Package ‘xnet’

October 14, 2022

Type Package
Title Two-Step Kernel Ridge Regression for Network Predictions
Version 0.1.11

Description Fit a two-step kernel ridge regression model for
predicting edges in networks, and carry out cross-validation
using shortcuts for swift and accurate performance assessment
(Stock et al, 2018 <doi:10.1093/bib/bby(095>).

Date 2020-02-03
BugReports https://github.com/CenterForStatistics-UGent/xnet/issues

URL https://github.com/CenterForStatistics-UGent/xnet
Depends R(>=3.4.0)

Imports methods, utils, graphics, stats, grDevices

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

Suggests testthat, knitr, rmarkdown, ChemmineR, covr, fmcsR
VignetteBuilder knitr

Collate 'Class_linearFilter.R' 'all_generics.R' 'Class_permtest.R'
'Class_tskrr.R' 'Class_tskrrHeterogeneous.R'
'Class_tskrrHomogeneous.R' 'Class_tskrrImpute.R'
'Class_tskrrImputeHeterogeneous.R'
'Class_tskrrlmputeHomogeneous.R' 'Class_tskrrTune.R'
'Class_tskrrTuneHeterogeneous.R' 'Class_tskrrTuneHomogeneous.R'
'as_tuned.R' 'create_grid.R' 'data_drugtarget.R’
'data_proteinInteraction.R' 'dim.R' 'eigen2hat.R' 'fitted.R’
'get_loo_fun.R' 'getloolInternal.R' 'getters_linearFilter.R'
'getters_permtest.R' 'getters_tskrr.R' 'getters_tskrrlmpute.R'
'getters_tskrrTune.R' 'hat.R' 'impute_tskrr.R'
'impute_tskrr.fit.R' 'internal_helpers.R' 'is_symmetric.R'
'labels.R' 'linear_filter.R' '100.R' 'looInternal.R' 'loss.R’

https://doi.org/10.1093/bib/bby095
https://github.com/CenterForStatistics-UGent/xnet/issues
https://github.com/CenterForStatistics-UGent/xnet

2 R topics documented:

"loss_functions.R' 'match_labels.R' ‘permtest.R' "plot.tskrr.R’
"‘plot_grid.R' 'predict.R' ‘prepare_lambdas.R' residuals.R’
'test_input.R' 'test_symmetry.R' 'tskrr.R' 'tskrr.fit.R’'

'tune.R' 'update.R' 'valid_dimensions.R' 'valid_labels.R'
'weights.R' 'xnet-package.R'

NeedsCompilation no

Author Joris Meys [cre, aut],
Michiel Stock [aut]

Maintainer Joris Meys <Joris.Meys@UGent.be>
Repository CRAN
Date/Publication 2020-02-03 19:30:02 UTC

R topics documented:

Xnet-package e e 3
alpha e 4
as_tuned L L e e e e e e e e 5
create_grid L 6
dim,tskrr-method L e 7
drugTargetInteraction e 7
eigen2hat 8
fitted.tsker e e e 9
get_loo_fun L e e 10
has_imputed_values L 12
hat . . . e e e 13
impute_tsKrr. e e e e e 13
impute_tskrr.fit Lo 15
IS_SYMMELTiC . . . o v o o ot e e e e e e e e e e e 16
Is_tunedo e 17
labels.tskrr e 18
linearFilter-class e e e e 19
linear_filter e 20
100 . . o e e e 21
loo_internal 22
10SS . . e e e 23
loss_functions e e e e e e e 25
match_labels e 26
PEIMUESt L e e e e e e e 27
permtest-class L. e e e 28
PErMULAtiONS e e e e e e e 29
PlOLESKIT L L e 30
plot_grid e e e e 32
predict.tskrro 33
proteinlnteraction oL 36
residuals L L e 37

response,tskrr-method L L L Lo oL 38

xnet-package 3

TEST_SYMMELTY o o v v i e 40

tSKIT . . L e 41
tskrr-class L 42
tskrrfit . . . L 43
tskrrHeterogeneous-classo Lo 44
tskrerHomogeneous-classo 45
tskrrlmpute-class oL 45
tskrrlmputeHeterogeneous-class oo 46
tskrrlmputeHomogeneous-classo oL 46
tskrrTune-class L 47
tskrrTuneHeterogeneous-classo 48
tskrrTuneHomogeneous-class 48

TUNE . . . ot e e e e e 48
update . ..o e e 51
valid_dimensions e e e e e 52
valid_labels e 53
weights,tskrrHeterogeneous-method o000 0oL 54
Index 56

xnet-package Two-step kernel ridge regression for network analysis
Description

This package implements the two-step kernel ridge regression model, a supervised network pre-

diction method that can be used for all kinds of network analyses. Examples are protein-protein
interaction, foodwebs, ...

Author(s)

Joris Meys and Michiel Stock

See Also

Send your bug reports to:

https://github.com/CenterForStatistics-UGent/xnet/issues

More background in the paper by Stock et al, 2018:

http://doi.org/10.1093/bib/bby095

https://github.com/CenterForStatistics-UGent/xnet/issues
http://doi.org/10.1093/bib/bby095

4 alpha

alpha Getters for linearFilter objects

Description

These functions allow you to extract slots from objects of the class linearFilter.
Usage

alpha(x)

na_removed(x)

S3 method for class 'linearFilter'
mean(x, ...)

S4 method for signature 'linearFilter'
mean(x, ...)

S4 method for signature 'linearFilter'
colMeans(x)

S4 method for signature 'linearFilter'
rowMeans (x)

S4 method for signature 'linearFilter'
alpha(x)

S4 method for signature 'linearFilter'
na_removed(x)

Arguments
X a linearFilter object
arguments passed to or from other methods.
Value

for mean: the mean of the original matrix

for colMeans: a numeric vector with the column means

for rowMeans: a numeric vector with the row means

for alpha: a numeric vector of length 4 with the alpha values.

for na_removed: alogical value indicating whether missing values were removed prior to the fitting
of the filter.

as_tuned 5

Examples

data(drugtarget)

1f <- linear_filter(drugTargetInteraction, alpha = 0.25)
alpha(lf)

mean (1f)

colMeans(1f)

na_removed(1f)

as_tuned convert tskrr models

Description

These functions allow converting models that inherit from the tskrr and tskrrTune class into each
other, keeping track of whether the model is homogeneous or heterogeneous. The dots argument
allows specifying values for possible extra slots when converting from tskrr to tskrrTune. More
information on these slots can be found on the help page of tskrrTune. These functions are not

exported.

Usage
as_tuned(x, ...)
as_tskrr(x, ...)

S4 method for signature 'tskrrHomogeneous'
as_tuned(x, ...)

S4 method for signature 'tskrrHeterogeneous'
as_tuned(x, ...)

S4 method for signature 'tskrrTune'
as_tskrr(x)

S4 method for signature 'tskrrImpute'
as_tskrr(x)

S4 method for signature 'tskrr'
as_tskrr(x)

Arguments

X a model of class tskrr

values for the extra slots defined by the class tskrrTune

6 create_grid

Value

For as_tuned: a tskrrTune object of the proper class (homogeneous or heterogeneous)

For as_tskrr: an object of class tskrrHomogeneous or tskrrHeterogeneous depending on whether
the original object was homogeneous or heterogeneous.

Warning
This functions do NOT tune a model. they are used internally to make the connection between both
types in the methods.

See Also

* tune for actually tuning a model.

* tskrrTune for names and possible values of the slots passed through ...

create_grid Create a grid of values for tuning tskrr

Description

This function creates a grid of values for tuning a tskrr model. The grid is equally spaced on a
logarithmic scale. Normally it’s not needed to call this method directly, it’s usually called from
tune.

Usage
create_grid(lim = c(1e-04, 10000), ngrid = 10)

Arguments
lim a numeric vector with 2 values giving the lower and upper limit for the grid.
ngrid the number of values that have to be produced. If this number is not integer, it is
truncated. The value should be 2 or larger.
Details

The 1im argument sets the boundaries of the domain in which the lambdas are sought. The lambda
values at which the function is evaluated, are calculated as:

exp(seq(log(le-4), log(1e4), length.out = ngrid))

Value

a numeric vector with values evenly spaced on a logarithmic scale.

See Also

tune for tuning a tskrr model.

dim, tskrr-method 7

Examples

create_grid(lim = c(le-4, 1), ngrid = 5)

dim, tskrr-method Get the dimensions of a tskrr object

Description
These functions allow you to extract the dimensions of a tskrr object. These dimensions are essen-
tially the dimensions of the label matrix y.
Usage
S4 method for signature 'tskrr'
dim(x)
Arguments

X a tskrr object.

Value

a vector with two values indicating the number of rows and the number of columns.

Examples

data(drugtarget)

mod <- tskrr(drugTargetInteraction, targetSim, drugSim)
dim(mod)

nrow(mod)

ncol (mod)

drugTargetInteraction drug target interactions for neural receptors

Description
A dataset for examining the interaction between 54 drugs and 26 neural receptors. It consists of
three different matrices.

Usage

drugTargetInteraction

8 eigenZhat

Format

* for drugTargetInteraction: a numeric matrix of 26 rows by 54 columns.
* For drugSim: a numeric square matrix with 54 rows/columns.

* For targetSim: a numeric square matrix with 26 rows/columns.

Details

The dataset consists of the following objects :

e drugTargetInteraction: a matrix indicating whether or not a certain drug compound interacts
with a certain neural receptor.

