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vegan-package Community Ecology Package: Ordination, Diversity and Dissimilari-
ties

Description

The vegan package provides tools for descriptive community ecology. It has most basic functions
of diversity analysis, community ordination and dissimilarity analysis. Most of its multivariate tools
can be used for other data types as well.

Details

The functions in the vegan package contain tools for diversity analysis, ordination methods and
tools for the analysis of dissimilarities. Together with the labdsv package, the vegan package
provides most standard tools of descriptive community analysis. Package aded4 provides an alter-
native comprehensive package, and several other packages complement vegan and provide tools
for deeper analysis in specific fields. Package BiodiversityR provides a GUI for a large subset of
vegan functionality.

The vegan package is developed at GitHub (https://github.com/vegandevs/vegan/). GitHub
provides up-to-date information and forums for bug reports.

Most important changes in vegan documents can be read with news (package="vegan") and vi-
gnettes can be browsed with browseVignettes(”vegan”). The vignettes include a vegan FAQ,
discussion on design decisions, short introduction to ordination and discussion on diversity meth-
ods.

To see the preferable citation of the package, type citation("vegan"”).

Author(s)

The vegan development team is Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, Pierre Leg-
endre, Peter R. Minchin, R. B. O’Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens,
Helene Wagner. Many other people have contributed to individual functions: see credits in function
help pages.

Examples

#i## Example 1: Unconstrained ordination

## NMDS

data(varespec)

data(varechem)

ord <- metaMDS(varespec)

plot(ord, type = "t")

## Fit environmental variables

ef <- envfit(ord, varechem)

ef

plot(ef, p.max = 0.05)

### Example 2: Constrained ordination (RDA)
## The example uses formula interface to define the model
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data(dune)

data(dune.env)

## No constraints: PCA

mod@® <- rda(dune ~ 1, dune.env)

mod@

plot(mod@)

## All environmental variables: Full model

mod1 <- rda(dune ~ ., dune.env)

mod1

plot(mod1)

## Automatic selection of variables by permutation P-values

mod <- ordistep(modd, scope=formula(mod1))

mod

plot(mod)

## Permutation test for all variables

anova(mod)

## Permutation test of "type III" effects, or significance when a term

## is added to the model after all other terms

anova(mod, by = "margin")

## Plot only sample plots, use different symbols and draw SD ellipses

## for Managemenet classes

plot(mod, display = "sites”, type = "n")

with(dune.env, points(mod, disp = "si"”, pch = as.numeric(Management)))

with(dune.env, legend("topleft”, levels(Management), pch = 1:4,
title = "Management"”))

with(dune.env, ordiellipse(mod, Management, label = TRUE))

## add fitted surface of diversity to the model

ordisurf(mod, diversity(dune), add = TRUE)

### Example 3: analysis of dissimilarites a.k.a. non-parametric

### permutational anova

adonis2(dune ~ ., dune.env)

adonis2(dune ~ Management + Moisture, dune.env)

add1.cca Add or Drop Single Terms to a Constrained Ordination Model

Description

Compute all single terms that can be added to or dropped from a constrained ordination model.

Usage
## S3 method for class 'cca'
add1(object, scope, test = c("none"”, "permutation”),
permutations = how(nperm=199), ...)
## S3 method for class 'cca'
drop1(object, scope, test = c("none”, "permutation”),

permutations = how(nperm=199), ...)
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Arguments
object A constrained ordination object from cca, rda, dbrda or capscale.
scope A formula giving the terms to be considered for adding or dropping; see add1
for details.
test Should a permutation test be added using anova. cca.

permutations a list of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

Other arguments passed to add1.default, drop1.default, and anova. cca.

Details

With argument test = "none” the functions will only call add1.default or drop1.default. With
argument test = "permutation” the functions will add test results from anova.cca. Function
drop1.cca will call anova. cca with argument by = "margin”. Function add1. cca will implement
a test for single term additions that is not directly available in anova. cca.

Functions are used implicitly in step, ordiR2step and ordistep. The deviance.ccaand deviance.rda
used in step have no firm basis, and setting argument test = "permutation” may help in get-

ting useful insight into validity of model building. Function ordistep calls alternately drop1.cca

and add1.cca with argument test = "permutation” and selects variables by their permutation
P-values. Meticulous use of add1.cca and drop1.cca will allow more judicious model building.

The default number of permutations is set to a low value, because permutation tests can take a
long time. It should be sufficient to give a impression on the significances of the terms, but higher
values of permutations should be used if P values really are important.

Value

Returns a similar object as add1 and drop1.

Author(s)

Jari Oksanen

See Also

add1, drop1 and anova. cca for basic methods. You probably need these functions with step and
ordistep. Functions deviance.cca and extractAIC.cca are used to produce the other arguments
than test results in the output.

Examples

data(dune)
data(dune.env)
## Automatic model building based on AIC but with permutation tests

step(cca(dune ~ 1, dune.env), reformulate(names(dune.env)), test="perm")
## see ?ordistep to do the same, but based on permutation P-values
## Not run:

ordistep(cca(dune ~ 1, dune.env), reformulate(names(dune.env)))
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## End(Not run)

## Manual model building

## -- define the maximal model for scope
mbig <- rda(dune ~ ., dune.env)

## -- define an empty model to start with
m@ <- rda(dune ~ 1, dune.env)

## -- manual selection and updating
add1(m@, scope=formula(mbig), test="perm")
m@ <- update(m@, . ~ . + Management)
add1(m@, scope=formula(mbig), test="perm")
mo@ <- update(m@, . ~ . + Moisture)

## -- included variables still significant?

drop1(mo, test="perm")
add1(m@, scope=formula(mbig), test="perm")

adipart Additive Diversity Partitioning and Hierarchical Null Model Testing

Description

In additive diversity partitioning, mean values of alpha diversity at lower levels of a sampling hi-
erarchy are compared to the total diversity in the entire data set (gamma diversity). In hierarchical
null model testing, a statistic returned by a function is evaluated according to a nested hierarchical
sampling design (hiersimu).

Usage

adipart(...)

## Default S3 method:

adipart(y, x, index=c("richness”, "shannon", "simpson"),
weights=c("unif”, "prop"), relative = FALSE, nsimul=99,
method = "r2dtable”, ...)

## S3 method for class 'formula’

adipart(formula, data, index=c("richness”, "shannon”, "simpson”),
weights=c("unif”, "prop"), relative = FALSE, nsimul=99,
method = "r2dtable”, ...)

hiersimu(...)
## Default S3 method:

hiersimu(y, x, FUN, location = c("mean”, "median"),
relative = FALSE, drop.highest = FALSE, nsimul=99,
method = "r2dtable”, ...)

## S3 method for class 'formula’

hiersimu(formula, data, FUN, location = c("mean”, "median"),

relative = FALSE, drop.highest = FALSE, nsimul=99,
method = "r2dtable”, ...)
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Arguments

y
X

formula

data

index

weights

relative

nsimul

method

FUN

location

drop.highest

Details

A community matrix.

A matrix with same number of rows as in y, columns coding the levels of sam-
pling hierarchy. The number of groups within the hierarchy must decrease from
left to right. If x is missing, function performs an overall decomposition into
alpha, beta and gamma diversities.

A two sided model formula in the form y ~ x, where y is the community data
matrix with samples as rows and species as column. Right hand side (x) must be
grouping variables referring to levels of sampling hierarchy, terms from right to
left will be treated as nested (first column is the lowest, last is the highest level).
The formula will add a unique indentifier to rows and constant for the rows to
always produce estimates of row-level alpha and overall gamma diversities. You
must use non-formula interface to avoid this behaviour. Interaction terms are not
allowed.

A data frame where to look for variables defined in the right hand side of
formula. If missing, variables are looked in the global environment.

Character, the diversity index to be calculated (see Details).

Character, "unif” for uniform weights, "prop” for weighting proportional to
sample abundances to use in weighted averaging of individual alpha values
within strata of a given level of the sampling hierarchy.

Logical, if TRUE then alpha and beta diversity values are given relative to the
value of gamma for function adipart.

Number of permutations to use. If nsimul = @, only the FUN argument is evalu-
ated. It is thus possible to reuse the statistic values without a null model.

Null model method: either a name (character string) of a method defined in
make . commsim or a commsim function. The default "r2dtable” keeps row sums
and column sums fixed. See oecosimu for Details and Examples.

A function to be used by hiersimu. This must be fully specified, because cur-
rently other arguments cannot be passed to this function via . . ..

Character, identifies which function (mean or median) is to be used to calculate
location of the samples.

Logical, to drop the highest level or not. When FUN evaluates only arrays with
at least 2 dimensions, highest level should be dropped, or not selected at all.

Other arguments passed to functions, e.g. base of logarithm for Shannon diver-
sity, or method, thin or burnin arguments for oecosimu.

Additive diversity partitioning means that mean alpha and beta diversities add up to gamma diver-
sity, thus beta diversity is measured in the same dimensions as alpha and gamma (Lande 1996).
This additive procedure is then extended across multiple scales in a hierarchical sampling design
with ¢ = 1,2,3,...,m levels of sampling (Crist et al. 2003). Samples in lower hierarchical levels
are nested within higher level units, thus from ¢ = 1 to ¢ = m grain size is increasing under constant
survey extent. At each level ¢, «; denotes average diversity found within samples.
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At the highest sampling level, the diversity components are calculated as
ﬂm =79 —Qan

For each lower sampling level as
Bi = qiy1 —

Then, the additive partition of diversity is
m
Y=o+ Z Bi
i=1

Average alpha components can be weighted uniformly (weight="unif") to calculate it as simple
average, or proportionally to sample abundances (weight="prop") to calculate it as weighted aver-

age as follows
s
Q; = E Dijwij
j=1

where D;; is the diversity index and w;; is the weight calculated for the jth sample at the ith
sampling level.

The implementation of additive diversity partitioning in adipart follows Crist et al. 2003. It is
based on species richness (.5, not S — 1), Shannon’s and Simpson’s diversity indices stated as the
index argument.

The expected diversity components are calculated nsimul times by individual based randomisation
of the community data matrix. This is done by the "r2dtable” method in oecosimu by default.

hiersimu works almost in the same way as adipart, but without comparing the actual statistic
values returned by FUN to the highest possible value (cf. gamma diversity). This is so, because in
most of the cases, it is difficult to ensure additive properties of the mean statistic values along the
hierarchy.

Value

An object of class "adipart” or "hiersimu” with same structure as oecosimu objects.

Author(s)

Péter S6lymos, <solymos@ualberta.ca>

References

Crist, T.O., Veech, J.A., Gering, J.C. and Summerville, K.S. (2003). Partitioning species diversity
across landscapes and regions: a hierarchical analysis of «, g, and ~v-diversity. Am. Nat., 162,
734-743.

