < e) *n++ = prev;
02294         }
02295         *n = '\0';
02296         p = buf;
02297 
02298         if (!badcheck && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
02299             return 0.0;
02300         }
02301 
02302         d = strtod(p, &end);
02303         if (errno == ERANGE) {
02304             OutOfRange();
02305             rb_warning("Float %.*s%s out of range", w, p, ellipsis);
02306             errno = 0;
02307         }
02308         if (badcheck) {
02309             if (!end || p == end) goto bad;
02310             while (*end && ISSPACE(*end)) end++;
02311             if (*end) goto bad;
02312         }
02313     }
02314     if (errno == ERANGE) {
02315         errno = 0;
02316         OutOfRange();
02317         rb_raise(rb_eArgError, "Float %.*s%s out of range", w, q, ellipsis);
02318     }
02319     return d;
02320 }
02321 
02322 double
02323 rb_str_to_dbl(VALUE str, int badcheck)
02324 {
02325     char *s;
02326     long len;
02327     double ret;
02328     VALUE v = 0;
02329 
02330     StringValue(str);
02331     s = RSTRING_PTR(str);
02332     len = RSTRING_LEN(str);
02333     if (s) {
02334         if (badcheck && memchr(s, '\0', len)) {
02335             rb_raise(rb_eArgError, "string for Float contains null byte");
02336         }
02337         if (s[len]) {           /* no sentinel somehow */
02338             char *p =  ALLOCV(v, len);
02339             MEMCPY(p, s, char, len);
02340             p[len] = '\0';
02341             s = p;
02342         }
02343     }
02344     ret = rb_cstr_to_dbl(s, badcheck);
02345     if (v)
02346         ALLOCV_END(v);
02347     return ret;
02348 }
02349 
02350 VALUE
02351 rb_Float(VALUE val)
02352 {
02353     switch (TYPE(val)) {
02354       case T_FIXNUM:
02355         return DBL2NUM((double)FIX2LONG(val));
02356 
02357       case T_FLOAT:
02358         return val;
02359 
02360       case T_BIGNUM:
02361         return DBL2NUM(rb_big2dbl(val));
02362 
02363       case T_STRING:
02364         return DBL2NUM(rb_str_to_dbl(val, TRUE));
02365 
02366       case T_NIL:
02367         rb_raise(rb_eTypeError, "can't convert nil into Float");
02368         break;
02369 
02370       default:
02371         return rb_convert_type(val, T_FLOAT, "Float", "to_f");
02372     }
02373 }
02374 
02375 /*
02376  *  call-seq:
02377  *     Float(arg)    -> float
02378  *
02379  *  Returns <i>arg</i> converted to a float. Numeric types are converted
02380  *  directly, the rest are converted using <i>arg</i>.to_f. As of Ruby
02381  *  1.8, converting <code>nil</code> generates a <code>TypeError</code>.
02382  *
02383  *     Float(1)           #=> 1.0
02384  *     Float("123.456")   #=> 123.456
02385  */
02386 
02387 static VALUE
02388 rb_f_float(VALUE obj, VALUE arg)
02389 {
02390     return rb_Float(arg);
02391 }
02392 
02393 VALUE
02394 rb_to_float(VALUE val)
02395 {
02396     if (TYPE(val) == T_FLOAT) return val;
02397     if (!rb_obj_is_kind_of(val, rb_cNumeric)) {
02398         rb_raise(rb_eTypeError, "can't convert %s into Float",
02399                  NIL_P(val) ? "nil" :
02400                  val == Qtrue ? "true" :
02401                  val == Qfalse ? "false" :
02402                  rb_obj_classname(val));
02403     }
02404     return rb_convert_type(val, T_FLOAT, "Float", "to_f");
02405 }
02406 
02407 VALUE
02408 rb_check_to_float(VALUE val)
02409 {
02410     if (TYPE(val) == T_FLOAT) return val;
02411     if (!rb_obj_is_kind_of(val, rb_cNumeric)) {
02412         return Qnil;
02413     }
02414     return rb_check_convert_type(val, T_FLOAT, "Float", "to_f");
02415 }
02416 
02417 double
02418 rb_num2dbl(VALUE val)
02419 {
02420     switch (TYPE(val)) {
02421       case T_FLOAT:
02422         return RFLOAT_VALUE(val);
02423 
02424       case T_STRING:
02425         rb_raise(rb_eTypeError, "no implicit conversion to float from string");
02426         break;
02427 
02428       case T_NIL:
02429         rb_raise(rb_eTypeError, "no implicit conversion to float from nil");
02430         break;
02431 
02432       default:
02433         break;
02434     }
02435 
02436     return RFLOAT_VALUE(rb_Float(val));
02437 }
02438 
02439 VALUE
02440 rb_String(VALUE val)
02441 {
02442     VALUE tmp = rb_check_string_type(val);
02443     if (NIL_P(tmp))
02444         tmp = rb_convert_type(val, T_STRING, "String", "to_s");
02445     return tmp;
02446 }
02447 
02448 
02449 /*
02450  *  call-seq:
02451  *     String(arg)   -> string
02452  *
02453  *  Converts <i>arg</i> to a <code>String</code> by calling its
02454  *  <code>to_s</code> method.