* targetSim: a similarity matrix for the neural receptors.

 drugSim: a similarity matrix for the drugs
The data originates from Yamanishi et al (2008) but was partly reworked to be suitable for two-step
kernel ridge regression. This is explained in detail in the Preparation of the example data vignette.
Source

https://doi.org/10.1093/bioinformatics/btn162

References

Yamanishi et al, 2008 : Prediction of drug-target interaction networks from the integration of chem-
ical and genomic spaces.

eigen2hat Calculate the hat matrix from an eigen decomposition

Description

These functions calculate either the hat matrix, the mapping matrix or the original (kernel) matrix
for a two-step kernel ridge regression, based on the eigendecomposition of the kernel matrix.

Usage

eigen2hat(eigen, val, lambda)
eigen2map(eigen, val, lambda)

eigen2matrix(eigen, val)

Arguments
eigen a matrix with the eigenvectors.
val an numeric vector with the eigenvalues.

lambda a single numeric value for the hyperparameter lambda

../doc/Preparation_example_data.html
https://doi.org/10.1093/bioinformatics/btn162
https://doi.org/10.1093/bioinformatics/btn162

fitted.tskrr 9

Details

For the hat matrix, this boils down to:
US(Z+ M)~ to”
For the map matrix, this is :
U+~ ut
with U the matrix with eigenvectors, > a diagonal matrix with the eigenvalues on the diagonal, I the
identity matrix and \ the hyperparameter linked to this kernel. The internal calculation is optimized

to avoid having to invert a matrix. This is done using the fact that ¥ is a diagonal matrix.

Value

a numeric matrix representing either the hat matrix (eigen2hat), the map matrix (eigen2map) or
the original matrix (eigen2matrix)

fitted. tskrr extract the predictions

Description

This functions extracts the fitted predictions from a tskrr object or an object inheriting from that
class. The xnet package provides an S4 generic for the function fitted from the package stats,
and a method for tskrr objects.

Usage
S3 method for class 'tskrr'
fitted(object, labels = TRUE, ...)

S3 method for class 'linearFilter'
fitted(object, ...)

S4 method for signature 'tskrr'
fitted(object, labels = TRUE, ...)

S4 method for signature 'linearFilter'

fitted(object, ...)
Arguments
object an object for which the extraction of model fitted values is meaningful.
labels a logical value indicating whether the labels should be shown. Defaults to TRUE

arguments passed to or from other methods.

10 get_loo_fun

Value

a numeric matrix with the predictions

Examples

data(drugtarget)

mod <- tskrr(drugTargetInteraction, targetSim, drugSim)
pred <- fitted(mod)

get_loo_fun Retrieve a loo function

Description
This function returns the correct function needed to perform one of the leave-one-out cross-validations.
It’s primarily meant for internal use but can be useful when doing simulations.

Usage
get_loo_fun(x, ...)

S4 method for signature 'tskrrHeterogeneous'
get_loo_fun(

X’
exclusion = c("interaction”, "row"”, "column”, "both"),
replaceby® = FALSE

)

S4 method for signature 'tskrrHomogeneous'
get_loo_fun(

X’
exclusion = c("edges”, "vertices”, "interaction”, "both"),
replaceby® = FALSE

)

S4 method for signature 'linearFilter'
get_loo_fun(x, replaceby@® = FALSE)

S4 method for signature 'character'
get_loo_fun(
x = c("tskrrHeterogeneous"”, "tskrrHomogeneous"”, "linearFilter"),

get_loo_fun 11

S4 method for signature 'tskrrTune'

get_loo_fun(x, ...)
Arguments
X a character value with the class or a tskrr or linearFilter object.

arguments passed to or from other methods.

" "

exclusion a character value with possible values "interaction", "row", "column", "both"
" "s

for heterogeneous models, and "edges", "vertices", "interaction" or "both" for
homogeneous models. Defaults to "interaction". See details.

replaceby@ a logical value indicating whether the interaction should be simply removed
(FALSE) or replaced by O (TRUE).

Details

This function can be used to select the correct loo function in a simulation or tuning algorithm, based
on the model object you created. Depending on its class, the returned functions will have different
arguments, so you should only use this if you know what you’re doing and after you checked the
actual returned functions in loo_internal.

Using replaceby® only makes sense if you only remove the interaction. In all other cases, this
argument is ignored.

For the class tskrrHomogeneous, it doesn’t make sense to remove rows or columns. If you chose
this option, the function will throw an error. Removing edges corresponds to the setting "edges" or
"interaction". Removing vertices corresponds to the setting "vertices" or "both". These terms can
be used interchangeably.

For the class linearFilter it only makes sense to exclude the interaction (i.e., a single cell).
Therefore you do not have an argument exclusion for that method.

For the classes tskrrTune and tskrrImpute, not specifying exclusion or replaceby®@ returns the
used loo function. If you specify either of them, it will use the method for the appropriate model
and return a new loo function.

Value

a function taking the arguments y, and possibly pred for calculating the leave-one-out cross-validation.
For class tskrrHeterogeneous, the returned function also has an argument Hk and Hg, represent-
ing the hat matrix for the rows and the columns respectively. For class tskrrHomogeneous, only
the extra argument Hk is available. For class linearFilter, the extra argument is called alpha
and takes the alpha vector of that model.

See Also

loo for carrying out a leave on out crossvalidation, and 1oo_internal for more information on the
internal functions one retrieves with this one.

12 has_imputed_values

has_imputed_values Getters for tskrrlmpute objects

Description

The functions described here are convenience functions to get information out of a tskrrImpute
object.

Usage
has_imputed_values(x)
which_imputed(x)
is_imputed(x)

Arguments

X a tskrrImpute object or an object inheriting from tskrrImpute.

Value

For has_imputed_values: alogical value indicating whether the model has imputed values. If x is
not some form of a tskrr model, the function will return an error.

For which_imputed: a integer vector with the positions for which the values are imputed.

for is_imputed: a matrix of the same dimensions as the label matrix. It contains the value FALSE
at positions that were not imputed, and TRUE at positions that were.

Examples

data(drugtarget)
mod <- tskrr(drugTargetInteraction, targetSim, drugSim)

naid <- sample(length(drugTargetInteraction), 30)
drugTargetInteraction[naid] <- NA

impmod <- impute_tskrr(drugTargetInteraction, targetSim, drugSim)

has_imputed_values(mod)
has_imputed_values(impmod)

For illustration: extract imputed values
id <- is_imputed(impmod)
fitted(impmod)[id]

hat 13

hat Return the hat matrix of a tskrr model

Description

This function returns the hat matrix or hat matrices of a tskrr model. xnet creates an S4 generic for
hat and links the default method to the hat function of stats

Usage
hat(x, ...)

S4 method for signature 'tskrrHeterogeneous'
hat(x, which = c("row”, "column"))

S4 method for signature 'tskrrHomogeneous'

hat(x, ...)
Arguments
X a tskrr model
arguments passed to other methods.
which a character value with possible values "row" or "column" to indicate which
should be returned. For homogeneous models, this parameter is ignored.
Value

the requested hat matrix of the model.

impute_tskrr Impute missing values in a label matrix

Description

This function implements an optimization algorithm that allows imputing missing values in the
label matrix while fitting a tskrr model.

Usage

impute_tskrr(
Y,
k,
g = NULL,
lambda = 0.01,
testdim = TRUE,

14

impute_tskrr

testlabels = TRUE,
symmetry = c("auto”, "symmetric”, "skewed”),
keep = FALSE,

niter = 10000,
tol = sqrt(.Machine$double.eps),
start = mean(y, na.rm = TRUE),

verbose

Arguments

lambda

testdim

testlabels

symmetry

keep

niter

tol

start

verbose

Value

FALSE

a label matrix
a kernel matrix for the rows
an optional kernel matrix for the columns

a numeric vector with one or two values for the hyperparameter lambda. If two
values are given, the first one is used for the k matrix and the second for the g
matrix.

a logical value indicating whether symmetry and the dimensions of the kernel(s)
should be tested. Defaults to TRUE, but for large matrices putting this to FALSE
will speed up the function.

a logical value indicating wether the row- and column names of the matrices
have to be checked for consistency. Defaults to TRUE, but for large matrices
putting this to FALSE will speed up the function.

a character value with the possibilities "auto", "symmetric" or "skewed". In
case of a homogeneous fit, you can either specify whether the label matrix is
symmetric or skewed, or you can let the function decide (option "auto").

a logical value indicating whether the kernel hat matrices should be stored in the
model object. Doing so makes the model object quite larger, but can speed up
predictions in some cases. Defaults to FALSE.

an integer giving the maximum number of iterations

a numeric value indicating the tolerance for convergence of the algorithm. It is
the maximum sum of squared differences between to iteration steps.

a numeric value indicating the value with which NA’s are replaced in the first
step of the algorithm. Defaults to 0.

either a logical value, 1 or 2. 1 means "show the number of iterations and the
final deviation", 2 means "show the deviation every 10 iterations". A value TRUE
isread as 1.

A tskrr model of the class tskrrImputeHeterogeneous or tskrrImputeHomogeneous depending
on whether or not g has a value.

impute_tskrr.fit 15

Examples

data(drugtarget)

naid <- sample(length(drugTargetInteraction), 30)
drugTargetInteraction[naid] <- NA

impute_tskrr(drugTargetInteraction, targetSim, drugSim)

impute_tskrr.fit Impute values based on a two-step kernel ridge regression

Description
This function provides an interface for the imputation of values based on a tskrr model and is the
internal function used by impute_tskrr.

Usage

impute_tskrr.fit(y, Hk, Hg, naid = NULL, niter, tol, start, verbose)

Arguments
y a label matrix
Hk a hat matrix for the rows (see also eigen2hat on how to calculate them from an
eigen decomposition)
Hg a hat matrix for the columns. For homogeneous networks, this should be Hk
again.
naid an optional index with the values that have to be imputed, i.e. at which positions
you find a NA value. It can be a vector with integers or a matrix with TRUE/FALSE
values.
niter an integer giving the maximum number of iterations
tol a numeric value indicating the tolerance for convergence of the algorithm. It is
the maximum sum of squared differences between to iteration steps.
start a numeric value indicating the value with which NA’s are replaced in the first
step of the algorithm. Defaults to 0.
verbose either a logical value, 1 or 2. 1 means "show the number of iterations and the
final deviation", 2 means "show the deviation every 10 iterations". A value TRUE
isread as 1.
Details

This function is mostly available for internal use. In most cases, it makes much more sense to use
impute_tskrr, as that function returns an object one can work with. The function impute_tskrr.fit
could be useful when doing simulations or creating fitting algorithms.