Lande, R. (1996). Statistics and partitioning of species diversity, and similarity among multiple
communities. Oikos, 76, 5-13.

See Also

See oecosimu for permutation settings and calculating p-values. multipart for multiplicative di-
versity partitioning.
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Examples

## NOTE: 'nsimul' argument usually needs to be >= 99
## here much lower value is used for demonstration

data(mite)
data(mite.xy)
data(mite.env)
## Function to get equal area partitions of the mite data
cutter <- function (x, cut = seq(@, 10, by = 2.5)) {
out <- rep(1, length(x))
for (i in 2:(length(cut) - 1))
out[which(x > cut[i] & x <= cut[(i + 1)1)] <- i
return(out)}
## The hierarchy of sample aggregation
levsm <- with(mite.xy, data.frame(
11=1:nrow(mite),
12=cutter(y, cut = seq(@, 10, by
13=cutter(y, cut = seq(@, 10, by
14=rep(1, nrow(mite))))
## Let's see in a map
par(mfrow=c(1,3))
plot(mite.xy, main="11", col=as.numeric(levsm$l1)+1, asp = 1)
plot(mite.xy, main="12", col=as.numeric(levsm$12)+1, asp = 1)
plot(mite.xy, main="13", col=as.numeric(levsm$13)+1, asp = 1)
par(mfrow=c(1,1))
## Additive diversity partitioning
adipart(mite, index="richness”, nsimul=19)
## the next two define identical models
adipart(mite, levsm, index="richness"”, nsimul=19)
adipart(mite ~ 12 + 13, levsm, index="richness"”, nsimul=19)
## Hierarchical null model testing
## diversity analysis (similar to adipart)
hiersimu(mite, FUN=diversity, relative=TRUE, nsimul=19)
hiersimu(mite ~ 12 + 13, levsm, FUN=diversity, relative=TRUE, nsimul=19)
## Hierarchical testing with the Morisita index
morfun <- function(x) dispindmorisita(x)$imst

2.5)),
5)),

hiersimu(mite ~., levsm, morfun, drop.highest=TRUE, nsimul=19)
adonis Permutational Multivariate Analysis of Variance Using Distance Ma-
trices
Description

Analysis of variance using distance matrices — for partitioning distance matrices among sources of
variation and fitting linear models (e.g., factors, polynomial regression) to distance matrices; uses a
permutation test with pseudo-F' ratios.
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Usage

adonis

adonis2(formula, data, permutations = 999, method = "bray”,
sqrt.dist = FALSE, add = FALSE, by = NULL,
parallel = getOption("mc.cores”), na.action = na.fail,

strata =

Arguments

formula

data

permutations

method

sgrt.dist
add

by

parallel

na.action

strata

Details

NULL, ...)

Model formula. The left-hand side (LHS) of the formula must be either a com-
munity data matrix or a dissimilarity matrix, e.g., from vegdist or dist. If the
LHS is a data matrix, function vegdist will be used to find the dissimilarities.
The right-hand side (RHS) of the formula defines the independent variables.
These can be continuous variables or factors, they can be transformed within the
formula, and they can have interactions as in a typical formula.

the data frame for the independent variables, with rows in the same order as the
community data matrix or dissimilarity matrix named on the LHS of formula.

a list of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

the name of any method used in vegdist to calculate pairwise distances if the
left hand side of the formula was a data frame or a matrix.

Take square root of dissimilarities. This often euclidifies dissimilarities.

Add a constant to the non-diagonal dissimilarities such that all eigenvalues are
non-negative in the underlying Principal Co-ordinates Analysis (see wecmdscale
for details). Choice "lingoes” (or TRUE) use the recommended method of Leg-
endre & Anderson (1999: “method 1) and "cailliez” uses their “method 2”.

by = NULL will assess the overall significance of all terms together, by = "terms”
will assess significance for each term (sequentially from first to last), setting by =
"margin” will assess the marginal effects of the terms (each marginal term anal-
ysed in a model with all other variables), by = "onedf” will analyse one-degree-
of-freedom contrasts sequentially. The argument is passed on to anova. cca.

Number of parallel processes or a predefined socket cluster. With parallel =
1 uses ordinary, non-parallel processing. The parallel processing is done with
parallel package.

Handling of missing values on the right-hand-side of the formula (see na.fail
for explanation and alternatives). Missing values are not allowed on the left-
hand-side. NB, argument subset is not implemented.

Groups within which to constrain permutations. The traditional non-movable
strata are set as Blocks in the permute package, but some more flexible alterna-
tives may be more appropriate.

Other arguments passed to vegdist.

adonis?2 is a function for the analysis and partitioning sums of squares using dissimilarities. The
function is based on the principles of McArdle & Anderson (2001) and can perform sequential,
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marginal and overall tests. The function also allows using additive constants or squareroot of dis-
similarities to avoid negative eigenvalues, but can also handle semimetric indices (such as Bray-
Curtis) that produce negative eigenvalues. The adonis?2 tests are identical to anova. cca of dbrda.
With Euclidean distances, the tests are also identical to anova. cca of rda.

The function partitions sums of squares of a multivariate data set, and they are directly analogous to
MANOVA (multivariate analysis of variance). McArdle and Anderson (2001) and Anderson (2001)
refer to the method as “permutational MANOVA” (formerly “nonparametric MANOVA”). Further,
as the inputs are linear predictors, and a response matrix of an arbitrary number of columns, they
are a robust alternative to both parametric MANOVA and to ordination methods for describing how
variation is attributed to different experimental treatments or uncontrolled covariates. The method
is also analogous to distance-based redundancy analysis and algorithmically similar to dbrda (Leg-
endre and Anderson 1999), and provides an alternative to AMOVA (nested analysis of molecular
variance, Excoffier, Smouse, and Quattro, 1992; amova in the ade4 package) for both crossed and
nested factors.

Value

The function returns an anova.cca result object with a new column for partial R?: This is the
proportion of sum of squares from the total, and in marginal models (by = "margin”) the R? terms
donotadd up to 1.

Note

Anderson (2001, Fig. 4) warns that the method may confound location and dispersion effects:
significant differences may be caused by different within-group variation (dispersion) instead of
different mean values of the groups (see Warton et al. 2012 for a general analysis). However, it
seems that adonis2 is less sensitive to dispersion effects than some of its alternatives (anosim,
mrpp). Function betadisper is a sister function to adonis?2 to study the differences in dispersion
within the same geometric framework.

Author(s)

Martin Henry H. Stevens and Jari Oksanen.

References

Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral
Ecology, 26: 32-46.

Excoffier, L., PE. Smouse, and J.M. Quattro. 1992. Analysis of molecular variance inferred from
metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction
data. Genetics, 131:479-491.

Legendre, P. and M.J. Anderson. 1999. Distance-based redundancy analysis: Testing multispecies
responses in multifactorial ecological experiments. Ecological Monographs, 69:1-24.

McArdle, B.H. and M.J. Anderson. 2001. Fitting multivariate models to community data: A com-
ment on distance-based redundancy analysis. Ecology, 82: 290-297.

Warton, D.I., Wright, T.W., Wang, Y. 2012. Distance-based multivariate analyses confound location
and dispersion effects. Methods in Ecology and Evolution, 3, 89-101.
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See Also

mrpp, anosim, mantel, varpart.

Examples

data(dune)

data(dune.env)

## default is overall (omnibus) test

adonis2(dune ~ Management*A1, data = dune.env)

## sequential tests

adonis2(dune ~ Management*A1, data = dune.env, by = "terms")

### Example of use with strata, for nested (e.g., block) designs.

dat <- expand.grid(rep=gl(2,1), NO3=factor(c(0,10)),field=gl(3,1) )

dat

Agropyron <- with(dat, as.numeric(field) + as.numeric(NO3)+2) +rnorm(12)/2
Schizachyrium <- with(dat, as.numeric(field) - as.numeric(NO3)+2) +rnorm(12)/2
total <- Agropyron + Schizachyrium

Y <- data.frame(Agropyron, Schizachyrium)

mod <- metaMDS(Y, trace = FALSE)

plot(mod)

### Ellipsoid hulls show treatment

with(dat, ordiellipse(mod, NO3, kind = "ehull"”, label = TRUE))

### Spider shows fields

with(dat, ordispider(mod, field, 1ty=3, col="red”, label = TRUE))

### Incorrect (no strata)

adonis2(Y ~ NO3, data = dat, permutations = 199)

## Correct with strata

with(dat, adonis2(Y ~ NO3, data = dat, permutations = 199, strata = field))

anosim Analysis of Similarities

Description

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant
difference between two or more groups of sampling units.

Usage
anosim(x, grouping, permutations = 999, distance = "bray", strata = NULL,
parallel = getOption("mc.cores"))
Arguments
X Data matrix or data frame in which rows are samples and columns are response

variable(s), or a dissimilarity object or a symmetric square matrix of dissimilar-
ities.
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grouping Factor for grouping observations.

permutations a list of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

distance Choice of distance metric that measures the dissimilarity between two observa-
tions. See vegdist for options. This will be used if x was not a dissimilarity
structure or a symmetric square matrix.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.
parallel Number of parallel processes or a predefined socket cluster. With parallel =
1 uses ordinary, non-parallel processing. The parallel processing is done with
parallel package.
Details

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant
difference between two or more groups of sampling units. Function anosim operates directly on
a dissimilarity matrix. A suitable dissimilarity matrix is produced by functions dist or vegdist.
The method is philosophically allied with NMDS ordination (monoMDS), in that it uses only the rank
order of dissimilarity values.

If two groups of sampling units are really different in their species composition, then compositional
dissimilarities between the groups ought to be greater than those within the groups. The anosim
statistic R is based on the difference of mean ranks between groups (r) and within groups (ryy):

R=(rs —rw)/(N(N = 1)/4)

The divisor is chosen so that R will be in the interval —1--- + 1, value 0 indicating completely
random grouping.

The statistical significance of observed R is assessed by permuting the grouping vector to obtain
the empirical distribution of R under null-model. See permutations for additional details on per-
mutation tests in Vegan. The distribution of simulated values can be inspected with the permustats
function.

The function has summary and plot methods. These both show valuable information to assess the
validity of the method: The function assumes that all ranked dissimilarities within groups have
about equal median and range. The plot method uses boxplot with options notch=TRUE and
varwidth=TRUE.