02455  *
02456  *     String(self)        #=> "main"
02457  *     String(self.class)  #=> "Object"
02458  *     String(123456)      #=> "123456"
02459  */
02460 
02461 static VALUE
02462 rb_f_string(VALUE obj, VALUE arg)
02463 {
02464     return rb_String(arg);
02465 }
02466 
02467 VALUE
02468 rb_Array(VALUE val)
02469 {
02470     VALUE tmp = rb_check_array_type(val);
02471 
02472     if (NIL_P(tmp)) {
02473         tmp = rb_check_convert_type(val, T_ARRAY, "Array", "to_a");
02474         if (NIL_P(tmp)) {
02475             return rb_ary_new3(1, val);
02476         }
02477     }
02478     return tmp;
02479 }
02480 
02481 /*
02482  *  call-seq:
02483  *     Array(arg)    -> array
02484  *
02485  *  Returns <i>arg</i> as an <code>Array</code>. First tries to call
02486  *  <i>arg</i><code>.to_ary</code>, then <i>arg</i><code>.to_a</code>.
02487  *
02488  *     Array(1..5)   #=> [1, 2, 3, 4, 5]
02489  */
02490 
02491 static VALUE
02492 rb_f_array(VALUE obj, VALUE arg)
02493 {
02494     return rb_Array(arg);
02495 }
02496 
02497 /*
02498  *  Document-class: Class
02499  *
02500  *  Classes in Ruby are first-class objects---each is an instance of
02501  *  class <code>Class</code>.
02502  *
02503  *  When a new class is created (typically using <code>class Name ...
02504  *  end</code>), an object of type <code>Class</code> is created and
02505  *  assigned to a global constant (<code>Name</code> in this case). When
02506  *  <code>Name.new</code> is called to create a new object, the
02507  *  <code>new</code> method in <code>Class</code> is run by default.
02508  *  This can be demonstrated by overriding <code>new</code> in
02509  *  <code>Class</code>:
02510  *
02511  *     class Class
02512  *        alias oldNew  new
02513  *        def new(*args)
02514  *          print "Creating a new ", self.name, "\n"
02515  *          oldNew(*args)
02516  *        end
02517  *      end
02518  *
02519  *
02520  *      class Name
02521  *      end
02522  *
02523  *
02524  *      n = Name.new
02525  *
02526  *  <em>produces:</em>
02527  *
02528  *     Creating a new Name
02529  *
02530  *  Classes, modules, and objects are interrelated. In the diagram
02531  *  that follows, the vertical arrows represent inheritance, and the
02532  *  parentheses meta-classes. All metaclasses are instances
02533  *  of the class `Class'.
02534  *                             +---------+             +-...
02535  *                             |         |             |
02536  *             BasicObject-----|-->(BasicObject)-------|-...
02537  *                 ^           |         ^             |
02538  *                 |           |         |             |
02539  *              Object---------|----->(Object)---------|-...
02540  *                 ^           |         ^             |
02541  *                 |           |         |             |
02542  *                 +-------+   |         +--------+    |
02543  *                 |       |   |         |        |    |
02544  *                 |    Module-|---------|--->(Module)-|-...
02545  *                 |       ^   |         |        ^    |
02546  *                 |       |   |         |        |    |
02547  *                 |     Class-|---------|---->(Class)-|-...
02548  *                 |       ^   |         |        ^    |
02549  *                 |       +---+         |        +----+
02550  *                 |                     |
02551  *    obj--->OtherClass---------->(OtherClass)-----------...