16

Value

a list with two elements:

* a matrix y with the imputed values filled in.

¢ a numeric value niter with the amount of iterations

See Also

e impute_tskrr for the user-level function, and

* eigen2hat for conversion of a eigen decomposition to a hat matrix.

Examples

data(drugtarget)

K <- eigen(targetSim)
G <- eigen(drugSim)

Hk <- eigen2hat(K$vectors, K$values, lambda = 0.01)
Hg <- eigen2hat(G$vectors, G$values, lambda = 0.05)

drugTargetInteraction[c(3,17,123)] <- NA
res <- impute_tskrr.fit(drugTargetInteraction, Hk, Hg,

niter = 1000, tol = 10e-10,
start = @, verbose = FALSE)

is_symmetric

is_symmetric Test symmetry of a matrix

Description

The function isSymmetric tests for symmetry of a matrix but also takes row and column names into
account. This function is a toned-down (and slightly faster) version that ignores row and column

names. Currently, the function only works for real matrices, not complex ones.

Usage

is_symmetric(x, tol = 100 * .Machine$double.eps)

Arguments

X a matrix to be tested.

tol the tolerance for comparing the numbers.

is_tuned 17

Value

a logical value indicating whether or not the matrix is symmetric

Examples

x <- matrix(1:16,ncol = 4)
is_symmetric(x)

X <= X %*% t(x)
is_symmetric(x)

is_tuned Getters for tskrrTune objects

Description

The functions described here are convenience functions to get information out of a tskrrTune
object.

Usage

is_tuned(x)
get_grid(x)
get_loss_values(x)

has_onedim(x)

Arguments

X a tskrrTune object or an object inheriting from tskrrTune.

Value

For is_tuned: a logical value indicating whether the model is tuned.

For get_grid a list with the elements k and possibly g, each containing the different lambdas tried
in the tuning for the row and column kernel matrices respectively.

For get_loss_values a matrix with the calculated loss values. Note that each row represents the
result for one lambda value related to the row kernel matrix K. For heterogeneous models, every
column represents the result for one lambda related to the column kernel matrix G.

for is_onedim a single logical value telling whether the grid search in the object was onedimen-
sional.

18 labels.tskrr

Examples

data(drugtarget)

mod <- tskrr(drugTargetInteraction, targetSim, drugSim)
tuned <- tune(mod, ngrid = 10)

is_tuned(mod)
is_tuned(tuned)

Basic visualization of the grid.

gridvals <- get_grid(tuned)
z <- get_loss_values(tuned)

Not run:
image(gridvals$k,gridvals$g,log(z), log = 'xy',
xlab = "lambda k", ylab = "lambda g")
End(Not run)
labels. tskrr Extract labels from a tskrr object

Description

These functions allow you to extract the labels from a tskrr object. The function labels and the
function dimnames are aliases and do the exact same thing. The functions rownames and colnames
work like you would expect. Note that contrary to the latter two, labels will never return NULL. If
no labels are found, it will construct labels using the prefixes defined in the argument prefix.

Usage
S3 method for class 'tskrr'
labels(
object,
prefix = if (is_homogeneous(object)) "row" else c("row"”, "col"),
)
S4 method for signature 'tskrr'
labels(
object,
prefix = if (is_homogeneous(object)) "row" else c("row”, "col"),

linearFilter-class 19

S4 method for signature 'tskrr'
dimnames(x)

S4 method for signature 'tskrr'
rownames(x, do.NULL = TRUE, prefix = "row")

S4 method for signature 'tskrr'
colnames(x, do.NULL = TRUE, prefix = "col")

Arguments
object a tskrr object
prefix a prefix used for construction of the labels in case none are available. For 1abel,
a character vector of length 1 for homogeneous networks or of length 2 for
heterogeneous networks. In case two values are given, the first is used for the
rows and the second for the columns. Otherwise the only value is used for both.
In the case of rownames and colnames, a single value. See also row+colnames
arguments passed to/from other methods.
X a tskrr object
do.NULL logical. If FALSE and labels are NULL, labels are created. If TRUE, the function
returns NULL in the absence of labels.
Value

for 1abels and dimnames: a list with two elements k and g

Warning

If the original data didn’t contain row- or column names for the label matrix, rownames and colnames
will return NULL. Other functions will extract the automatically generated labels, so don’t count on
rownames and colnames if you want to predict output from other functions!

linearFilter-class Class linearFilter

Description

The class represents the outcome of a linear filter, and is normally generated by the function
linear_filter

Slots

y the original label matrix with responses.
alpha anumeric vector with the 4 alpha values of the model.
pred a matrix with the predictions

mean a numeric vector containing the global mean of y

20 linear_filter

colmeans anumeric vector containing the column means of y
rowmeans a numeric vector containing the row means of y.

na.rm a logical value indicating whether missing values were removed prior to the calculation of
the means.

See Also

linear_filter for creating a linear filter model, and getter fuctions for linearFilter.

linear_filter Fit a linear filter over a label matrix

Description

This function fits a linear filter over a label matrix. It calculates the row, column and total means,
and uses those to construct the linear filter.

Usage

linear_filter(y, alpha = .25, na.rm = FALSE)

Arguments
y a label matrix
alpha a vector with 4 alpha values, or a single alpha value which then is used for all 4
alphas.
na.rm a logical value indicating whether missing values should be removed before
calculating the row-, column- and total means.
Details

If there are missing values and they are removed before calculating the means, a warning is issued.
If na.rm = FALSE and there are missing values present, the outcome is, by definition, a matrix filled
with NA values.

Value

an object of class linearFilter

Examples

data(drugtarget)
linear_filter(drugTargetInteraction, alpha
linear_filter(drugTargetInteraction, alpha

0.25)
c(0.1,0.1,0.4,0.4))

loo

21

loo

Leave-one-out cross-validation for tskrr

Description

Perform a leave-one-out cross-validation for two-step kernel ridge regression based on the shortcuts
described in Stock et al, 2018. (http://doi.org/10.1093/bib/bby@95).

Usage

loo(x,

S4 method for signature 'tskrrHeterogeneous'

loo(
X)

exclusion

c("interaction”, "row", "column”, "both"),

replaceby® = FALSE

)

S4 method for signature 'tskrrHomogeneous'

loo(
X,

exclusion

c("edges"”, "vertices"”, "interaction”, "both"),

replaceby® = FALSE

)

S4 method for signature 'linearFilter'
loo(x, replaceby@® = FALSE)

Arguments

X

exclusion

replaceby@

Details

an object of class tskrr or linearFilter.

arguments passed to methods. See Details.
a character value with possible values "interaction", "row", "column", "both"
n n " "

for heterogeneous models, and "edges", "vertices", "interaction" or "both" for
homogeneous models. Defaults to "interaction". See details.

a logical value indicating whether the interaction should be simply removed
(FALSE) or replaced by O (TRUE).

The parameter exclusion defines what is left out. The value "interaction" means that a single
interaction is removed. In the case of a homogeneous model, this can be interpreted as the removal
of the interaction between two edges. The values "row" and "column" mean that all interactions for
a row edge resp. a column edge are removed. The value "both" removes all interactions for a row

and a column edge.

http://doi.org/10.1093/bib/bby095

22 loo_internal

In the case of a homogeneous model, "row" and "column" don’t make sense and will be replaced
by "both" with a warning. This can be interpreted as removing vertices, i.e. all interactions between
one edge and all other edges. Alternatively one can use "edges" to remove edges and "vertices" to
remove vertices. In the case of a homogeneous model, the setting "edges" translates to "interaction",
and "vertices" translates to "both". For more information, see Stock et al. (2018).

Replacing by 0 only makes sense when exclusion = "interaction” and the label matrix contains
only 0 and 1 values. The function checks whether the conditions are fulfilled and if not, returns an
error.

Value

a numeric matrix with the leave-one-out predictions for the model.
Examples
data(drugtarget)

mod <- tskrr(drugTargetInteraction, targetSim, drugSim,
lambda = ¢c(0.01,0.01))

delta <- loo(mod, exclusion = 'both') - response(mod)
delta® <- loo(mod, replaceby@® = TRUE) - response(mod)

loo_internal Leave-one-out cross-validation for two-step kernel ridge regression

Description

These functions implement different cross-validation scenarios for two-step kernel ridge regression.
It uses the shortcuts for leave-one-out cross-validation.

Usage
loo.i(Y, Hk, Hg, pred)

loo.i0o(Y, Hk, Hg, pred)
loo.r(Y, Hk, Hg, ...)
loo.c(Y, Hk, Hg, ...)
loo.b(Y, Hk, Hg, ...)
loo.e.sym(Y, Hk, pred)

loo.e.skew(Y, Hk, pred)

loss 23

loo.ed.sym(Y, Hk, pred)
loo.e0.skew(Y, Hk, pred)
loo.v(Y, Hk, ...)

loo.i.1f(Y, alpha, pred)

loo.i0.1f(Y, alpha, pred)

Arguments

Y the matrix with responses

Hk the hat matrix for the first kernel (rows of Y)

Hg the hat matrix for the second kernel (columns of Y)

pred the predictions

added to allow for specifying pred even when not needed.

alpha a vector of length 4 with the alpha values from a linearFilter model

Details

These functions are primarily for internal use and hence not exported. Be careful when using them,
as they do not perform any sanity check on the input. It is up to the user to make sure the input
makes sense.