Value

The function returns a list of class "anosim” with following items:

call Function call.

statistic The value of ANOSIM statistic R

signif Significance from permutation.

perm Permutation values of R. The distribution of permutation values can be in-

spected with function permustats.
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class.vec Factor with value Between for dissimilarities between classes and class name
for corresponding dissimilarity within class.
dis.rank Rank of dissimilarity entry.
dissimilarity The name of the dissimilarity index: the "method” entry of the dist object.

control A list of control values for the permutations as returned by the function how.

Note

The anosim function can confound the differences between groups and dispersion within groups
and the results can be difficult to interpret (cf. Warton et al. 2012). The function returns a lot of
information to ease studying its performance. Most anosim models could be analysed with adonis2
which seems to be a more robust alternative.

Author(s)

Jari Oksanen, with a help from Peter R. Minchin.

References

Clarke, K. R. (1993). Non-parametric multivariate analysis of changes in community structure.
Australian Journal of Ecology 18, 117-143.

Warton, D.I., Wright, T.W., Wang, Y. 2012. Distance-based multivariate analyses confound location
and dispersion effects. Methods in Ecology and Evolution, 3, 89-101

See Also

mrpp for a similar function using original dissimilarities instead of their ranks. dist and vegdist
for obtaining dissimilarities, and rank for ranking real values. For comparing dissimilarities against
continuous variables, see mantel. Function adonis2 is a more robust alternative that should pre-
ferred.

Examples

data(dune)

data(dune.env)

dune.dist <- vegdist(dune)

dune.ano <- with(dune.env, anosim(dune.dist, Management))
summary (dune.ano)

plot(dune.ano)
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anova.cca Permutation Test for Constrained Correspondence Analysis, Redun-
dancy Analysis and Constrained Analysis of Principal Coordinates
Description

The function performs an ANOVA like permutation test for Constrained Correspondence Analysis
(cca), Redundancy Analysis (rda) or distance-based Redundancy Analysis (dbRDA, dbrda) to
assess the significance of constraints.

Usage

## S3 method for class 'cca'

anova(object,

., permutations = how(nperm=999),

by = NULL, model = c("reduced”, "direct”, "full"),
parallel = getOption("mc.cores"), strata = NULL,

cutoff =

1, scope = NULL)

## S3 method for class 'cca'
permutest(x, permutations = how(nperm = 99),
model = c("reduced”, "direct”, "full”), by = NULL, first = FALSE,

strata

Arguments

object

X

permutations

by

model

parallel

strata

NULL, parallel = getOption("mc.cores"), ...)

One or several result objects from cca, rda, dbrda or capscale. If there are
several result objects, they are compared against each other in the order they
were supplied. For a single object, a test specified in by or an overall test is
given.

A single ordination result object.

a list of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

Setting by = "axis"” will assess significance for each constrained axis, and set-
ting by = "terms” will assess significance for each term (sequentially from first
to last), and setting by = "margin” will assess the marginal effects of the terms
(each marginal term analysed in a model with all other variables), and by =
"onedf” will assess sequentially one-degree-of-freedom contrasts of split fac-
tors.

Permutation model: model="direct"” permutes community data, model="reduced”

permutes residuals of the community data after Conditions (partial model), model
= "full” permutes residuals after Conditions and Constraints.

Use parallel processing with the given number of cores.

An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata. It is an error to use
this when permutations is a matrix, or a how defines blocks. This is a legacy
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argument that will be deprecated in the future: use permutations =how(.. .,
blocks) instead.

cutoff Only effective with by="axis" where stops permutations after an axis equals or
exceeds the cutoff p-value.

scope Only effective with by="margin"” where it can be used to select the marginal
terms for testing. The default is to test all marginal terms in drop. scope.

first Analyse only significance of the first axis.

Parameters passed to other functions. anova. cca passes all arguments to permutest. cca.
In anova with by = "axis"” you can use argument cutoff (defaults 1) which
stops permutations after exceeding the given level.

Details

Functions anova.cca and permutest.cca implement ANOVA like permutation tests for the joint
effect of constraints in cca, rda, dbrda or capscale. Function anova is intended as a more user-
friendly alternative to permutest (that is the real workhorse).

Function anova can analyse a sequence of constrained ordination models. The analysis is based on
the differences in residual deviance in permutations of nested models.

The default test is for the sum of all constrained eigenvalues. Setting first = TRUE will perform
a test for the first constrained eigenvalue. Argument first can be set either in anova.cca or
in permutest.cca. It is also possible to perform significance tests for each axis or for each term
(constraining variable) using argument by in anova. cca. Setting by = "axis" will perform separate
significance tests for each constrained axis. All previous constrained axes will be used as conditions
(“partialled out”) and a test for the first constrained eigenvalues is performed (Legendre et al. 2011).
You can stop permutation tests after exceeding a given significance level with argument cutoff to
speed up calculations in large models. Setting by = "terms"” will perform separate significance
test for each term (constraining variable). The terms are assessed sequentially from first to last,
and the order of the terms will influence their significances. Setting by = "onedf"” will perform a
similar sequential test for one-degree-of-freedom effects, where multi-level factors are split in their
contrasts. Setting by = "margin” will perform separate significance test for each marginal term in
a model with all other terms. The marginal test also accepts a scope argument for the drop. scope
which can be a character vector of term labels that are analysed, or a fitted model of lower scope.
The marginal effects are also known as “Type III” effects, but the current function only evaluates
marginal terms. It will, for instance, ignore main effects that are included in interaction terms. In
calculating pseudo-F', all terms are compared to the same residual of the full model.

Community data are permuted with choice model="direct", and residuals after partial CCA/ RDA/
dbRDA with choice model="reduced"” (default). If there is no partial CCA/ RDA/ dbRDA stage,
model="reduced” simply permutes the data and is equivalent to model="direct”. The test statis-
tic is “pseudo-F™’, which is the ratio of constrained and unconstrained total Inertia (Chi-squares,
variances or something similar), each divided by their respective degrees of freedom. If there are
no conditions (“partial” terms), the sum of all eigenvalues remains constant, so that pseudo-F' and
eigenvalues would give equal results. In partial CCA/ RDA/ dbRDA, the effect of conditioning
variables (“‘covariables”) is removed before permutation, and the total Chi-square is not fixed, and
test based on pseudo-F' would differ from the test based on plain eigenvalues.
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Value

The function anova.cca calls permutest.cca and fills an anova table. Additional attributes are
Random. seed (the random seeds used), control (the permutation design, see how) and F . perm (the
permuted test statistics).

Author(s)

Jari Oksanen

References

Legendre, P. and Legendre, L. (2012). Numerical Ecology. 3rd English ed. Elsevier.

Legendre, P., Oksanen, J. and ter Braak, C.J.F. (2011). Testing the significance of canonical axes in
redundancy analysis. Methods in Ecology and Evolution 2, 269-277.

See Also

anova.cca, cca, rda, dbrda to get something to analyse. Function drop1.cca calls anova.cca
with by = "margin”, and add1.cca an analysis for single terms additions, which can be used in
automatic or semiautomatic model building (see deviance.cca).

Examples

data(dune, dune.env)

mod <- cca(dune ~ Moisture + Management, dune.env)
## overall test

anova(mod)

## tests for individual terms

anova(mod, by="term")

anova(mod, by="margin")

## sequential test for contrasts

anova(mod, by = "onedf")
## test for adding all environmental variables
anova(mod, cca(dune ~ ., dune.env))
avgdist Averaged Subsampled Dissimilarity Matrices
Description

The function computes the dissimilarity matrix of a dataset multiple times using vegdist while
randomly subsampling the dataset each time. All of the subsampled iterations are then averaged
(mean) to provide a distance matrix that represents the average of multiple subsampling iterations.
This emulates the behavior of the distance matrix calculator within the Mothur microbial ecology
toolkit.
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Usage

avgdist(x, sample, distfun = vegdist, meanfun = mean,
transf = NULL, iterations = 100, dmethod = "bray”,

diag = TRUE, upper = TRUE, ...)
Arguments
X Community data matrix.
sample The subsampling depth to be used in each iteration. Samples that do not meet

this threshold will be removed from the analysis, and their identity returned to
the user in stdout.

distfun The dissimilarity matrix function to be used. Default is the vegan vegdist

meanfun The calculation to use for the average (mean or median).

transf Option for transforming the count data before calculating the distance matrix.
Any base transformation option can be used (e.g. sqrt)

iterations The number of random iterations to perform before averaging. Default is 100
iterations.

dmethod Dissimilarity index to be used with the specified dissimilarity matrix function.

Default is Bray-Curtis

diag, upper Return dissimilarities with diagonal and upper triangle. NB. the default differs
from vegdist and returns symmetric "dist"” structure instead of lower diago-
nal. However, the object cannot be accessed with matrix indices unless cast to
matrix with as.matrix.

Any additional arguments to add to the distance function or mean/median func-
tion specified.

Note

The function builds on the function rrarefy and and additional distance matrix function (e.g.
vegdist) to add more meaningful representations of distances among randomly subsampled datasets
by presenting the average of multiple random iterations. This function runs using the vegdist. This
functionality has been utilized in the Mothur standalone microbial ecology toolkit, see https://mothur.org/wiki/Dist.shared.

Author(s)

Geoffrey Hannigan, with some minor tweaks by Gavin L. Simpson.

See Also

This function utilizes the vegdist and rrarefy functions.

Examples

# Import an example count dataset

data(BCI)

# Test the base functionality

mean.avg.dist <- avgdist(BCI, sample = 50, iterations = 10)
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# Test the transformation function
mean.avg.dist.t <- avgdist(BCI, sample
# Test the median functionality
median.avg.dist <- avgdist(BCI, sample = 50, iterations = 10, meanfun = median)
# Print the resulting tables

head(as.matrix(mean.avg.dist))

head(as.matrix(mean.avg.dist.t))

head(as.matrix(median.avg.dist))

# Run example to illustrate low variance of mean, median, and stdev results

# Mean and median std dev are around 0.05

sdd <- avgdist(BCI, sample = 50, iterations = 100, meanfun = sd)
summary(mean.avg.dist)

summary (median.avg.dist)

summary (sdd)

# Test for when subsampling depth excludes some samples

# Return samples that are removed for not meeting depth filter

depth.avg.dist <- avgdist(BCI, sample = 450, iterations = 10)

# Print the result

depth.avg.dist

50, iterations = 10, transf = sqgrt)

BCI Barro Colorado Island Tree Counts

Description

Tree counts in 1-hectare plots in the Barro Colorado Island and associated site information.

Usage

data(BCI)
data(BCI.env)

Format

A data frame with 50 plots (rows) of 1 hectare with counts of trees on each plot with total of
225 species (columns). Full Latin names are used for tree species. The names were updated with
The Plant List web service (now phased out) and Kress et al. (2009) which allows matching 207
of species against doi:10.5061/dryad.63q27 (Zanne et al., 2014). The original species names are
available as attribute original.names of BCI. See Examples for changed names.