02552  *
02553  */
02554 
02555 
02574 /*  Document-class: BasicObject
02575  *
02576  *  BasicObject is the parent class of all classes in Ruby.  It's an explicit
02577  *  blank class.
02578  *
02579  *  BasicObject can be used for creating object hierarchies independent of
02580  *  Ruby's object hierarchy, proxy objects like the Delegator class, or other
02581  *  uses where namespace pollution from Ruby's methods and classes must be
02582  *  avoided.
02583  *
02584  *  To avoid polluting BasicObject for other users an appropriately named
02585  *  subclass of BasicObject should be created instead of directly modifying
02586  *  BasicObject:
02587  *
02588  *    class MyObjectSystem < BasicObject
02589  *    end
02590  *
02591  *  BasicObject does not include Kernel (for methods like +puts+) and
02592  *  BasicObject is outside of the namespace of the standard library so common
02593  *  classes will not be found without a using a full class path.
02594  *
02595  *  A variety of strategies can be used to provide useful portions of the
02596  *  standard library to subclasses of BasicObject.  A subclass could
02597  *  <code>include Kernel</code> to obtain +puts+, +exit+, etc.  A custom
02598  *  Kernel-like module could be created and included or delegation can be used
02599  *  via #method_missing:
02600  *
02601  *    class MyObjectSystem < BasicObject
02602  *      DELEGATE = [:puts, :p]
02603  *
02604  *      def method_missing(name, *args, &block)
02605  *        super unless DELEGATE.include? name
02606  *        ::Kernel.send(name, *args, &block)
02607  *      end
02608  *
02609  *      def respond_to_missing?(name, include_private = false)
02610  *        DELGATE.include?(name) or super
02611  *      end
02612  *    end
02613  *
02614  *  Access to classes and modules from the Ruby standard library can be
02615  *  obtained in a BasicObject subclass by referencing the desired constant
02616  *  from the root like <code>::File</code> or <code>::Enumerator</code>.
02617  *  Like #method_missing, #const_missing can be used to delegate constant
02618  *  lookup to +Object+:
02619  *
02620  *    class MyObjectSystem < BasicObject
02621  *      def self.const_missing(name)
02622  *        ::Object.const_get(name)
02623  *      end
02624  *    end
02625  */
02626 
02627 /*  Document-class: Object
02628  *
02629  *  Object is the root of Ruby's class hierarchy.  Its methods are available
02630  *  to all classes unless explicitly overridden.
02631  *
02632  *  Object mixes in the Kernel module, making the built-in kernel functions
02633  *  globally accessible. Although the instance methods of Object are defined
02634  *  by the Kernel module, we have chosen to document them here for clarity.
02635  *
02636  *  In the descriptions of Object's methods, the parameter <i>symbol</i> refers
02637  *  to a symbol, which is either a quoted string or a Symbol (such as
02638  *  <code>:name</code>).
02639  */
02640 
02641 void
02642 Init_Object(void)
02643 {
02644     int i;
02645 
02646     Init_class_hierarchy();
02647 
02648 #if 0
02649     // teach RDoc about these classes
02650     rb_cBasicObject = rb_define_class("BasicObject", Qnil);
02651     rb_cObject = rb_define_class("Object", rb_cBasicObject);
02652     rb_cModule = rb_define_class("Module", rb_cObject);
02653     rb_cClass =  rb_define_class("Class",  rb_cModule);
02654 #endif
02655 
02656 #undef rb_intern
02657 #define rb_intern(str) rb_intern_const(str)
02658 
02659     rb_define_private_method(rb_cBasicObject, "initialize", rb_obj_dummy, 0);
02660     rb_define_alloc_func(rb_cBasicObject, rb_class_allocate_instance);