Value

a matrix with the leave-one-out predictions

See Also

loo for the user-level function.

loss Calculate or extract the loss of a tskrr model

Description

This function allows calculating the loss of a tskrr model using either one of the functions defined
in loss_functions or a custom user function. If the model inherits from class tskrrTune and no
additional arguments are given, the loss is returned for the settings used when tuning. The function
can also be used to extract the original loss from a permtest object.

Usage

loss(x, ...)

S4 method for signature 'tskrr'
loss(
X,
fun = loss_mse,
exclusion = c("interaction”,
replaceby® = FALSE,
predictions = FALSE,

n

row”, "column”, "both"),

S4 method for signature 'tskrrTune'
loss(
X,
fun = loss_mse,
exclusion = c("interaction”,
replaceby® = FALSE,
predictions = FALSE,

n

row”, "column”, "both"),

)
S4 method for signature 'permtest'
loss(x, ...)
Arguments
X a model that inherits from class tskrr
extra arguments passed to the loss function in fun.
fun a function to be used for calculating the loss. This can also be a character value
giving the name of one of the loss functions provided in the package
exclusion a character value with possible values "interaction", "row", "column" or "both".
See also loo for more information.
replaceby@ a logical value indicating whether the interaction should be simply removed
(FALSE) or replaced by O (TRUE).
predictions a logical value to indicate whether the predictions should be used instead of
leave one out crossvalidation. If set to TRUE, the other arguments are ignored.
Value

a numeric value with the calculated loss

See Also

* loss_functions for possible loss functions

* tune for tuning a model based on loss functions

loss_functions 25

Examples

data(drugtarget)

mod <- tskrr(drugTargetInteraction, targetSim, drugSim)
loss(mod, fun = loss_auc)

tuned <- tune(mod, fun = loss_auc)

loss(tuned)
loss(tuned, fun = loss_mse)

loss_functions loss functions

Description

These functions can be used as loss functions in tune. Currently, two functions are provided: a
function calculating the classic mean squared error (loss_mse) and a function calculating 1 - AUC
(loss_auc).

Usage

loss_mse(Y, LOO, na.rm = FALSE)

loss_auc(Y, LOO)

Arguments
Y the label matrix with observed responses
LOO the leave-one-out crossvalidation (or predictions if you must). This one can be
calculated by the function loo.
na.rm a logical value
Details

The AUC is calculated by sorting the Y matrix based on the order of the values in the LOO matrix.
The false and true positive rates are calculated solely based on that ordering, which allows for values
in LOO outside the range [0,1]. It’s a naive implementation which is good enough for tuning, but
shouldn’t be used as a correct value for 1 - auc in case the values in LOO are outside the range [0,1].

Note

The function loss_auc should only be used for a Y matrix that contains solely the values 0 and 1.

26 match_labels

See Also

tune for application of the loss function

Examples

x <- ¢(1,0,0,1,0,0,1,0,1)

y <- ¢(0.8,-0.1,0.2,0.2,0.4,0.01,1.12,0.9,0.9)
loss_mse(x,y)

loss_auc(x,y)

match_labels Reorder the label matrix

Description

Reorders the label matrix based on the labels of the kernel matrices. In case there are no labels,
the original label matrix is returned, but with the labels in rows and cols as rownames and column
names respectively.

Usage

match_labels(y, rows, cols = NULL)

Arguments
y a matrix representing the label matrix.
rows a character vector with the labels for the rows or a matrix with rownames that
will be used as labels.
cols a character vector with the labels for the cols or a matrix with colnames that will
be used as labels. If NULL, rows will be used for both row and column labels.
Value

a matrix with the rows and columns reordered.

Examples

mat <- matrix(1:6, ncol = 2,
dimnames = list(c("b", "a", "d"),
C(”Ca”, Ilcbll))
)

match_labels(mat, c("a”,"b", "d"), c("ca","cb"))
#Using matrices

data(drugtarget)
out <- match_labels(drugTargetInteraction, targetSim, drugSim)

permtest 27

permtest Calculate the relative importance of the edges

Description

This function does a permutation-based evaluation of the impact of different edges on the final re-
sult. It does so by permuting the kernel matrices, refitting the model and calculating a loss function.

Usage

permtest(x, ...)

S3 method for class 'permtest'
print(x, digits = max(3L, getOption("digits”) - 3), ...)

S4 method for signature 'tskrrHeterogeneous'
permtest(

X,

n = 100,

permutation = c("both”, "row"”, "column"),

exclusion = c("interaction”, "row"”, "column”, "both"),

replaceby® = FALSE,

fun = loss_mse,

exact = FALSE

)
S4 method for signature 'tskrrHomogeneous'
permtest(

X,

n = 100,

permutation = c("both"),

exclusion = c("interaction”, "both"),

replaceby® = FALSE,
fun = loss_mse,
exact = FALSE

)

S4 method for signature 'tskrrTune'

permtest(x, permutation = c("both”, "row”, "column"), n = 100)
Arguments

X either a tskrr-class or a tskrrTune-class object

arguments passed to other methods
digits the number of digits shown in the output

n the number of permutations for every kernel matrix

28 permtest-class

permutation a character string that defines whether the row, column or both kernel matrices
should be permuted. Ignored in case of a homogeneous network

exclusion the exclusion to be used in the 1oo function. See also get_loo_fun

replaceby@ a logical value indicating whether loo removes a value in the leave-one-out

procedure or replaces it by zero. See also get_loo_fun.

fun a function (or a character string with the name of a function) that calculates the
loss. See also tune and loss_functions

exact a logical value that indicates whether or not an exact p-value should be calcu-
lated, or be approximated based on a normal distribution.
Details

The test involved uses a normal approximation. It assumes that under the null hypothesis, the loss
values are approximately normally distributed. The cumulative probability of a loss as small or
smaller than the one found in the original model, is calculated based on a normal distribution from
which the mean and sd are calculated from the permutations.

Value

An object of the class permtest.

Warning

It should be noted that this normal approximation is an ad-hoc approach. There’s no guarantee
that the actual distribution of the loss under the null hypothesis is normal. Depending on the loss
function, a significant deviation from the theoretic distribution can exist. Hence this functions
should only be used as a rough guidance in model evaluation.

Examples

Heterogeneous network
data(drugtarget)

mod <- tskrr(drugTargetInteraction, targetSim, drugSim)
permtest(mod, fun = loss_auc)

permtest-class Class permtest

Description

This class represents the permutation test outcomes. See also the function permtest.

permutations 29

Slots

orig_loss anumeric value with the original loss of the model.
perm_losses a numeric vector with the losses of the different permutations.
n the number of permutations

loss_function the function used to calculate the losses.

exclusion a character value indicating the exclusion setting used for the test

replaceby@ a locigal value that indicates whether the exclusion was done by replacing with zero.
See also loo.

permutation a character value that indicats in which kernel matrices were permuted.

pval a p value indicating how likely it is to find a smaller loss than the one of the model based on
a normal approximation.

exact a logical value indicating whether the P value was calculated exactly or approximated by
the normal distribution.

See Also

¢ the function permtest for the actual test.
* the function loo for the leave one out procedures

e the function t. test for the actual test

permutations Getters for permtest objects

Description

The functions described here are convenience functions to get information out of a permtest object.

Usage

permutations(x)

S4 method for signature 'permtest'

x[i]
Arguments
X a permtest object
i either a numeric vector, a logical vector or a character vector with the elements
that need extraction.
Value

the requested values

30 plot.tskrr

See Also

loss to extract the original loss value.

Examples

data(drugtarget)

mod <- tskrr(drugTargetInteraction, targetSim, drugSim)
ptest <- permtest(mod, fun = loss_auc)

loss(ptest)
ptest[c(2,3)]
permutations(ptest)

plot.tskrr plot a heatmap of the predictions from a tskrr model

Description

This function plots a heatmap of the fitted values in a tskrr model. The function is loosely based
on heatmap, but uses a different mechanism and adds a legend by default.

Usage
S3 method for class 'tskrr'
plot(
X’
dendro = c("both”, "row”, "col”, "none"),
which = c("fitted”, "loo", "response”, "residuals"),

n

exclusion = c("interaction”,
replaceby® = FALSE,

nbest = 0,

rows,

cols,

col = rev(heat.colors(20)),
breaks = NULL,

legend = TRUE,

row”, "column”, "both"),

main = NULL,
xlab = NULL,
ylab = NULL,

labRow = NULL,
labCol = NULL,
margins = c(5, 5),

plot.tskrr

Arguments
X

dendro

which

exclusion
replaceby®

nbest
rows
cols
col

breaks

legend
main
xlab
ylab
labRow

labCol

margins

Details

31

a tskrr model
a character value indicating whether a dendrogram should be constructed.

a character value indicating whether the fitted values, the leave-one-out values,
the original response values or the residuals should be plotted.

if which = "loo", this argument is passed to loo for the exclusion settings
if which = "loo", this argument is passed to loo.

a single integer value indicating the amount of best values that should be se-
lected. If 9, all data is shown.

a numeric or character vector indicating which rows should be selected from the
model.

a numeric or character vector indicating which columns should be selected from
the model.

a vector with colors to be used for plotting

a single value specifying the number of breaks (must be 1 more than number of
colors), or a numeric vector with the breaks used for the color code. If NULL, the
function tries to find evenly spaced breaks.

a logical value indicating whether or not the legend should be added to the plot.
a character value with a title for the plot

a character label for the X axis

a character label for the Y axis

a character vector with labels to be used on the rows. Note that these labels are
used as is (possibly reordered to match the dendrogram). They can replace the
labels from the model. Set to NA to remove the row labels.

the same as 1abRow but then for the columns.

a numeric vector with 2 values indicating the margins to be used for the row and
column labels (cfr par("mar"))

currently ignored

The function can select a part of the model for plotting. Either you specify rows and cols, or you
specify nbest. If nbest is specified, rows and cols are ignored. The n highest values are looked
up in the plotted values, and only the rows and columns related to these values are shown then. This
allows for a quick selection of the highest predictions.