For BCI.env, a data frame with 50 plots (rows) and nine site variables derived from Pyke et al.
(2001) and Harms et al. (2001):

UTM.EW: UTM coordinates (zone 17N) East-West.
UTM.NS: UTM coordinates (zone 17N) North-South.
Precipitation: Precipitation in mm per year.

Elevation: Elevation in m above sea level.

Age.cat: Forest age category.


https://doi.org/10.5061/dryad.63q27
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Geology: The Underlying geological formation.

Habitat: Dominant habitat type based on the map of habitat types in 25 grid cells in each plot
(Harms et al. 2001, excluding streamside habitat). The habitat types are Young forests (ca.
100 years), old forests on > 7 degree slopes (01dSlope), old forests under 152 m elevation
(OldLow) and at higher elevation (01dHigh) and Swamp forests.

River: "Yes" if there is streamside habitat in the plot.

EnvHet: Environmental Heterogeneity assessed as the Simpson diversity of frequencies of Habitat
types in 25 grid cells in the plot.

Details

Data give the numbers of trees at least 10 cm in diameter at breast height (DBH) in each one hectare
quadrat in the 1982 BCI plot. Within each plot, all individuals were tallied and are recorded in this
table. The full survey included smaller trees with DBH 1 cm or larger, but the BCI dataset is a subset
of larger trees as compiled by Condit et al. (2002). The full data with thinner trees has densities
above 4000 stems per hectare, or about ten times more stems than these data. The dataset BCI was
provided (in 2003) to illustrate analysis methods in vegan. For scientific research on ecological
issues we strongly recommend to access complete and more modern data (Condit et al. 2019) with
updated taxonomy (Condit et al. 2020).

The data frame contains only the Barro Colorado Island subset of the full data table of Condit et al.
(2002).

The quadrats are located in a regular grid. See BCI.env for the coordinates.

A full description of the site information in BCI.env is given in Pyke et al. (2001) and Harms et al.

(2001). N.B. Pyke et al. (2001) and Harms et al. (2001) give conflicting information about forest
age categories and elevation.

Source

https://www.science.org/doi/10.1126/science. 1066854 for community data and References
for environmental data. For updated complete data (incl. thinner trees down to 1 cm), see Condit et
al. (2019).

References

Condit, R, Pitman, N, Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Nuilez, P., Aguilar, S.,
Valencia, R., Villa, G., Muller-Landau, H.C., Losos, E. & Hubbell, S.P. (2002). Beta-diversity in
tropical forest trees. Science 295, 666—669.

Condit R., Pérez, R., Aguilar, S., Lao, S., Foster, R. & Hubbell, S. (2019). Complete data from the
Barro Colorado 50-ha plot: 423617 trees, 35 years [Dataset]. Dryad. doi:10.15146/5xcp0d46

Condit, R., Aguilar, S., Lao, S., Foster, R., Hubbell, S. (2020). BCI 50-ha Plot Taxonomy [Dataset].
Dryad. doi:10.15146/R3FH61

Harms K.E., Condit R., Hubbell S.P. & Foster R.B. (2001) Habitat associations of trees and shrubs
in a 50-ha neotropical forest plot. J. Ecol. 89, 947-959.

Kress W.J., Erickson D.L, Jones F.A., Swenson N.G, Perez R., Sanjur O. & Bermingham E. (2009)
Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama.
PNAS 106, 18621-18626.


https://www.science.org/doi/10.1126/science.1066854
https://doi.org/10.15146/5xcp-0d46
https://doi.org/10.15146/R3FH61

beals 23

Pyke, C. R., Condit, R., Aguilar, S., & Lao, S. (2001). Floristic composition across a climatic
gradient in a neotropical lowland forest. Journal of Vegetation Science 12, 553-566. doi:10.2307/
3237007

Zanne A.E., Tank D.C., Cornwell, W.K., Eastman J.M., Smith, S.A., FitzJohn, R.G., McGlinn, D.J.,
O’Meara, B.C., Moles, A.T., Reich, P.B., Royer, D.L., Soltis, D.E., Stevens, P.F., Westoby, M.,
Wright, I.J., Aarssen, L., Bertin, R.I., Calaminus, A., Govaerts, R., Hemmings, F., Leishman, M.R.,
Oleksyn, J., Soltis, P.S., Swenson, N.G., Warman, L. & Beaulieu, .M. (2014) Three keys to the
radiation of angiosperms into freezing environments. Nature 506, 89-92. doi:10.1038/nature 12872
(published online Dec 22, 2013).

See Also

Extra-CRAN package natto (https://github.com/jarioksa/natto) has data set BCI.env2 with
original grid data of Harms et al. (2001) habitat classification, and data set BCI.taxon of APG III
classification of tree species.

Examples

data(BCI, BCI.env)

head(BCI.env)

## see changed species names

oldnames <- attr(BCI, "original.names")

taxa <- cbind("0ld Names" = oldnames, "Current Names" = names(BCI))
noquote(taxaltaxal,1] != taxal,2]1, 1)

beals Beals Smoothing and Degree of Absence

Description

Beals smoothing replaces each entry in the community data with a probability of a target species
occurring in that particular site, based on the joint occurrences of the target species with the species
that actually occur in the site. Swan’s (1970) degree of absence applies Beals smoothing to zero
items so long that all zeros are replaced with smoothed values.

Usage

beals(x, species = NA, reference = x, type = 0, include = TRUE)
swan(x, maxit = Inf, type = 0)

Arguments
X Community data frame or matrix.
species Column index used to compute Beals function for a single species. The default
(NA) indicates that the function will be computed for all species.
reference Community data frame or matrix to be used to compute joint occurrences. By

default, x is used as reference to compute the joint occurrences.


https://doi.org/10.2307/3237007
https://doi.org/10.2307/3237007
https://doi.org/10.1038/nature12872
https://github.com/jarioksa/natto
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type Numeric. Specifies if and how abundance values have to be used in function
beals. See details for more explanation.

include This logical flag indicates whether the target species has to be included when
computing the mean of the conditioned probabilities. The original Beals (1984)
definition is equivalent to include=TRUE, while the formulation of Miinzber-
gova and Herben is equal to include=FALSE.

maxit Maximum number of iterations. The default Inf means that iterations are con-
tinued until there are no zeros or the number of zeros does not change. Probably
only maxit = 1 makes sense in addition to the default.

Details

Beals smoothing is the estimated probability p;; that species j occurs at site ¢. It is defined as p;; =

Si > k N@Gk]“”“ , where §; is the number of species at site 4, [V, is the number of joint occurrences
of species j and k, Ny, is the number of occurrences of species k, and I is the incidence (0 or 1)
of species (this last term is usually omitted from the equation, but it is necessary). As IV;; can be
interpreted as a mean of conditional probability, the beals function can be interpreted as a mean
of conditioned probabilities (De Caceres & Legendre 2008). The present function is generalized to
abundance values (De Céceres & Legendre 2008).

The type argument specifies if and how abundance values have to be used. type = @ presence/absence
mode. type =1 abundances in reference (or x) are used to compute conditioned probabilities.
type = 2 abundances in x are used to compute weighted averages of conditioned probabilities. type
= 3 abundances are used to compute both conditioned probabilities and weighted averages.

Beals smoothing was originally suggested as a method of data transformation to remove excessive
zeros (Beals 1984, McCune 1994). However, it is not a suitable method for this purpose since
it does not maintain the information on species presences: a species may have a higher proba-
bility of occurrence at a site where it does not occur than at sites where it occurs. Moreover, it
regularizes data too strongly. The method may be useful in identifying species that belong to the
species pool (Ewald 2002) or to identify suitable unoccupied patches in metapopulation analysis
(Miinzbergova & Herben 2004). In this case, the function should be called with include=FALSE
for cross-validation smoothing for species; argument species can be used if only one species is
studied.

Swan (1970) suggested replacing zero values with degrees of absence of a species in a community
data matrix. Swan expressed the method in terms of a similarity matrix, but it is equivalent to
applying Beals smoothing to zero values, at each step shifting the smallest initially non-zero item
to value one, and repeating this so many times that there are no zeros left in the data. This is
actually very similar to extended dissimilarities (implemented in function stepacross), but very
rarely used.

Value
The function returns a transformed data matrix or a vector if Beals smoothing is requested for a
single species.

Author(s)

Miquel De Caceres and Jari Oksanen
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References

Beals, E.W. 1984. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecolog-
ical data. Pp. 1-55 in: MacFadyen, A. & E.D. Ford [eds.] Advances in Ecological Research, 14.
Academic Press, London.

De Céceres, M. & Legendre, P. 2008. Beals smoothing revisited. Oecologia 156: 657-669.

Ewald, J. 2002. A probabilistic approach to estimating species pools from large compositional
matrices. J. Veg. Sci. 13: 191-198.

McCune, B. 1994. Improving community ordination with the Beals smoothing function. Eco-
science 1: 82-86.

Miinzbergovd, Z. & Herben, T. 2004. Identification of suitable unoccupied habitats in metapopula-
tion studies using co-occurrence of species. Oikos 105: 408-414.

Swan, J.M.A. 1970. An examination of some ordination problems by use of simulated vegetational
data. Ecology 51: 89-102.

See Also

decostand for proper standardization methods, specpool for an attempt to assess the size of
species pool. Function indpower assesses the power of each species to estimate the probabilities
predicted by beals.

Examples

data(dune)

## Default

X <- beals(dune)

## Remove target species

x <- beals(dune, include = FALSE)

## Smoothed values against presence or absence of species

pa <- decostand(dune, "pa")

boxplot(as.vector(x) ~ unlist(pa), xlab="Presence”, ylab="Beals")
## Remove the bias of tarbet species: Yields lower values.
beals(dune, type =3, include = FALSE)

## Uses abundance information.

## Vector with beals smoothing values corresponding to the first species
## in dune.

beals(dune, species=1, include=TRUE)

betadisper Multivariate homogeneity of groups dispersions (variances)

Description

Implements Marti Anderson’s PERMDISP2 procedure for the analysis of multivariate homogene-
ity of group dispersions (variances). betadisper is a multivariate analogue of Levene’s test for
homogeneity of variances. Non-euclidean distances between objects and group centres (centroids
or medians) are handled by reducing the original distances to principal coordinates. This procedure
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has latterly been used as a means of assessing beta diversity. There are anova, scores, plot and
boxplot methods.
TukeyHSD.betadisper creates a set of confidence intervals on the differences between the mean
distance-to-centroid of the levels of the grouping factor with the specified family-wise probability
of coverage. The intervals are based on the Studentized range statistic, Tukey’s "Honest Significant
Difference’ method.