02661     rb_define_method(rb_cBasicObject, "==", rb_obj_equal, 1);
02662     rb_define_method(rb_cBasicObject, "equal?", rb_obj_equal, 1);
02663     rb_define_method(rb_cBasicObject, "!", rb_obj_not, 0);
02664     rb_define_method(rb_cBasicObject, "!=", rb_obj_not_equal, 1);
02665 
02666     rb_define_private_method(rb_cBasicObject, "singleton_method_added", rb_obj_dummy, 1);
02667     rb_define_private_method(rb_cBasicObject, "singleton_method_removed", rb_obj_dummy, 1);
02668     rb_define_private_method(rb_cBasicObject, "singleton_method_undefined", rb_obj_dummy, 1);
02669 
02670     rb_mKernel = rb_define_module("Kernel");
02671     rb_include_module(rb_cObject, rb_mKernel);
02672     rb_define_private_method(rb_cClass, "inherited", rb_obj_dummy, 1);
02673     rb_define_private_method(rb_cModule, "included", rb_obj_dummy, 1);
02674     rb_define_private_method(rb_cModule, "extended", rb_obj_dummy, 1);
02675     rb_define_private_method(rb_cModule, "method_added", rb_obj_dummy, 1);
02676     rb_define_private_method(rb_cModule, "method_removed", rb_obj_dummy, 1);
02677     rb_define_private_method(rb_cModule, "method_undefined", rb_obj_dummy, 1);
02678 
02679     rb_define_method(rb_mKernel, "nil?", rb_false, 0);
02680     rb_define_method(rb_mKernel, "===", rb_equal, 1);
02681     rb_define_method(rb_mKernel, "=~", rb_obj_match, 1);
02682     rb_define_method(rb_mKernel, "!~", rb_obj_not_match, 1);
02683     rb_define_method(rb_mKernel, "eql?", rb_obj_equal, 1);
02684     rb_define_method(rb_mKernel, "hash", rb_obj_hash, 0);
02685     rb_define_method(rb_mKernel, "<=>", rb_obj_cmp, 1);
02686 
02687     rb_define_method(rb_mKernel, "class", rb_obj_class, 0);
02688     rb_define_method(rb_mKernel, "singleton_class", rb_obj_singleton_class, 0);
02689     rb_define_method(rb_mKernel, "clone", rb_obj_clone, 0);
02690     rb_define_method(rb_mKernel, "dup", rb_obj_dup, 0);
02691     rb_define_method(rb_mKernel, "initialize_copy", rb_obj_init_copy, 1);
02692     rb_define_method(rb_mKernel, "initialize_dup", rb_obj_init_dup_clone, 1);
02693     rb_define_method(rb_mKernel, "initialize_clone", rb_obj_init_dup_clone, 1);
02694 
02695     rb_define_method(rb_mKernel, "taint", rb_obj_taint, 0);
02696     rb_define_method(rb_mKernel, "tainted?", rb_obj_tainted, 0);
02697     rb_define_method(rb_mKernel, "untaint", rb_obj_untaint, 0);
02698     rb_define_method(rb_mKernel, "untrust", rb_obj_untrust, 0);
02699     rb_define_method(rb_mKernel, "untrusted?", rb_obj_untrusted, 0);
02700     rb_define_method(rb_mKernel, "trust", rb_obj_trust, 0);
02701     rb_define_method(rb_mKernel, "freeze", rb_obj_freeze, 0);
02702     rb_define_method(rb_mKernel, "frozen?", rb_obj_frozen_p, 0);
02703 
02704     rb_define_method(rb_mKernel, "to_s", rb_any_to_s, 0);
02705     rb_define_method(rb_mKernel, "inspect", rb_obj_inspect, 0);
02706     rb_define_method(rb_mKernel, "methods", rb_obj_methods, -1); /* in class.c */
02707     rb_define_method(rb_mKernel, "singleton_methods", rb_obj_singleton_methods, -1); /* in class.c */
02708     rb_define_method(rb_mKernel, "protected_methods", rb_obj_protected_methods, -1); /* in class.c */
02709     rb_define_method(rb_mKernel, "private_methods", rb_obj_private_methods, -1); /* in class.c */
02710     rb_define_method(rb_mKernel, "public_methods", rb_obj_public_methods, -1); /* in class.c */
02711     rb_define_method(rb_mKernel, "instance_variables", rb_obj_instance_variables, 0); /* in variable.c */
02712     rb_define_method(rb_mKernel, "instance_variable_get", rb_obj_ivar_get, 1);
02713     rb_define_method(rb_mKernel, "instance_variable_set", rb_obj_ivar_set, 2);
02714     rb_define_method(rb_mKernel, "instance_variable_defined?", rb_obj_ivar_defined, 1);