Dendrograms are created by converting the kernel matrices to a distance, using

d(x,y) = K(x,x)"2 + K(y,y)*2 - 2*K(x,y)

with K being the kernel function. The resulting distances are clustered using hclust and converted
to a dendrogram using as.dendrogram.

32 plot_grid

Value
an invisible list with the following elements:
* val: the values plotted
* ddK: if a row dendrogram was requested, the row dendrogram
* ddG: if a column dendrogram was requested, the column dendrogram

* breaks: the breaks used for the color codes

¢ col: the colors used

See Also

tskrr, tune and 1link{impute_tskrr} to construct tskrr models.

Examples

data(drugtarget)
mod <- tskrr(drugTargetInteraction, targetSim, drugSim)

plot(mod)
plot(mod, dendro = "row"”, legend = FALSE)
plot(mod, col = rainbow(20), dendro = "none”, which = "residuals”)

plot(mod, labCol = NA, labRow = NA, margins = c(0.2,0.2))

plot_grid Plot the grid of a tuned tskrr model

Description

With this function, you can visualize the grid search for optimal lambdas from a tskrrTune object.
In the case of two-dimensional grid search, this function plots a contour plot on a grid, based on the
functions image and contour. For one-dimensional grid search, the function creates a single line
plot.

Usage

plot_grid(
X7
addlambda = TRUE,
lambdapars = list(col = "red"),
log = TRUE,
opts.contour = list(nlevels = 10),

predict.tskrr

Arguments

X

addlambda

lambdapars

log

opts.contour

Value

NULL invisibly

Examples

data(drugtarget)

33

an object that inherits from tskrrTune

a logical value indicating whether the lambda with the minimum loss should be
added to the plot. In case of a one dimensional plot, this adds a colored vertical
line. In the case of a two dimensional plot, this adds a colored point at the
minimum.

a list with named par values passed to the function abline or points for plot-
ting the best lambda value when addmin = TRUE.

a logical value indicating whether the lambdas should be plotted at a log scale
(the default) or not.

options passed to the function contour for 2D grid plots. Ignored for 1D grid
plots.

arguments passed to other functions. For a one dimensional plot, this will be the
function plot

One dimensional tuning
tunedld <- tune(drugTargetInteraction, targetSim, drugSim,

lim = c(1e-4,2), ngrid = 40,
fun = loss_auc, onedim = TRUE)

plot_grid(tunedid)
plot_grid(tunedld, lambdapars = list(col = "green”,

1ty = 1, lwd = 2),

log = FALSE, las = 2, main = "1D tuning")

Two dimensional tuning
tuned2d <- tune(drugTargetInteraction, targetSim, drugSim,

lim = c(1e-4,10), ngrid = 20,
fun = loss_auc)

plot_grid(tuned2d)

predict.tskrr

predict method for tskrr fits

34 predict.tskrr

Description

Obtains the predictions from a tskrr model for new data. To get the predictions on the training
data, use the function fitted or set both k and g to NULL.

Usage
S3 method for class 'tskrr'
predict(object, k = NULL, g = NULL, testdim = TRUE, ...)
S4 method for signature 'tskrr'
predict(object, k = NULL, g = NULL, testdim = TRUE, ...)
Arguments
object an object of class tskrr.
k a new K matrix or NULL. if NULL, the fitted values on the training data are re-
turned.
g anew G matrix or NULL. If NULL, K is used for both.
testdim a logical value indicating whether the dimensions should be checked prior to the
calculation. You can set this to FALSE but you might get more obscure errors if
dimensions don’t match.
arguments passed to or from other methods
Details

Predictions can be calculated between new vertices and the vertices used to train the model, between
new sets of vertices, or both. Which predictions are given, depends on the kernel matrices passed
to the function.

In any case, both the K and G matrix need the kernel values for every combination of the new
vertices and the vertices used to train the model. This is illustrated for both homogeneous and
heterogeneous networks in the examples.

To predict the links between a new set of vertices and the training vertices, you need to provide the
kernel matrix for either the K or the G set of vertices. If you want to predict the mutual links between
two new sets of vertices, you have to provide both the K and the G matrix. This is particularly
important for homogeneous networks: if you only supply the k argument, you will get predictions
for the links between the new vertices and the vertices on which the model is trained. So in order
to get the mutual links between the new vertices, you need to provide the kernel matrix as the value
for both the k and the g argument.

Value

a matrix with predicted values.

predict.tskrr 35

Warning

This function is changed in version 0.1.9 so it’s more consistent in how it expects the K and G
matrices to be ordered. Up to version 0.1.8 the new vertices should be on the rows for the K matrix
and on the columns for the G matrix. This lead to confusion.

If you’re using old code, you’ll get an error pointing this out. You need to transpose the G matrix
in the old code to make it work with the new version.

See Also

tskrr and tskrrTune for fitting the models.

Examples

Predictions for homogeneous networks
data(proteinInteraction)
idnew <- sample(nrow(Kmat_y2h_sc), 20)

trainY <- proteinInteraction[-idnew,-idnew]
trainK <- Kmat_y2h_sc[-idnew,-idnew]

testK <- Kmat_y2h_sc[idnew, - idnew]

mod <- tskrr(trainY, trainK, lambda = 0.1)
Predict interaction between test vertices
predict(mod, testK, testK)

Predict interaction between test and train vertices
predict(mod, testK)
predict(mod, g = testK)

Predictions for heterogeneous networks
data("drugtarget”)

idnewK <- sample(nrow(targetSim), 10)
idnewG <- sample(ncol(drugSim), 10)

trainY <- drugTargetInteraction[-idnewK, -idnewG]
trainK <- targetSim[-idnewK, -idnewK]
trainG <- drugSim[-idnewG, -idnewG]

testK <- targetSim[idnewK, -idnewK]
testG <- drugSim[idnewG, -idnewG]

mod <- tskrr(trainY, trainK, trainG, lambda = 0.01)
Predictions for new targets on drugs in model

predict(mod, testK)
Predictions for new drugs on targets in model

36 proteinlnteraction

predict(mod, g = testG)
Predictions for new drugs and targets
predict(mod, testK, testG)

proteinInteraction Protein interaction for yeast

Description

A dataset for examining the interaction between proteins of yeast. The dataset consists of the
following objects:

Usage

proteinInteraction

Format

* proteinInteraction: a numeric square matrix with 150 rows/columns

* Kmat_y2h_sc: a numeric square matrix with 150 rows/columns

Details

* proteinInteraction: the label matrix based on the protein network taken from the KEGG/PATHWAY
database

* Kmat_y2h_sc: a kernel matrix indicating similarity of proteins.

The proteins in the dataset are a subset of the 769 proteins used in Yamanishi et al (2004). The
kernel matrix used is the combination of 4 kernels: one based on expression data, one on protein
interaction data, one on localization data and one on phylogenetic profile. These kernels and their
combination are also explained in Yamanishi et al (2004).

Source

https://doi.org/10.1093/bioinformatics/bth910

References

Yamanishi et al, 2004: Protein network inference from multiple genomic data: a supervised ap-
proach.

https://doi.org/10.1093/bioinformatics/bth910
https://doi.org/10.1093/bioinformatics/bth910

residuals 37

residuals calculate residuals from a tskrr model

Description

This function returns the residuals for an object inheriting from class tskrr

Usage

residuals(object, ...)

S3 method for class 'tskrr'
residuals(
object,
method = c("predictions”, "loo"),
exclusion = c("interaction”, "row"”, "column”, "both"),
replaceby® = FALSE,

)
S4 method for signature 'tskrr'
residuals(

object,

method = c("predictions”, "loo"),

n

exclusion = c("interaction”,
replaceby® = FALSE,

row”, "column”, "both"),

)
Arguments
object a tskrr model
arguments passed from/to other methods.
method a character value indicating whether the residuals should be based on the pre-
dictions or on a leave-one-out crossvalidation.
exclusion a character value with possible values "interaction", "row", "column", "both"
for heterogeneous models, and "edges", "vertices", "interaction" or "both" for
homogeneous models. Defaults to "interaction". See details.
replaceby@ a logical value indicating whether the interaction should be simply removed
(FALSE) or replaced by O (TRUE).
Details

The parameter exclusion defines what is left out. The value "interaction" means that a single
interaction is removed. In the case of a homogeneous model, this can be interpreted as the removal
of the interaction between two edges. The values "row" and "column" mean that all interactions for

38 response, tskrr-method

a row edge resp. a column edge are removed. The value "both" removes all interactions for a row
and a column edge.

In the case of a homogeneous model, "row" and "column" don’t make sense and will be replaced
by "both" with a warning. This can be interpreted as removing vertices, i.e. all interactions between
one edge and all other edges. Alternatively one can use "edges" to remove edges and "vertices" to
remove vertices. In the case of a homogeneous model, the setting "edges" translates to "interaction",
and "vertices" translates to "both". For more information, see Stock et al. (2018).

Replacing by 0 only makes sense when exclusion = "interaction” and the label matrix contains
only 0 and 1 values. The function checks whether the conditions are fulfilled and if not, returns an
error.

Value

a matrix(!) with the requested residuals

Examples

data(drugtarget)

mod <- tskrr(drugTargetInteraction, targetSim, drugSim,
lambda = c(0.01,0.01))

delta <- response(mod) - loo(mod, exclusion = "both")

resid <- residuals(mod, method = "loo", exclusion = "both")

all.equal(delta, resid)

response, tskrr-method Getters for tskrr objects

Description

The functions described here are convenience functions to get information out of a tskrr object.