Usage

betadisper(d, group, type = c("median”,"centroid"”), bias.adjust = FALSE,
sqrt.dist = FALSE, add = FALSE)
## S3 method for class 'betadisper'
anova(object, ...)
## S3 method for class 'betadisper'
scores(x, display = c("sites"”, "centroids"),
choices = ¢(1,2), ...)
## S3 method for class 'betadisper'
eigenvals(x, ...)
## S3 method for class 'betadisper'
plot(x, axes = c(1,2), cex = 0.7,
pch = seq_len(ng), col = NULL, 1ty = "solid"”, lwd = 1, hull = TRUE,
ellipse = FALSE, conf,
segments = TRUE, seg.col = "grey"”, seg.lty = 1lty, seg.lwd = lwd,
label = TRUE, label.cex =1,
ylab, xlab, main, sub, ...)
## S3 method for class 'betadisper'
boxplot(x, ylab = "Distance to centroid”, ...)
## S3 method for class 'betadisper'
TukeyHSD(x, which = "group”, ordered = FALSE,
conf.level = 0.95, ...)
## S3 method for class 'betadisper'
print(x, digits = max(3, getOption("digits") - 3),
neigen = 8, ...)
betadistances(x, ...)

Arguments

d a distance structure such as that returned by dist, betadiver or vegdist.

group

vector describing the group structure, usually a factor or an object that can be
coerced to a factor using as. factor. Can consist of a factor with a single level
(i.e., one group).



betadisper

type

bias.adjust
sgrt.dist
add

display
object, x
choices, axes
hull

ellipse

conf

pch

col

1ty, 1wd
segments

seg.col

seg.1lty, seg.1lwd

label

label.cex
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the type of analysis to perform. Use the spatial median or the group centroid?
The spatial median is now the default.

logical: adjust for small sample bias in beta diversity estimates?
Take square root of dissimilarities. This often euclidifies dissimilarities.

Add a constant to the non-diagonal dissimilarities such that all eigenvalues are
non-negative in the underlying Principal Co-ordinates Analysis (see wcmdscale
for details). Choice "lingoes” (or TRUE) use the recommended method of Leg-
endre & Anderson (1999: “method 1) and "cailliez” uses their “method 2”.

character; partial match to access scores for "sites"” or "species”.

an object of class "betadisper”, the result of a call to betadisper.

the principal coordinate axes wanted.

logical; should the convex hull for each group be plotted?

logical; should the standard deviation data ellipse for each group be plotted?

Expected fractions of data coverage for data ellipses, e.g. 0.95. The default is
to draw a 1 standard deviation data ellipse, but if supplied, conf is multiplied
with the corresponding value found from the Chi-squared distribution with 2df
to provide the requested coverage (probability contour).

plot symbols for the groups, a vector of length equal to the number of groups.

colors for the plot symbols and centroid labels for the groups, a vector of length
equal to the number of groups.

linetype, linewidth for convex hulls and confidence ellipses.
logical; should segments joining points to their centroid be drawn?

colour to draw segments between points and their centroid. Can be a vector, in
which case one colour per group.

linetype and line width for segments.
logical; should the centroids by labelled with their respective factor label?

numeric; character expansion for centroid labels.

cex, ylab, xlab, main, sub

which

ordered

conf.level

digits, neigen

graphical parameters. For details, see plot.default.

A character vector listing terms in the fitted model for which the intervals should
be calculated. Defaults to the grouping factor.

logical; see TukeyHSD.

A numeric value between zero and one giving the family-wise confidence level
to use.

numeric; for the print method, sets the number of digits to use (as per print.default)

and the maximum number of axes to display eigenvalues for, repsectively.

arguments, including graphical parameters (for plot.betadisper and boxplot.betadisper),

passed to other methods.
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Details

One measure of multivariate dispersion (variance) for a group of samples is to calculate the average
distance of group members to the group centroid or spatial median (both referred to as ’centroid’
from now on unless stated otherwise) in multivariate space. To test if the dispersions (variances) of
one or more groups are different, the distances of group members to the group centroid are subject
to ANOVA. This is a multivariate analogue of Levene’s test for homogeneity of variances if the
distances between group members and group centroids is the Euclidean distance.

However, better measures of distance than the Euclidean distance are available for ecological data.
These can be accommodated by reducing the distances produced using any dissimilarity coefficient
to principal coordinates, which embeds them within a Euclidean space. The analysis then proceeds
by calculating the Euclidean distances between group members and the group centroid on the basis
of the principal coordinate axes rather than the original distances.

Non-metric dissimilarity coefficients can produce principal coordinate axes that have negative Eigen-
values. These correspond to the imaginary, non-metric part of the distance between objects. If
negative Eigenvalues are produced, we must correct for these imaginary distances.

The distance to its centroid of a point is

2 = /A2, cf) - A2(u€)),

where A? is the squared Euclidean distance between u;;, the principal coordinate for the jth point
in the :th group, and ¢;, the coordinate of the centroid for the ith group. The super-scripted ‘4’ and
‘—’ indicate the real and imaginary parts respectively. This is equation (3) in Anderson (2006). If
the imaginary part is greater in magnitude than the real part, then we would be taking the square root
of a negative value, resulting in NaN, and these cases are changed to zero distances (with a warn-
ing). This is in line with the behaviour of Marti Anderson’s PERMDISP2 programme. Function
betadistances returns distances from all points to all centroids. Moreover, it gives the original
group and nearest group for each point.

To test if one or more groups is more variable than the others, ANOVA of the distances to group
centroids can be performed and parametric theory used to interpret the significance of F. An alter-
native is to use a permutation test. permutest.betadisper permutes model residuals to generate
a permutation distribution of F' under the Null hypothesis of no difference in dispersion between
groups.

Pairwise comparisons of group mean dispersions can also be performed using permutest.betadisper.
An alternative to the classical comparison of group dispersions, is to calculate Tukey’s Honest
Significant Differences between groups, via TukeyHSD.betadisper. This is a simple wrapper to
TukeyHSD. The user is directed to read the help file for TukeyHSD before using this function. In
particular, note the statement about using the function with unbalanced designs.

The results of the analysis can be visualised using the plot and boxplot methods. The distances
of points to all centroids (group) can be found with function betadistances.

One additional use of these functions is in assessing beta diversity (Anderson et al 2006). Function
betadiver provides some popular dissimilarity measures for this purpose.

As noted in passing by Anderson (2006) and in a related context by O’Neill (2000), estimates of
dispersion around a central location (median or centroid) that is calculated from the same data will
be biased downward. This bias matters most when comparing diversity among treatments with
small, unequal numbers of samples. Setting bias.adjust=TRUE when using betadisper imposes

ay/n/(n — 1) correction (Stier et al. 2013).
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Value

The anova method returns an object of class "anova” inheriting from class "data. frame"”.
The scores method returns a list with one or both of the components "sites"” and "centroids”.

The plot function invisibly returns an object of class "ordiplot”, a plotting structure which can
be used by identify.ordiplot (to identify the points) or other functions in the ordiplot family.

The boxplot function invisibly returns a list whose components are documented in boxplot.
eigenvals.betadisper returns a named vector of eigenvalues.
TukeyHSD.betadisper returns a list. See TukeyHSD for further details.

betadisper returns a list of class "betadisper” with the following components:

eig numeric; the eigenvalues of the principal coordinates analysis.

vectors matrix; the eigenvectors of the principal coordinates analysis.

distances numeric; the Euclidean distances in principal coordinate space between the sam-
ples and their respective group centroid or median.

group factor; vector describing the group structure

centroids matrix; the locations of the group centroids or medians on the principal coordi-
nates.

group.distances
numeric; the mean distance to each group centroid or median.

call the matched function call.

Warning

Stewart Schultz noticed that the permutation test for type="centroid"” had the wrong type I error
and was anti-conservative. As such, the default for type has been changed to "median”, which uses
the spatial median as the group centroid. Tests suggests that the permutation test for this type of
analysis gives the correct error rates.

Note

If group consists of a single level or group, then the anova and permutest methods are not appro-
priate and if used on such data will stop with an error.

Missing values in either d or group will be removed prior to performing the analysis.

Author(s)

Gavin L. Simpson; bias correction by Adrian Stier and Ben Bolker.

References

Anderson, M.J. (2006) Distance-based tests for homogeneity of multivariate dispersions. Biomet-
rics 62, 245-253.

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006) Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9, 683—-693.
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O’Neill, M.E. (2000) A Weighted Least Squares Approach to Levene’s Test of Homogeneity of

Variance. Australian & New Zealand Journal of Statistics 42, 81-—100.

Stier, A.C., Geange, S.W., Hanson, K.M., & Bolker, B.M. (2013) Predator density and timing of

arrival affect reef fish community assembly. Ecology 94, 1057-1068.

See Also

permutest.betadisper, anova.lm, scores, boxplot, TukeyHSD. Further measure of beta diver-

sity can be found in betadiver.

Examples

data(varespec)

## Bray-Curtis distances between samples
dis <- vegdist(varespec)

## First 16 sites grazed, remaining 8 sites ungrazed
groups <- factor(c(rep(1,16), rep(2,8)), labels = c("grazed"”, "ungrazed"))

## Calculate multivariate dispersions
mod <- betadisper(dis, groups)
mod

## Perform test
anova(mod)

## Permutation test for F
permutest(mod, pairwise = TRUE, permutations = 99)

## Tukey's Honest Significant Differences
(mod.HSD <- TukeyHSD(mod))
plot(mod.HSD)

## Plot and show the groups and distances to centroids on the
## first two PCoA axes

plot(mod)

betadistances(mod)

## with data ellipses instead of hulls
plot(mod, ellipse = TRUE, hull = FALSE) # 1 sd data ellipse
plot(mod, ellipse = TRUE, hull = FALSE, conf = 0.90) # 90% data ellipse

# plot with manual colour specification
my_cols <- c("#1b9e77", "#7570b3")
plot(mod, col = my_cols, pch = c(16,17), cex = 1.1)

## can also specify which axes to plot, ordering respected
plot(mod, axes = c(3,1), seg.col = "forestgreen”, seg.lty = "dashed")

## Draw a boxplot of the distances to centroid for each group
boxplot(mod)
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## “scores™ and “eigenvals® also work
scrs <- scores(mod)

str(scrs)

head(scores(mod, 1:4, display = "sites"))
# group centroids/medians

scores(mod, 1:4, display = "centroids")
# eigenvalues from the underlying principal coordinates analysis
eigenvals(mod)

## try out bias correction; compare with mod3

(mod3B <- betadisper(dis, groups, type = "median”, bias.adjust=TRUE))
anova(mod3B)

permutest(mod3B, permutations = 99)