02715     rb_define_private_method(rb_mKernel, "remove_instance_variable",
02716                              rb_obj_remove_instance_variable, 1); /* in variable.c */
02717 
02718     rb_define_method(rb_mKernel, "instance_of?", rb_obj_is_instance_of, 1);
02719     rb_define_method(rb_mKernel, "kind_of?", rb_obj_is_kind_of, 1);
02720     rb_define_method(rb_mKernel, "is_a?", rb_obj_is_kind_of, 1);
02721     rb_define_method(rb_mKernel, "tap", rb_obj_tap, 0);
02722 
02723     rb_define_global_function("sprintf", rb_f_sprintf, -1); /* in sprintf.c */
02724     rb_define_global_function("format", rb_f_sprintf, -1);  /* in sprintf.c */
02725 
02726     rb_define_global_function("Integer", rb_f_integer, -1);
02727     rb_define_global_function("Float", rb_f_float, 1);
02728 
02729     rb_define_global_function("String", rb_f_string, 1);
02730     rb_define_global_function("Array", rb_f_array, 1);
02731 
02732     rb_cNilClass = rb_define_class("NilClass", rb_cObject);
02733     rb_define_method(rb_cNilClass, "to_i", nil_to_i, 0);
02734     rb_define_method(rb_cNilClass, "to_f", nil_to_f, 0);
02735     rb_define_method(rb_cNilClass, "to_s", nil_to_s, 0);
02736     rb_define_method(rb_cNilClass, "to_a", nil_to_a, 0);
02737     rb_define_method(rb_cNilClass, "inspect", nil_inspect, 0);
02738     rb_define_method(rb_cNilClass, "&", false_and, 1);
02739     rb_define_method(rb_cNilClass, "|", false_or, 1);
02740     rb_define_method(rb_cNilClass, "^", false_xor, 1);
02741 
02742     rb_define_method(rb_cNilClass, "nil?", rb_true, 0);
02743     rb_undef_alloc_func(rb_cNilClass);
02744     rb_undef_method(CLASS_OF(rb_cNilClass), "new");
02745     /*
02746      * An alias of +nil+
02747      */
02748     rb_define_global_const("NIL", Qnil);
02749 
02750     rb_define_method(rb_cModule, "freeze", rb_mod_freeze, 0);
02751     rb_define_method(rb_cModule, "===", rb_mod_eqq, 1);
02752     rb_define_method(rb_cModule, "==", rb_obj_equal, 1);
02753     rb_define_method(rb_cModule, "<=>",  rb_mod_cmp, 1);
02754     rb_define_method(rb_cModule, "<",  rb_mod_lt, 1);
02755     rb_define_method(rb_cModule, "<=", rb_class_inherited_p, 1);
02756     rb_define_method(rb_cModule, ">",  rb_mod_gt, 1);
02757     rb_define_method(rb_cModule, ">=", rb_mod_ge, 1);
02758     rb_define_method(rb_cModule, "initialize_copy", rb_mod_init_copy, 1); /* in class.c */
02759     rb_define_method(rb_cModule, "to_s", rb_mod_to_s, 0);
02760     rb_define_method(rb_cModule, "included_modules", rb_mod_included_modules, 0); /* in class.c */
02761     rb_define_method(rb_cModule, "include?", rb_mod_include_p, 1); /* in class.c */
02762     rb_define_method(rb_cModule, "name", rb_mod_name, 0);  /* in variable.c */
02763     rb_define_method(rb_cModule, "ancestors", rb_mod_ancestors, 0); /* in class.c */
02764 
02765     rb_define_private_method(rb_cModule, "attr", rb_mod_attr, -1);
02766     rb_define_private_method(rb_cModule, "attr_reader", rb_mod_attr_reader, -1);
02767     rb_define_private_method(rb_cModule, "attr_writer", rb_mod_attr_writer, -1);
02768     rb_define_private_method(rb_cModule, "attr_accessor", rb_mod_attr_accessor, -1);
02769 
02770     rb_define_alloc_func(rb_cModule, rb_module_s_alloc);
02771     rb_define_method(rb_cModule, "initialize", rb_mod_initialize, 0);
02772     rb_define_method(rb_cModule, "instance_methods", rb_class_instance_methods, -1); /* in class.c */
02773     rb_define_method(rb_cModule, "public_instance_methods",
02774                      rb_class_public_instance_methods, -1);    /* in class.c */
02775     rb_define_method(rb_cModule, "protected_instance_methods",