Usage

S4 method for signature 'tskrr'
response(x, ...)

S4 method for signature 'tskrrHomogeneous'
lambda(x)

S4 method for signature 'tskrrHeterogeneous'
lambda(x)

is_tskrr(x)

is_homogeneous(x)

response, tskrr-method 39

is_heterogeneous(x)

symmetry(x)
get_eigen(x, which = c("row”, "column"))
get_kernelmatrix(x, which = c("row”, "column"))
has_hat (x)
get_kernel(x, which = c("row”, "column"))
Arguments
X a tskrr object or an object inheriting from tskrr.
arguments passed to other methods.
which a character value indicating whether the eigen decomposition for the row kernel
matrix or the column Kernel matrix should be returned.
Value

For response: the original label matrix

For 1lambda: a named numeric vector with one resp both lambda values used in the model. The
names are "k" and "g" respectively.

For is_tskrr alogical value indicating whether the object is a tskrr object
For is_homogeneous a logical value indicating whether the tskrr model is a homogeneous one.
For is_heterogeneous a logical value indicating whether the tskrr model is a heterogeneous one.

For symmetry a character value indicating the symmetry for a homogeneous model. If the model is
not homogeneous, NA is returned.

For get_eigen the eigen decomposition of the requested kernel matrix.
For get_kernelmatrix the original kernel matrix for the rows or columns.

For has_hat a logical value indicating whether the tskrr model contains the kernel hat matrices.

Warning

The function get_kernel is deprecated. Use get_kernelmatrix instead.
Examples
data(drugtarget)

mod <- tskrr(drugTargetInteraction, targetSim, drugSim)
is_homogeneous(mod)

EigR <- get_eigen(mod)
EigC <- get_eigen(mod, which = 'column')

40 test_symmetry

lambda(mod)

test_symmetry test the symmetry of a matrix

Description
This function tells you whether a matrix is symmetric, skewed symmetric, or not symmetric. It’s
used by tskrr to determine which kind of homologous network is represented by the label matrix.
Usage

test_symmetry(x, tol = .Machine$double.eps)

Arguments

X a matrix

tol a single numeric value with the tolerance for comparison
Value

)

a character value with the possible values "symmetric", "skewed" or "none".

See Also

tskrrHomogeneous for more information on the values for the slot symmetry

Examples

matl <- matrix(c(1,0,0,1),ncol = 2)
test_symmetry(mat1)

mat2 <- matrix(c(1,0,0,-1), ncol = 2)
test_symmetry(mat2)

mat3 <- matrix(1:4, ncol = 2)
test_symmetry(mat3)

tskrr 41

tskrr Fitting a two step kernel ridge regression

Description

tskrr is the primary function for fitting a two-step kernel ridge regression model. It can be used
for both homogeneous and heterogeneous networks.

Usage

tskrr(
Y,
k,
g = NULL,
lambda = 1e-04,
testdim = TRUE,
testlabels = TRUE,

symmetry = c("auto”, "symmetric”, "skewed"),
keep = FALSE
)
Arguments

y a label matrix

k a kernel matrix for the rows

g an optional kernel matrix for the columns

lambda a numeric vector with one or two values for the hyperparameter lambda. If two
values are given, the first one is used for the k matrix and the second for the g
matrix.

testdim a logical value indicating whether symmetry and the dimensions of the kernel(s)
should be tested. Defaults to TRUE, but for large matrices putting this to FALSE
will speed up the function.

testlabels a logical value indicating wether the row- and column names of the matrices
have to be checked for consistency. Defaults to TRUE, but for large matrices
putting this to FALSE will speed up the function.

symmetry a character value with the possibilities "auto", "symmetric" or "skewed". In
case of a homogeneous fit, you can either specify whether the label matrix is
symmetric or skewed, or you can let the function decide (option "auto").

keep a logical value indicating whether the kernel hat matrices should be stored in the
model object. Doing so makes the model object quite larger, but can speed up
predictions in some cases. Defaults to FALSE.

Value

a tskrr object

42 tskrr-class

See Also

response, fitted, get_eigen, eigen2hat

Examples

Heterogeneous network
data(drugtarget)
mod <- tskrr(drugTargetInteraction, targetSim, drugSim)

Y <- response(mod)
pred <- fitted(mod)

Homogeneous network
data(proteinInteraction)
modh <- tskrr(proteinInteraction, Kmat_y2h_sc)

Yh <- response(modh)
pred <- fitted(modh)

tskrr-class Class tskrr

Description

The class tskrr represents a two step kernel ridge regression fitting object, and is normally generated
by the function tskrr. This is a superclass so it should not be instantiated directly.

Slots

y the matrix with responses

k the eigen decomposition of the kernel matrix for the rows

lambda.k the lambda value used for k

pred the matrix with the predictions

has.hat alogical value indicating whether the kernel hat matrices are stored in the object.
Hk the kernel hat matrix for the rows.

labels alist with two character vectors, k and g, containing the labels for the rows resp. columns.
See tskrrHomogeneous and tskrrHeterogeneous for more details.

See Also

the classes tskrrHomogeneous and tskrrHeterogeneous for the actual classes.

tskrr.fit 43

tskrr.fit Carry out a two-step kernel ridge regression

Description

This function provides an interface for two-step kernel ridge regression. To use this function, you
need at least one kernel matrix and one label matrix. It’s the internal engine used by the function

tskrr.
Usage
tskrr.fit(y, k, g = NULL, lambda.k = NULL, lambda.g = NULL, ...)
Arguments
y a matrix representing the links between the nodes of both networks.
k an object of class eigen containing the eigen decomposition of the first kernel
matrix.
g an optional object of class eigen containing the eigen decomposition of the
second kernel matrix. If NULL, the network is considered to be homogeneous.
lambda.k a numeric value for the lambda parameter tied to the first kernel.
lambda.g a numeric value for the lambda parameter tied to the second kernel. If NULL, the
model is fit using the same value for lambda.k and lambda.g
arguments passed to other functions. Currently ignored.
Details

This function is mostly available for internal use. In most cases, it makes much more sense to use
tskrr, as that function returns an object one can work with. The function tskrr.fit could be
useful when doing simulations or fitting algorithms, as the information returned from this function
is enough to use the functions returned by get_loo_fun.

Value
a list with three elements:
¢ k : the hat matrix for the rows

* g : the hat matrix for the columns (or NULL) for homogeneous networks.

e pred : the predictions

44 tskrrHeterogeneous-class

Examples

data(drugtarget)

K <- eigen(targetSim)
G <- eigen(drugSim)

res <- tskrr.fit(drugTargetInteraction,K,G,
lambda.k = .01, lambda.g = 0.05)

tskrrHeterogeneous-class
Class tskrrHeterogeneous

Description

The class tskrrHeterogeneous is a subclass of the superclass tskrr specifically for heterogeneous
networks.

Slots

y the matrix with responses

k the eigen decomposition of the kernel matrix for the rows

lambda.k the lambda value used for k

pred the matrix with the predictions

g the eigen decomposition of the kernel matrix for the columns

lambda.g the lambda value used for g

has.hat alogical value indicating whether the kernel hat matrices are stored in the object.
Hk the kernel hat matrix for the rows.

Hg the kernel hat matrix for the columns.

labels a list with elements k and g (see tskrr-class). If any element is NA, the labels used are
integers indicating the row resp column number.

tskrrHomogeneous-class 45

tskrrHomogeneous-class
Class tskrrHomogeneous

Description

The class tskrrHomogeneous is a subclass of the superclass tskrr specifically for homogeneous
networks.

Slots

y the matrix with responses

k the eigen decomposition of the kernel matrix for the rows
lambda.k the lambda value used for k

pred the matrix with the predictions

symmetry a character value that can have the possible values "symmetric”, "skewed” or "not". It
indicates whether the y matrix is symmetric, skewed-symmetric or not symmetric.

has.hat alogical value indicating whether the kernel hat matrices are stored in the object.
Hk the kernel hat matrix for the rows.

labels alist with elements k and g (see tskrr-class). For homogeneous networks, g is always
NA. If k is NA, the labels used are integers indicating the row resp column number.

tskrrImpute-class Class tskrrImpute

Description

The class tskrrImpute is a virtual class that represents a tskrr model with imputed values in the
label matrix Y. Apart from the model, it contains the following extra information on the imputed
values.

Slots

imputeid a vector with integer values indicating which of the values in y are imputed
niter an integer value gving the number of iterations used

tol a numeric value with the tolerance used

46 tskrrImputeHomogeneous-class

tskrrImputeHeterogeneous-class
Class tskrrlmputeHeterogeneous

Description

The class tskrrImputeHeterogeneous is a subclass of the class tskrrHeterogeneous and tskrrImpute
specifically for heterogeneous networks with imputed values. It is the result of the function impute_tskrr.

Slots

y the matrix with responses

k the eigen decomposition of the kernel matrix for the rows

lambda.k the lambda value used for k

pred the matrix with the predictions

g the eigen decomposition of the kernel matrix for the columns

lambda.g the lambda value used for g

has.hat alogical value indicating whether the kernel hat matrices are stored in the object.
Hk the kernel hat matrix for the rows.