## should always work for a single group

group <- factor(rep("grazed”, NROW(varespec)))
(tmp <- betadisper(dis, group, type = "median"))
(tmp <- betadisper(dis, group, type = "centroid”))

## simulate missing values in 'd' and 'group'
## using spatial medians

groups[c(2,20)] <- NA

dis[c(2, 20)] <- NA

mod2 <- betadisper(dis, groups) ## messages
mod?2

permutest(mod2, permutations = 99)
anova(mod2)

plot(mod2)

boxplot(mod2)

plot (TukeyHSD(mod2))

## Using group centroids

mod3 <- betadisper(dis, groups, type = "centroid")
mod3

permutest(mod3, permutations = 99)

anova(mod3)

plot(mod3)

boxplot(mod3)

plot(TukeyHSD(mod3))

betadiver Indices of beta Diversity

Description

The function estimates any of the 24 indices of beta diversity reviewed by Koleff et al. (2003).
Alternatively, it finds the co-occurrence frequencies for triangular plots (Koleff et al. 2003).
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Usage
betadiver(x, method = NA, order = FALSE, help = FALSE, ...)
## S3 method for class 'betadiver'
plot(x, ...)
## S3 method for class 'betadiver'
scores(x, triangular = TRUE, ...)
Arguments
X Community data matrix, or the betadiver result for plot and scores functions.
method The index of beta diversity as defined in Koleff et al. (2003), Table 1. You can
use either the subscript of 3 or the number of the index. See argument help
below.
order Order sites by increasing number of species. This will influence the configura-
tion in the triangular plot and non-symmetric indices.
help Show the numbers, subscript names and the defining equations of the indices
and exit.
triangular Return scores suitable for triangular plotting of proportions. If FALSE, returns a
3-column matrix of raw counts.
Other arguments to functions.
Details

The most commonly used index of beta diversity is 8,, = S/« — 1, where S is the total number
of species, and « is the average number of species per site (Whittaker 1960). A drawback of this
model is that S increases with sample size, but the expectation of « remains constant, and so the
beta diversity increases with sample size. A solution to this problem is to study the beta diversity of
pairs of sites (Marion et al. 2017). If we denote the number of species shared between two sites as a
and the numbers of unique species (not shared) as b and ¢, then S = a+b+cand a = (2a+b+c)/2
so that 8, = (b+ ¢)/(2a + b + ¢). This is the Sgrensen dissimilarity as defined in vegan function
vegdist with argument binary = TRUE. Many other indices are dissimilarity indices as well.

Function betadiver finds all indices reviewed by Koleff et al. (2003). All these indices could
be found with function designdist, but the current function provides a conventional shortcut.
The function only finds the indices. The proper analysis must be done with functions such as
betadisper, adonis2 or mantel.

The indices are directly taken from Table 1 of Koleff et al. (2003), and they can be selected either
by the index number or the subscript name used by Koleff et al. The numbers, names and defining
equations can be seen using betadiver (help = TRUE). In all cases where there are two alternative
forms, the one with the term —1 is used. There are several duplicate indices, and the number of
distinct alternatives is much lower than 24 formally provided. The formulations used in functions
differ occasionally from those in Koleff et al. (2003), but they are still mathematically equivalent.
With method = NA, no index is calculated, but instead an object of class betadiver is returned.
This is a list of elements a, b and c. Function plot can be used to display the proportions of these
elements in triangular plot as suggested by Koleff et al. (2003), and scores extracts the triangular
coordinates or the raw scores. Function plot returns invisibly the triangular coordinates as an
"ordiplot” object.
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Value

With method = NA, the function returns an object of class "betadisper” with elements a, b, and
c. If method is specified, the function returns a "dist” object which can be used in any function
analysing dissimilarities. For beta diversity, particularly useful functions are betadisper to study
the betadiversity in groups, adonis2 for any model, and mantel to compare beta diversities to
other dissimilarities or distances (including geographical distances). Although betadiver returns a
"dist” object, some indices are similarities and cannot be used as such in place of dissimilarities,
but that is a user error. Functions 10 ("j"), 11 ("sor”) and 21 ("rlb") are similarity indices.
Function sets argument "maxdist"” similarly as vegdist, using NA when there is no fixed upper
limit, and O for similarities.

Warning

Some indices return similarities instead of dissimilarities.

Author(s)

Jari Oksanen

References

Baselga, A. (2010) Partitioning the turnover and nestedness components of beta diversity. Global
Ecology and Biogeography 19, 134-143.

Koleff, P., Gaston, K.J. and Lennon, J.J. (2003) Measuring beta diversity for presence-absence data.
Journal of Animal Ecology 72, 367-382.

Marion, Z.H., Fordyce, J.A. and Fitzpatrick, B.M. (2017) Pairwise beta diversity resolves an under-
appreciated source of confusion in calculating species turnover. Ecology 98, 933-939.

Whittaker, R.H. (1960) Vegetation of Siskiyou mountains, Oregon and California. Ecological
Monographs 30, 279-338.

See Also

designdist can be used to implement all these functions, and also allows using notation with alpha
and gamma diversities. vegdist has some canned alternatives. Functions betadisper, adonis2 and
mantel can be used for analysing beta diversity objects. The returned dissimilarities can be used
in any distance-based methods, such as metaMDS, capscale and dbrda. Functions nestedbetasor
and nestedbetajac implement decomposition beta diversity measures (Sgrensen and Jaccard) into
turnover and nestedness components following Baselga (2010).

Examples

## Raw data and plotting
data(sipoo)

m <- betadiver(sipoo)
plot(m)

## The indices
betadiver(help=TRUE)

## The basic Whittaker index
d <- betadiver(sipoo, "w")
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## This should be equal to Sorensen index (binary Bray-Curtis in
## vegan)
range(d - vegdist(sipoo, binary=TRUE))

bgdispersal Coefficients of Biogeographical Dispersal Direction

Description

This function computes coefficients of dispersal direction between geographically connected areas,
as defined by Legendre and Legendre (1984), and also described in Legendre and Legendre (2012,
section 13.3.4).

Usage
bgdispersal(mat, PAonly = FALSE, abc = FALSE)

Arguments
mat Data frame or matrix containing a community composition data table (species
presence-absence or abundance data).
PAonly FALSE if the four types of coefficients, DD1 to DD4, are requested; TRUE if DD1
and DD2 only are sought (see Details).
abc If TRUE, return tables a, b and c used in DD1 and DD2.
Details

The signs of the DD coefficients indicate the direction of dispersal, provided that the asymmetry is
significant. A positive sign indicates dispersal from the first (row in DD tables) to the second region
(column); a negative sign indicates the opposite. A McNemar test of asymmetry is computed from
the presence-absence data to test the hypothesis of a significant asymmetry between the two areas
under comparison.

In the input data table, the rows are sites or areas, the columns are taxa. Most often, the taxa
are species, but the coefficients can be computed from genera or families as well. DD1 and DD2
only are computed for presence-absence data. The four types of coefficients are computed for
quantitative data, which are converted to presence-absence for the computation of DD1 and DD2.
PAonly = FALSE indicates that the four types of coefficients are requested. PAonly = TRUE if DD1
and DD2 only are sought.

Value
Function bgdispersal returns a list containing the following matrices:

DD1 DD1;y = (a(b——c))/((a+b+c)?)

DD2 DD2;;, = (2a(b—¢))/((2a + b+ ¢)(a + b+ ¢)) where a, b, and ¢ have the
same meaning as in the computation of binary similarity coefficients.

DD3 DD3;,=W(A-B)/(A+B—-W)>?
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DD4 DD4; ) =2W(A-B)/((A+B)(A+B—W)) where W = sum(pmin(vector1,
vector2)), A=sum(vector1l), B =sum(vector2)

McNemar McNemar chi-square statistic of asymmetry (Sokal and Rohlf 1995): 2(blog(b)+
clog(c) — (b+ ¢)log((b + ¢)/2))/q, where ¢ = 1 + 1/(2(b + ¢)) (Williams
correction for continuity)

prob.McNemar  probabilities associated with McNemar statistics, chi-square test. HO: no asym-
metry in (b — ¢).

Note

The function uses a more powerful alternative for the McNemar test than the classical formula. The
classical formula was constructed in the spirit of Pearson’s Chi-square, but the formula in this func-
tion was constructed in the spirit of Wilks Chi-square or the G statistic. Function mcnemar . test
uses the classical formula. The new formula was introduced in vegan version 1.10-11, and the older
implementations of bgdispersal used the classical formula.

Author(s)

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal

References

Legendre, P. and V. Legendre. 1984. Postglacial dispersal of freshwater fishes in the Québec
peninsula. Can. J. Fish. Aquat. Sci. 41: 1781-1802.

Legendre, P. and L. Legendre. 2012. Numerical ecology, 3rd English edition. Elsevier Science BV,
Amsterdam.

Sokal, R. R. and F. J. Rohlf. 1995. Biometry. The principles and practice of statistics in biological
research. 3rd edn. W. H. Freeman, New York.

Examples

mat <- matrix(c(32,15,14,10,70,30,100,4,10,30,25,0,18,0,40,
0,0,20,0,0,0,0,4,0,30,20,0,0,0,0,25,74,42,1,45,89,5,16,16,20),
4, 10, byrow=TRUE)

bgdispersal (mat)
bioenv Best Subset of Environmental Variables with Maximum (Rank) Corre-
lation with Community Dissimilarities
Description

Function finds the best subset of environmental variables, so that the Euclidean distances of scaled
environmental variables have the maximum (rank) correlation with community dissimilarities.
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Usage
## Default S3 method:
bioenv(comm, env, method = "spearman”, index = "bray",
upto = ncol(env), trace = FALSE, partial = NULL,
metric = c("euclidean”, "mahalanobis”, "manhattan”, "gower"),
parallel = getOption("mc.cores”), ...)
## S3 method for class 'formula’
bioenv(formula, data, ...)
bioenvdist(x, which = "best")
Arguments
comm Community data frame or a dissimilarity object or a square matrix that can be

interpreted as dissimilarities.

env Data frame of continuous environmental variables.

method The correlation method used in cor.

index The dissimilarity index used for community data (comm) in vegdist. This is
ignored if comm are dissimilarities.

upto Maximum number of parameters in studied subsets.

formula, data

Model formula and data.

trace Trace the calculations

partial Dissimilarities partialled out when inspecting variables in env.

metric Metric used for distances of environmental distances. See Details.

parallel Number of parallel processes or a predefined socket cluster. With parallel =
1 uses ordinary, non-parallel processing. The parallel processing is done with
parallel package.