02776                      rb_class_protected_instance_methods, -1); /* in class.c */
02777     rb_define_method(rb_cModule, "private_instance_methods",
02778                      rb_class_private_instance_methods, -1);   /* in class.c */
02779 
02780     rb_define_method(rb_cModule, "constants", rb_mod_constants, -1); /* in variable.c */
02781     rb_define_method(rb_cModule, "const_get", rb_mod_const_get, -1);
02782     rb_define_method(rb_cModule, "const_set", rb_mod_const_set, 2);
02783     rb_define_method(rb_cModule, "const_defined?", rb_mod_const_defined, -1);
02784     rb_define_private_method(rb_cModule, "remove_const",
02785                              rb_mod_remove_const, 1); /* in variable.c */
02786     rb_define_method(rb_cModule, "const_missing",
02787                      rb_mod_const_missing, 1); /* in variable.c */
02788     rb_define_method(rb_cModule, "class_variables",
02789                      rb_mod_class_variables, 0); /* in variable.c */
02790     rb_define_method(rb_cModule, "remove_class_variable",
02791                      rb_mod_remove_cvar, 1); /* in variable.c */
02792     rb_define_method(rb_cModule, "class_variable_get", rb_mod_cvar_get, 1);
02793     rb_define_method(rb_cModule, "class_variable_set", rb_mod_cvar_set, 2);
02794     rb_define_method(rb_cModule, "class_variable_defined?", rb_mod_cvar_defined, 1);
02795     rb_define_method(rb_cModule, "public_constant", rb_mod_public_constant, -1);
02796     rb_define_method(rb_cModule, "private_constant", rb_mod_private_constant, -1);
02797 
02798     rb_define_method(rb_cClass, "allocate", rb_obj_alloc, 0);
02799     rb_define_method(rb_cClass, "new", rb_class_new_instance, -1);
02800     rb_define_method(rb_cClass, "initialize", rb_class_initialize, -1);
02801     rb_define_method(rb_cClass, "superclass", rb_class_superclass, 0);
02802     rb_define_alloc_func(rb_cClass, rb_class_s_alloc);
02803     rb_undef_method(rb_cClass, "extend_object");
02804     rb_undef_method(rb_cClass, "append_features");
02805 
02806     rb_cData = rb_define_class("Data", rb_cObject);
02807     rb_undef_alloc_func(rb_cData);
02808 
02809     rb_cTrueClass = rb_define_class("TrueClass", rb_cObject);
02810     rb_define_method(rb_cTrueClass, "to_s", true_to_s, 0);
02811     rb_define_method(rb_cTrueClass, "&", true_and, 1);
02812     rb_define_method(rb_cTrueClass, "|", true_or, 1);
02813     rb_define_method(rb_cTrueClass, "^", true_xor, 1);
02814     rb_undef_alloc_func(rb_cTrueClass);
02815     rb_undef_method(CLASS_OF(rb_cTrueClass), "new");
02816     /*
02817      * An alias of +true+
02818      */
02819     rb_define_global_const("TRUE", Qtrue);
02820 
02821     rb_cFalseClass = rb_define_class("FalseClass", rb_cObject);
02822     rb_define_method(rb_cFalseClass, "to_s", false_to_s, 0);
02823     rb_define_method(rb_cFalseClass, "&", false_and, 1);
02824     rb_define_method(rb_cFalseClass, "|", false_or, 1);
02825     rb_define_method(rb_cFalseClass, "^", false_xor, 1);
02826     rb_undef_alloc_func(rb_cFalseClass);
02827     rb_undef_method(CLASS_OF(rb_cFalseClass), "new");
02828     /*
02829      * An alias of +false+
02830      */
02831     rb_define_global_const("FALSE", Qfalse);
02832 
02833     id_eq = rb_intern("==");
02834     id_eql = rb_intern("eql?");
02835     id_match = rb_intern("=~");
02836     id_inspect = rb_intern("inspect");
02837     id_init_copy = rb_intern("initialize_copy");
02838     id_init_clone = rb_intern("initialize_clone");
02839     id_init_dup = rb_intern("initialize_dup");
02840 
02841     for (i=0; conv_method_names[i].method; i++) {
02842         conv_method_names[i].id = rb_intern(conv_method_names[i].method);
02843     }
02844 }
02845