Hg the kernel hat matrix for the columns.

labels a list with elements k and g (see tskrr-class). If any element is NA, the labels used are
integers indicating the row resp column number.

imputeid a vector with integer values indicating which of the values in y are imputed
niter an integer value gving the number of iterations used

tol anumeric value with the tolerance used

tskrrImputeHomogeneous-class
Class tskrrImputeHomogeneous

Description

The class tskrrImputeHomogeneous is a subclass of the class tskrrHomogeneous and tskrrImpute
specifically for homogeneous networks with imputed values. It is the result of the function impute_tskrr
on a homogeneous network model.

tskrrTune-class 47

Slots

y the matrix with responses

k the eigen decomposition of the kernel matrix for the rows
lambda.k the lambda value used for k

pred the matrix with the predictions

n o n

symmetry a character value that can have the possible values "symmetric”, "skewed” or "not”. It
indicates whether the y matrix is symmetric, skewed-symmetric or not symmetric.

has.hat alogical value indicating whether the kernel hat matrices are stored in the object.
Hk the kernel hat matrix for the rows.

labels alist with elements k and g (see tskrr-class). For homogeneous networks, g is always
NA. If k is NA, the labels used are integers indicating the row resp column number.

imputeid a vector with integer values indicating which of the values in y are imputed
niter an integer value gving the number of iterations used

tol a numeric value with the tolerance used

tskrrTune-class Class tskrrTune

Description

The class tskrrTune represents a tuned tskrr model, and is the output of the function tune. Apart
from the model, it contains extra information on the tuning procedure. This is a virtual class only.

Slots

lambda_grid a list object with the elements k and possibly g indicating the tested lambda values
for the row kernel K and - if applicable - the column kernel G. Both elements have to be
numeric.

best_loss anumeric value with the loss associated with the best lambdas

loss_values amatrix with the loss results from the searched grid. The rows form the X dimension
(related to the first lambda), the columns form the Y dimension (related to the second lambda
if applicable)

loss_function the used loss function
exclusion a character value describing the exclusion used

replaceby@ a logical value indicating whether or not the cross validation replaced the excluded
values by zero

onedim a logical value indicating whether the grid search was done in one dimension. For homo-
geneous networks, this is true by default.

See Also

* the function tune for the tuning itself

* the class tskrrTuneHomogeneous and tskrrTuneHeterogeneous for the actual classes.

48 tune

tskrrTuneHeterogeneous-class
Class tskrrTuneHeterogeneous

Description

The class tskrrTuneHeterogeneous represents a tuned Heterogeneous tskrr model. It inherits from
the classes tskrrHeterogeneous and tskrrTune.

tskrrTuneHomogeneous-class
Class tskrrTuneHomogeneous

Description

The class tskrrTuneHomogeneous represents a tuned homogeneous tskrr model. It inherits from
the classes tskrrHomogeneous and tskrrTune.

tune tune the lambda parameters for a tskrr

Description

This function lets you tune the lambda parameter(s) of a two-step kernel ridge regression model for
optimal performance. You can either tune a previously fitted tskrr model, or pass the label matrix
and kernel matrices to fit and tune a model in one go.

Usage
S4 method for signature 'tskrrHomogeneous'
tune(
X}
lim = c(1e-04, 1),
ngrid = 10,

lambda = NULL,
fun = loss_mse,
exclusion = "edges”,
replaceby® = FALSE,
onedim = TRUE,

S4 method for signature 'tskrrHeterogeneous'

tune

tune(
X’

49

lim = c(1e-04, 1),

ngrid = 10,
NULL,

lambda

fun = loss_mse,
exclusion = "interaction”,
replaceby@® = FALSE,

onedim = FALSE,
)
S4 method for signature 'matrix’
tune(

X)

k,

g = NULL,

lim = c(1e-04, 1),

ngrid = 10,

lambda = NULL,
fun = loss_mse,

exclusion = "interaction”,

replaceby® = FALSE,
testdim = TRUE,
testlabels = TRUE,

symmetry = c("auto”, "symmetric”, "skewed"),

keep = FALSE,
onedim = is.null(g),

Arguments

X

lim

ngrid

lambda

fun

exclusion

a tskrr object representing a two step kernel ridge regression model.

a vector with 2 values that give the boundaries for the domain in which lambda
is searched, or possibly a list with 2 elements. See details

a single numeric value giving the number of points in a single dimension of the
grid, or possibly a list with 2 elements. See details.

a vector with the lambdas that need checking for homogeneous networks, or
possibly a list with two elements for heterogeneous networks. See Details. De-
faults to NULL, which means that the function constructs the search grid from the
other arguments.

a loss function that takes the label matrix Y and the result of the crossvalidation
LOO as input. The function name can be passed as a character string as well.
a character value with possible values "interaction", "row", "column", "both"

for heterogeneous models, and "edges", "vertices", "interaction" or "both" for
homogeneous models. Defaults to "interaction". See details.

50

tune
replaceby@ a logical value indicating whether the interaction should be simply removed
(FALSE) or replaced by O (TRUE).
onedim a logical value indicating whether the search should be done in a single dimen-
sion. See details.
arguments to be passed to the loss function
k a kernel matrix for the rows
g an optional kernel matrix for the columns
testdim a logical value indicating whether symmetry and the dimensions of the kernel(s)

should be tested. Defaults to TRUE, but for large matrices putting this to FALSE
will speed up the function.

testlabels a logical value indicating wether the row- and column names of the matrices
have to be checked for consistency. Defaults to TRUE, but for large matrices
putting this to FALSE will speed up the function.

symmetry a character value with the possibilities "auto", "symmetric" or "skewed". In
case of a homogeneous fit, you can either specify whether the label matrix is
symmetric or skewed, or you can let the function decide (option "auto").

keep a logical value indicating whether the kernel hat matrices should be stored in the
model object. Doing so makes the model object quite larger, but can speed up
predictions in some cases. Defaults to FALSE.

Details

This function currently only performs a simple grid search for all (combinations of) lambda values.
If no specific lambda values are provided, then the function uses create_grid to create an evenly
spaced (on a logarithmic scale) grid.

In the case of a heterogeneous network, you can specify different values for the two parameters
that need tuning. To do so, you need to provide a list with the settings for every parameter to the
arguments 1im, ngrid and/or lambda. If you try this for a homogeneous network, the function will
return an error.

Alternatively, you can speed up the grid search by searching in a single dimension. When onedim
= TRUE, the search for a heterogeneous network will only consider cases where both lambda values
are equal.

The arguments exclusion and replaceby® are used by the function get_loo_fun to find the cor-
rect leave-one-out function.

By default, the function uses standard mean squared error based on the cross-validation results as
a measure for optimization. However, you can provide a custom function if needed, as long as it
takes two matrices as input: Y being the observed interactions and LOO being the result of the chosen
cross-validation.

Value

a model of class tskrrTune

update 51

See Also

* loo, loo_internal and get_loo_fun for more information on how leave one out validation
works.

* tskrr for fitting a twostep kernel ridge regression.

e loss_functions for different loss functions.

Examples

data(drugtarget)

mod <- tskrr(drugTargetInteraction, targetSim, drugSim)
tuned <- tune(mod, lim = c(@.1,1), ngrid = list(5,10),
fun = loss_auc)

Not run:

This is just some visualization of the matrix
It can be run safely.

gridvals <- get_grid(tuned)

z <- get_loss_values(tuned) # loss values

image(gridvals$k,gridvals$g,z, log = 'xy',

xlab = "lambda k", ylab = "lambda g",
col = rev(heat.colors(20)))

End(Not run)

update Update a tskrr object with a new lambda

Description

This function allows you to refit a tskrr with a new lambda. It can be used to do manual tuning/cross-
validation. If the object has the hat matrices stored, these are updated as well.
Usage

update(object, ...)

S4 method for signature 'tskrrHomogeneous'
update(object, lambda)

S4 method for signature 'tskrrHeterogeneous'
update(object, lambda)

52 valid_dimensions

Arguments
object a tskrr object
arguments passed to methods
lambda a numeric vector with one or two values for the hyperparameter lambda. If two
values are given, the first one is used for the k matrix and the second for the g
matrix.
Value

an updated tskrr object fitted with the new lambdas.

Examples

data(drugtarget)
mod <- tskrr(drugTargetInteraction, targetSim, drugSim)

Update with the same lambda
mod2 <- update(mod, lambda = 1e-3)

Use different lambda for rows and columns
mod3 <- update(mod, lambda = c(0.01,0.001))

A model with the hat matrices stored

lambda <- ¢(0.001,0.01)

modkeep <- tskrr(drugTargetInteraction, targetSim, drugSim, keep = TRUE)
Hk_1 <- hat(modkeep, which = "row")

modkeep2 <- update(modkeep, lambda = lambda)

Hk_2 <- hat(modkeep2, which = "row")

Calculate new hat matrix by hand:

decomp <- get_eigen(modkeep, which = "row")
Hk_byhand <- eigen2hat(decomp$vectors,
decomp$values,

lambda = lambda[1])
identical (Hk_2, Hk_byhand)

valid_dimensions Functions to check matrices

Description

These functions allow you to check whether the dimensions of the label matrix and the kernel matrix
(matrices) are compatible. valid_dimensions checks whether both k and g are square matrices,
whether y has as many rows as k and whether y has as many columns as g. is_square checks
whether both dimensions are the same.

valid_labels 53

Usage

valid_dimensions(y, k, g = NULL)

is_square(x)

Arguments
y a label matrix
k a kernel matrix
g an optional second kernel matrix or NULL otherwise.
X any matrix
Value

a logical value indicating whether the dimensions of the matrices are compatible for a two step
kernel ridge regression.

Note

The function is_square is not exported

valid_labels Test the correctness of the labels.

Description

This function checks whether the labels between the Y, K, and G matrices make sense. This means
that all the labels found as rownames for y can be found as rownames and column names of k, and
all the colnames for y can be found as rownames and colnames of g (if provided).

Usage

valid_labels(y, k, g = NULL)

Arguments
y the label matrix
k the kernel matrix for the rows
g the kernel matrix for the columns (optional). If not available, it takes the value

NULL

54 weights, tskrrHeterogeneous-method

Details

Compatible labels mean that it is unequivocally clear which rows and columns can be linked
throughout the model. In case none of the matrices have row- or colnames, the labels are con-
sidered compatible. In all other cases, all matrices should have both row and column names. They
should fulfill the following conditions:

e the row- and column names of a kernel matrix must contain the same values in the same order.
Otherwise, the matrix can’t be symmetric.