X bioenv result object.

which The number of the model for which the environmental distances are evaluated,
or the "best"” model.
Other arguments passed to vegdist.

Details

The function calculates a community dissimilarity matrix using vegdist. Then it selects all possible
subsets of environmental variables, scales the variables, and calculates Euclidean distances for
this subset using dist. The function finds the correlation between community dissimilarities and
environmental distances, and for each size of subsets, saves the best result. There are 2P — 1 subsets
of p variables, and an exhaustive search may take a very, very, very long time (parameter upto
offers a partial relief).

The argument metric defines distances in the given set of environmental variables. With metric
= "euclidean", the variables are scaled to unit variance and Euclidean distances are calculated.
With metric = "mahalanobis”, the Mahalanobis distances are calculated: in addition to scaling
to unit variance, the matrix of the current set of environmental variables is also made orthogonal
(uncorrelated). With metric = "manhattan”, the variables are scaled to unit range and Manhattan
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distances are calculated, so that the distances are sums of differences of environmental variables.
With metric = "gower"”, the Gower distances are calculated using function daisy. This allows also
using factor variables, but with continuous variables the results are equal tometric = "manhattan”.

The function can be called with a model formula where the LHS is the data matrix and RHS
lists the environmental variables. The formula interface is practical in selecting or transforming
environmental variables.

With argument partial you can perform “partial” analysis. The partializing item must be a dis-
similarity object of class dist. The partial item can be used with any correlation method, but it
is strictly correct only for Pearson.

Function bioenvdist recalculates the environmental distances used within the function. The de-
fault is to calculate distances for the best model, but the number of any model can be given.

Clarke & Ainsworth (1993) suggested this method to be used for selecting the best subset of en-
vironmental variables in interpreting results of nonmetric multidimensional scaling (NMDS). They
recommended a parallel display of NMDS of community dissimilarities and NMDS of Euclidean
distances from the best subset of scaled environmental variables. They warned against the use of
Procrustes analysis, but to me this looks like a good way of comparing these two ordinations.

Clarke & Ainsworth wrote a computer program BIO-ENV giving the name to the current function.
Presumably BIO-ENV was later incorporated in Clarke’s PRIMER software (available for Win-
dows). In addition, Clarke & Ainsworth suggested a novel method of rank correlation which is not
available in the current function.

Value

The function returns an object of class bioenv with a summary method.

Note

If you want to study the ‘significance’ of bioenv results, you can use function mantel ormantel.partial
which use the same definition of correlation. However, bioenv standardizes environmental vari-
ables depending on the used metric, and you must do the same in mantel for comparable results

(the standardized data are returned as item x in the result object). It is safest to use bioenvdist

to extract the environmental distances that really were used within bioenv. NB., bioenv selects
variables to maximize the Mantel correlation, and significance tests based on a priori selection of
variables are biased.

Author(s)

Jari Oksanen

References
Clarke, K. R & Ainsworth, M. 1993. A method of linking multivariate community structure to
environmental variables. Marine Ecology Progress Series, 92, 205-219.

See Also

vegdist, dist, cor for underlying routines, monoMDS and metaMDS for ordination, procrustes
for Procrustes analysis, protest for an alternative, and rankindex for studying alternatives to the
default Bray-Curtis index.
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Examples

biplot.rda

# The method is very slow for large number of possible subsets.
# Therefore only 6 variables in this example.

data(varespec)
data(varechem)

sol <- bioenv(wisconsin(varespec) ~ log(N) + P + K + Ca + pH + Al, varechem)

sol

## IGNORE_RDIFF_BEGIN

summary (sol)

## IGNORE_RDIFF_END

biplot.rda

PCA biplot

Description

Draws a PCA biplot with species scores indicated by biplot arrows

Usage
## S3 method for class 'rda’
biplot(x, choices = c(1, 2), scaling = "species”,
display = c("sites", "species"), type, xlim, ylim, col = c(1,2),
const, correlation = FALSE, ...)
Arguments

X A rda result object.

choices Axes to show.

scaling Scaling for species and site scores. Either species (2) or site (1) scores are
scaled by eigenvalues, and the other set of scores is left unscaled, or with 3 both
are scaled symmetrically by square root of eigenvalues. With negative scaling
values in rda, species scores are divided by standard deviation of each species
and multiplied with an equalizing constant. Unscaled raw scores stored in the
result can be accessed with scaling = 0.
The type of scores can also be specified as one of "none"”, "sites"”, "species”,
or "symmetric”, which correspond to the values 9, 1, 2, and 3 respectively. Ar-
gument correlation can be used in combination with these character descrip-
tions to get the corresponding negative value.

correlation logical; if scaling is a character description of the scaling type, correlation
can be used to select correlation-like scores for PCA. See argument scaling for
details.

display Scores shown. These must some of the alternatives "species” for species

scores, and/or "sites"” for site scores.
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type

x1lim, ylim

col

const

Details
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Type of plot: partial match to text for text labels, points for points, and none
for setting frames only. If omitted, text is selected for smaller data sets, and
points for larger. Can be of length 2 (e.g. type = c("text”, "points"”)), in
which case the first element describes how species scores are handled, and the
second how site scores are drawn.

the x and y limits (min, max) of the plot.

Colours used for sites and species (in this order). If only one colour is given, it
is used for both.

General scaling constant for scores. rda.

Other parameters for plotting functions.

Produces a plot or biplot of the results of a call to rda. It is common for the "species" scores in a
PCA to be drawn as biplot arrows that point in the direction of increasing values for that variable.
The biplot.rda function provides a wrapper to plot.cca to allow the easy production of such a

plot.

biplot.rda is only suitable for unconstrained models. If used on an ordination object with con-
straints, an error is issued.

Arrow heads are at the actual species scores, and the possible text is projected to direction of the

arrow.

Value

The plot function returns invisibly a plotting structure which can be used by identify.ordiplot
to identify the points or other functions in the ordiplot family.

Note

Prior to vegan 2.7-2 the species text was at the actual location and arrows were shorter than with

points.

Author(s)

Gavin Simpson and Jari Oksanen.

See Also

plot.cca can also draw biplot arrows since vegan 2.7-0.

Examples

data(dune)

mod <- rda(dune, scale = TRUE)
biplot(mod, scaling = "symmetric")

## plot.cca can do the same
plot(mod, scaling = "symmetric”, spe.par = list(arrows=TRUE))
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cascadeKM

## different type for species and site scores
biplot(mod, scaling = "symmetric”, type = c("text”, "points"))

## We can use ordiplot pipes to build similar plots with flexible
## control
plot(mod, scaling = "symmetric”, type="n") |>

points("sites"”, cex=0.7) |>

text("species”, arrows=TRUE, length=0.05, col=2, cex=0.7, font=3)

cascadekM K-means partitioning using a range of values of K

Description

This function is a wrapper for the kmeans function. It creates several partitions forming a cascade
from a small to a large number of groups.

Usage

cascadeKM(data, inf.gr, sup.gr, iter = 100, criterion = "calinski”,
parallel = getOption("mc.cores"))

cIndexKM(y, x, index = "all")

## S3 method for class 'cascadekM'
plot(x, min.g, max.g, grpmts.plot = TRUE,

sortg = FALSE, gridcol = NA, ...)
Arguments

data The data matrix. The objects (samples) are the rows.

inf.gr The number of groups for the partition with the smallest number of groups of
the cascade (min).

sup.gr The number of groups for the partition with the largest number of groups of the
cascade (max).

iter The number of random starting configurations for each value of K.

criterion The criterion that will be used to select the best partition. The default value is

"calinski”, which refers to the Calinski-Harabasz (1974) criterion. The simple
structure index ("ssi") is also available. Other indices are available in package
cclust. In our experience, the two indices that work best and are most likely
to return their maximum value at or near the optimal number of clusters are
"calinski” and "ssi".

y Object of class "kmeans” returned by a clustering algorithm such as kmeans

X Data matrix where columns correspond to variables and rows to observations,
or the plotting object in plot
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index The available indices are: "calinski” and "ssi”. Type "all” to obtain both
indices. Abbreviations of these names are also accepted.

min.g, max.g The minimum and maximum numbers of groups to be displayed.

grpmts.plot Show the plot (TRUE or FALSE).

sortg Sort the objects as a function of their group membership to produce a more
easily interpretable graph. See Details. The original object names are kept; they
are used as labels in the output table x, although not in the graph. If there were

no row names, sequential row numbers are used to keep track of the original
order of the objects.

gridcol The colour of the grid lines in the plots. NA, which is the default value, removes
the grid lines.
Other parameters to the functions (ignored).
parallel Number of parallel processes or a predefined socket cluster. With parallel =
1 uses ordinary, non-parallel processing. The parallel processing is done with
parallel package.
Details

The function creates several partitions forming a cascade from a small to a large number of groups
formed by kmeans. Most of the work is performed by function cIndex which is based on the
clustIndex in package cclust). Some of the criteria were removed from this version because
computation errors were generated when only one object was found in a group.

The default value is "calinski”, which refers to the well-known Calinski-Harabasz (1974) cri-
terion. The other available index is the simple structure index "ssi” (Dolnicar et al. 1999). In
the case of groups of equal sizes, "calinski” is generally a good criterion to indicate the correct
number of groups. Users should not take its indications literally when the groups are not equal in
size. Type "all” to obtain both indices. The indices are defined as:

calinski: (SSB/(K —1))/(SSW/(n — K)), where n is the number of data points and K is the
number of clusters. SSSW is the sum of squares within the clusters while SSB is the sum of
squares among the clusters. This index is simply an ' (ANOVA) statistic.

ssi: the “Simple Structure Index” multiplicatively combines several elements which influence the
interpretability of a partitioning solution. The best partition is indicated by the highest SSI
value.

In a simulation study, Milligan and Cooper (1985) found that the Calinski-Harabasz criterion re-
covered the correct number of groups the most often. We recommend this criterion because, if the
groups are of equal sizes, the maximum value of "calinski"” usually indicates the correct number
of groups. Another available index is the simple structure index "ssi”. Users should not take the
indications of these indices literally when the groups are not equal in size and explore the groups
corresponding to other values of K.

Function cascadekM has a plot method. Two plots are produced. The graph on the left has the
objects in abscissa and the number of groups in ordinate. The groups are represented by colours.
The graph on the right shows the values of the criterion ("calinski” or "ssi") for determining the
best partition. The highest value of the criterion is marked in red. Points marked in orange, if any,
indicate partitions producing an increase in the criterion value as the number of groups increases;
they may represent other interesting partitions.
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If sortg=TRUE, the objects are reordered by the following procedure: (1) a simple matching distance
matrix is computed among the objects, based on the table of K-means assignments to groups, from
K =min.gto K =max.g. (2) A principal coordinate analysis (PCoA, Gower 1966) is computed on
the centred distance matrix. (3) The first principal coordinate is used as the new order of the objects
in the graph.