¢ the rownames of y should correspond to the rownames of k

* the colnames of y should correspond to the colnames of g if it is supplied, or the colnames of
k in case g is NULL

Value

TRUE if all labels are compatible, an error otherwise.

Note

This is a non-exported convenience function.

weights, tskrrHeterogeneous-method
Extract weights from a tskrr model

Description

This function calculates the weight matrix for calculating the predictions of a tskrr model.

Usage

S4 method for signature 'tskrrHeterogeneous'
weights(object)

S4 method for signature 'tskrrHomogeneous'
weights(object)

Arguments

object a tskrr object for which the weights have to be calculated.

Details

The weight matrix is calculated from the map matrices through the function eigen2map.

Value

a matrix with the weights for the tskrr model.

weights, tskrrHeterogeneous-method

Note

The package xnet adds a S4 generic function for weights.

55

Index

+ datasets
drugTargetInteraction, 7
proteinInteraction, 36
[,permtest-method (permutations), 29

abline, 33

alpha, 4

alpha,linearFilter-method (alpha), 4

as.dendrogram, 3/

as_tskrr (as_tuned), 5

as_tskrr, tskrr-method (as_tuned), 5

as_tskrr, tskrrIimpute-method (as_tuned),
5

as_tskrr, tskrrTune-method (as_tuned), 5

as_tuned, 5

as_tuned, tskrrHeterogeneous-method
(as_tuned), 5

as_tuned, tskrrHomogeneous-method
(as_tuned), 5

colMeans,linearFilter-method (alpha), 4
colnames, tskrr-method (labels. tskrr), 18
contour, 32, 33

create_grid, 6, 50

dim, tskrr-method, 7

dim. tskrr (dim, tskrr-method), 7
dimnames, tskrr-method (labels. tskrr), 18
dimnames. tskrr (labels. tskrr), 18
drugSim (drugTargetInteraction), 7
drugtarget (drugTargetInteraction), 7
drugTargetInteraction, 7

eigen, 43

eigenzhat, 8, 15, 16, 42
eigen2map, 54

eigen2map (eigen2hat), 8
eigen2matrix (eigen2hat), 8
Extract-permtest (permutations), 29

fitted, 9, 34, 42

56

fitted,linearFilter-method
(fitted.tskrr),9

fitted, tskrr-method (fitted. tskrr), 9

fitted.linearFilter (fitted.tskrr),9

fitted.tskrr,9

get_eigen, 42
get_eigen (response, tskrr-method), 38
get_grid (is_tuned), 17
get_kernel (response, tskrr-method), 38
get_kernelmatrix
(response, tskrr-method), 38
get_loo_fun, 10, 28, 43, 50, 51
get_loo_fun, character-method
(get_loo_fun), 10
get_loo_fun,linearFilter-method
(get_loo_fun), 10
get_loo_fun, tskrrHeterogeneous-method
(get_loo_fun), 10
get_loo_fun, tskrrHomogeneous-method
(get_loo_fun), 10
get_loo_fun, tskrrTune-method
(get_loo_fun), 10
get_loss_values (is_tuned), 17
getters_linearFilter (alpha), 4

has_hat (response, tskrr-method), 38
has_imputed_values, 12

has_onedim (is_tuned), 17

hat, 13, 13

hat, tskrrHeterogeneous-method (hat), 13
hat, tskrrHomogeneous-method (hat), 13
hclust, 37

heatmap, 30

image, 32
impute_tskrr, 13, 15, 16, 46
impute_tskrr.fit, 15
is_heterogeneous

(response, tskrr-method), 38

INDEX

is_homogeneous (response, tskrr-method),
38

is_imputed (has_imputed_values), 12

is_square (valid_dimensions), 52

is_symmetric, 16

is_tskrr (response, tskrr-method), 38

is_tuned, 17

isSymmetric, 16

Kmat_y2h_sc (proteinInteraction), 36

labels, tskrr-method (labels. tskrr), 18

labels. tskrr, 18

lambda (response, tskrr-method), 38

lambda, tskrrHeterogeneous-method
(response, tskrr-method), 38

lambda, tskrrHomogeneous-method
(response, tskrr-method), 38

linear_filter, 19, 20, 20

linearFilter,4, 11,20, 21, 23

linearFilter (linearFilter-class), 19

linearFilter-class, 19

loo, 11,21, 23, 24,28, 29, 31,51

loo,linearFilter-method (loo), 21

loo, tskrrHeterogeneous-method (1oo), 21

loo, tskrrHomogeneous-method (1loo), 21

loo.b (loo_internal), 22

loo.c (loo_internal), 22

loo.e.skew (loo_internal), 22

loo.e.sym(loo_internal), 22

loo.e0.skew (loo_internal), 22

loo.e@.sym(loo_internal), 22

loo.i(loo_internal), 22

100.i0 (loo_internal), 22

loo.r (loo_internal), 22

loo.v (loo_internal), 22

loo_internal, /1,22, 51

loss, 23, 30

loss,permtest-method (loss), 23

loss, tskrr-method (loss), 23

loss, tskrrTune-method (loss), 23

loss_auc (loss_functions), 25

loss_functions, 23, 24, 25, 28, 51

loss_mse (loss_functions), 25

match_labels, 26
mean, linearFilter-method (alpha), 4
mean.linearFilter (alpha), 4

na_removed (alpha), 4

57

na_removed, linearFilter-method (alpha),
4

par, 33

permtest, 23, 27, 28, 29

permtest, tskrrHeterogeneous-method
(permtest), 27

permtest, tskrrHomogeneous-method
(permtest), 27

permtest, tskrrTune-method (permtest), 27

permtest-class, 28

permutations, 29

plot, 33

plot.tskrr, 30

plot_grid, 32

points, 33

predict, tskrr-method (predict. tskrr), 33

predict.tskrr, 33

print.permtest (permtest), 27

proteinInteraction, 36

residuals, 37

residuals, tskrr-method (residuals), 37
residuals. tskrr (residuals), 37
response, 42

response (response, tskrr-method), 38
response, tskrr-method, 38
row+colnames, /9

rowMeans, linearFilter-method (alpha), 4
rownames, tskrr-method (labels. tskrr), 18

symmetry (response, tskrr-method), 38

t.test, 29

targetSim (drugTargetInteraction), 7

test_symmetry, 40

tskrr, 5-7,9,11, 12,15, 18, 19, 21, 24, 30,
32,34, 35,3741, 41, 42-45, 4749,
51, 52, 54

tskrr-class, 42

tskrr.fit, 43

tskrrHeterogeneous, 6, 42, 46, 48

tskrrHeterogeneous
(tskrrHeterogeneous-class), 44

tskrrHeterogeneous-class, 44

tskrrHomogeneous, 6, 40, 42, 46, 48

tskrrHomogeneous
(tskrrHomogeneous-class), 45

tskrrHomogeneous-class, 45

58 INDEX

tskrrImpute, 12, 46 xnet (xnet-package), 3
tskrrImpute (tskrrimpute-class), 45 xnet-package, 3
tskrrImpute-class, 45
tskrrImputeHeterogeneous, /4
tskrrImputeHeterogeneous
(tskrrImputeHeterogeneous-class),
46
tskrrImputeHeterogeneous-class, 46
tskrrImputeHomogeneous, 14
tskrrImputeHomogeneous
(tskrrImputeHomogeneous-class),
46
tskrrImputeHomogeneous-class, 46
tskrrTune, 5, 6, 17, 23, 32, 33, 35,48, 50
tskrrTune (tskrrTune-class), 47
tskrrTune-class, 47
tskrrTuneHeterogeneous
(tskrrTuneHeterogeneous-class),
48
tskrrTuneHeterogeneous-class, 48
tskrrTuneHomogeneous, 47
tskrrTuneHomogeneous
(tskrrTuneHomogeneous-class),
48
tskrrTuneHomogeneous-class, 48
tune, 6, 24-26, 28, 32,47, 48
tune,matrix-method (tune), 48
tune, tskrrHeterogeneous-method (tune),
48
tune, tskrrHomogeneous-method (tune), 48

update, 51

update, tskrrHeterogeneous-method
(update), 51

update, tskrrHomogeneous-method
(update), 51

valid_dimensions, 52
valid_labels, 53

weights, 55
weights
(weights, tskrrHeterogeneous-method),
54
weights, tskrrHeterogeneous-method, 54
weights, tskrrHomogeneous-method
(weights, tskrrHeterogeneous-method),
54
which_imputed (has_imputed_values), 12

	xnet-package
	alpha
	as_tuned
	create_grid
	dim,tskrr-method
	drugTargetInteraction
	eigen2hat
	fitted.tskrr
	get_loo_fun
	has_imputed_values
	hat
	impute_tskrr
	impute_tskrr.fit
	is_symmetric
	is_tuned
	labels.tskrr
	linearFilter-class
	linear_filter
	loo
	loo_internal
	loss
	loss_functions
	match_labels
	permtest
	permtest-class
	permutations
	plot.tskrr
	plot_grid
	predict.tskrr
	proteinInteraction
	residuals
	response,tskrr-method
	test_symmetry
	tskrr
	tskrr-class
	tskrr.fit
	tskrrHeterogeneous-class
	tskrrHomogeneous-class
	tskrrImpute-class
	tskrrImputeHeterogeneous-class
	tskrrImputeHomogeneous-class
	tskrrTune-class
	tskrrTuneHeterogeneous-class
	tskrrTuneHomogeneous-class
	tune
	update
	valid_dimensions
	valid_labels
	weights,tskrrHeterogeneous-method
	Index