Value

Function cascadeKM returns an object of class cascadekM with items:

partition Table with the partitions found for different numbers of groups K, from K =
inf.grto K =sup.gr.

results Values of the criterion to select the best partition.

criterion The name of the criterion used.

size The number of objects found in each group, for all partitions (columns).

Function cIndex returns a vector with the index values. The maximum value of these indices is
supposed to indicate the best partition. These indices work best with groups of equal sizes. When
the groups are not of equal sizes, one should not put too much faith in the maximum of these indices,
and also explore the groups corresponding to other values of K.

Author(s)

Marie-Helene Ouellette <Marie-Helene.Ouellette@UMontreal.ca>, Sebastien Durand <Sebastien.Durand@UMontreal.
and Pierre Legendre <Pierre.Legendre@UMontreal.ca>. Parallel processing by Virgilio Gémez-
Rubio. Edited for vegan by Jari Oksanen.

References

Calinski, T. and J. Harabasz. 1974. A dendrite method for cluster analysis. Commun. Stat. 3: 1-27.
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Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika 53: 325-338.
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Milligan, G. W. & M. C. Cooper. 1985. An examination of procedures for determining the number
of clusters in a data set. Psychometrika 50: 159—179.

Weingessel, A., Dimitriadou, A. and Dolnicar, S. 2002. An examination of indexes for determining
the number of clusters in binary data sets. Psychometrika 67: 137-160.

See Also

kmeans.
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Examples

# Partitioning a (10 x 10) data matrix of random numbers

mat <- matrix(runif(100),10,10)

res <- cascadeKM(mat, 2, 5, iter = 25, criterion = 'calinski')
toto <- plot(res)

# Partitioning an autocorrelated time series

vec <- sort(matrix(runif(30),30,1))

res <- cascadeKM(vec, 2, 5, iter = 25, criterion = 'calinski')
toto <- plot(res)

# Partitioning a large autocorrelated time series

# Note that we remove the grid lines

vec <- sort(matrix(runif(1000),1000,1))

res <- cascadeKM(vec, 2, 7, iter = 10, criterion = 'calinski')
toto <- plot(res, gridcol=NA)

cca [Partial] [Constrained] Correspondence Analysis and Redundancy
Analysis

Description

Function cca performs correspondence analysis, or optionally constrained correspondence anal-
ysis (a.k.a. canonical correspondence analysis), or optionally partial constrained correspondence
analysis. Function rda performs redundancy analysis, or optionally principal components analysis.
These are all very popular ordination techniques in community ecology.

Usage

## S3 method for class 'formula'
cca(formula, data, na.action = na.fail, subset = NULL,

oY)
## S3 method for class 'formula'
rda(formula, data, scale=FALSE, na.action = na.fail,

subset = NULL, ...)
## Default S3 method:
cca(X, Y, Z, ...)
## Default S3 method:
rda(X, Y, Z, scale=FALSE, ...)
ca(X, ...)
pca(X, scale=FALSE, ...)
Arguments
formula Model formula, where the left hand side gives the community data matrix, right

hand side gives the constraining variables, and conditioning variables can be
given within a special function Condition.
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data Data frame containing the variables on the right hand side of the model formula.
X Community data matrix.

Y Constraining matrix, typically of environmental variables. Can be missing. If

this is a data. frame, it will be expanded to a model.matrix where factors are
expanded to contrasts (“dummy variables”). It is better to use formula instead
of this argument, and some further analyses only work when formula was used.

Z Conditioning matrix, the effect of which is removed (“partialled out”) before
next step. Can be missing. If this is a data. frame, it is expanded similarly as
constraining matrix.

scale Scale species to unit variance (like correlations).

na.action Handling of missing values in constraints or conditions. The default (na.fail)
is to stop with missing value. Choice na.omit removes all rows with missing
values. Choice na.exclude keeps all observations but gives NA for results that
cannot be calculated. The WA scores of rows may be found also for missing
values in constraints. Missing values are never allowed in dependent community
data.

subset Subset of data rows. This can be a logical vector which is TRUE for kept ob-
servations, or a logical expression which can contain variables in the working
environment, data or species names of the community data.

Other arguments for print or plot functions (ignored in other functions). For
pca() and ca(), arguments are passed to rda() and cca(), respectively.

Details

Since their introduction (ter Braak 1986), constrained, or canonical, correspondence analysis and
its spin-off, redundancy analysis, have been the most popular ordination methods in community
ecology. Functions cca and rda are similar to popular proprietary software Canoco, although the
implementation is completely different. The functions are based on Legendre & Legendre’s (2012)
algorithm: in cca Chi-square transformed data matrix is subjected to weighted linear regression on
constraining variables, and the fitted values are submitted to correspondence analysis performed via
singular value decomposition (svd). Function rda is similar, but uses ordinary, unweighted linear
regression and unweighted SVD. Legendre & Legendre (2012), Table 11.5 (p. 650) give a skeleton
of the RDA algorithm of vegan. The algorithm of CCA is similar, but involves standardization by
row and column weights.

The functions cca() and rda() can be called either with matrix-like entries for community data
and constraints, or with formula interface. In general, the formula interface is preferred, because
it allows a better control of the model and allows factor constraints. Some analyses of ordination
results are only possible if model was fitted with formula (e.g., most cases of anova. cca, automatic
model building).

In the following sections, X, Y and Z, although referred to as matrices, are more commonly data
frames.

In the matrix interface, the community data matrix X must be given, but the other data matrices
may be omitted, and the corresponding stage of analysis is skipped. If matrix Z is supplied, its
effects are removed from the community matrix, and the residual matrix is submitted to the next
stage. This is called partial correspondence or redundancy analysis. If matrix Y is supplied, it
is used to constrain the ordination, resulting in constrained or canonical correspondence analysis,
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or redundancy analysis. Finally, the residual is submitted to ordinary correspondence analysis (or
principal components analysis). If both matrices Z and Y are missing, the data matrix is analysed by
ordinary correspondence analysis (or principal components analysis).

Instead of separate matrices, the model can be defined using a model formula. The left hand side
must be the community data matrix (X). The right hand side defines the constraining model. The
constraints can contain ordered or unordered factors, interactions among variables and functions of
variables. The defined contrasts are honoured in factor variables. The constraints can also be
matrices (but not data frames). The formula can include a special term Condition for conditioning
variables (“‘covariables”) partialled out before analysis. So the following commands are equiva-
lent: cca(X, Y, Z), cca(X~Y + Condition(Z)), where Y and Z refer to constraints and conditions
matrices respectively.

Constrained correspondence analysis is indeed a constrained method: CCA does not try to display
all variation in the data, but only the part that can be explained by the used constraints. Conse-
quently, the results are strongly dependent on the set of constraints and their transformations or
interactions among the constraints. The shotgun method is to use all environmental variables as
constraints. However, such exploratory problems are better analysed with unconstrained meth-
ods such as correspondence analysis (decorana, corresp) or non-metric multidimensional scaling
(metaMDS) and environmental interpretation after analysis (envfit, ordisurf). CCA is a good
choice if the user has clear and strong a priori hypotheses on constraints and is not interested in the
major structure in the data set.

CCA is able to correct the curve artefact commonly found in correspondence analysis by forcing
the configuration into linear constraints. However, the curve artefact can be avoided only with a
low number of constraints that do not have a curvilinear relation with each other. The curve can
reappear even with two badly chosen constraints or a single factor. Although the formula interface
makes it easy to include polynomial or interaction terms, such terms often produce curved artefacts
(that are difficult to interpret), these should probably be avoided.

According to folklore, rda should be used with “short gradients” rather than cca. However, this
is not based on research which finds methods based on Euclidean metric as uniformly weaker than
those based on Chi-squared metric. However, standardized Euclidean distance may be an appropri-
ate measures (see Hellinger standardization in decostand in particular).

Partial CCA (pCCA; or alternatively partial RDA) can be used to remove the effect of some con-
ditioning or background or random variables or covariables before CCA proper. In fact, pCCA
compares models cca(X ~Z) and cca(X ~Y +Z) and attributes their difference to the effect of
Y cleansed of the effect of Z. Some people have used the method for extracting “components of
variance” in CCA. However, if the effect of variables together is stronger than sum of both sep-
arately, this can increase total Chi-square after partialling out some variation, and give negative
“components of variance”. In general, such components of “variance” are not to be trusted due to
interactions between two sets of variables.

The unconstrained ordination methods, Principal Components Analysis (PCA) and Correspondence
Analysis (CA), may be performed using pca() and ca(), which are simple wrappers around rda()
and cca(), respectively. Functions pca() and ca() can only be called with matrix-like objects.

The functions have summary and plot methods which are documented separately (see plot.cca,
summary.cca).

Value

Function cca returns a huge object of class cca, which is described separately in cca.object.
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Function rda returns an object of class rda which inherits from class cca and is described in
cca.object. The scaling used in rda scores is described in a separate vignette with this pack-
age.

Functions pca() and ca() return objects of class "vegan_pca” and "vegan_ca" respectively to
avoid clashes with other packages. These classes inherit from "rda” and "cca” respectively.

Author(s)

The responsible author was Jari Oksanen, but the code borrows heavily from Dave Roberts (Mon-
tana State University, USA).

References

The original method was by ter Braak, but the current implementation follows Legendre and Leg-
endre.

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English ed. Elsevier.

McCune, B. (1997) Influence of noisy environmental data on canonical correspondence analysis.
Ecology 78, 2617-2623.

Palmer, M. W. (1993) Putting things in even better order: The advantages of canonical correspon-
dence analysis. Ecology 74,2215-2230.

Ter Braak, C. J. F. (1986) Canonical Correspondence Analysis: a new eigenvector technique for
multivariate direct gradient analysis. Ecology 67, 1167-1179.

See Also

This help page describes two constrained ordination functions, cca and rda and their corresponding
unconstrained ordination functions, ca and pca. A related method, distance-based redundancy anal-
ysis (dbRDA) is described separately (capscale), as is dbRDA’s unconstrained variant, principal
coordinates analysis (PCO). All these functions return similar objects (described in cca.object).
There are numerous support functions that can be used to access the result object. In the list below,
functions of type cca will handle all three constrained ordination objects, and functions of rda only
handle rda and capscale results.

The main plotting functions are plot. cca for all methods, and biplot.rda for RDA and dbRDA.
However, generic vegan plotting functions can also handle the results. The scores can be accessed
and scaled with scores. cca, and summarized with summary . cca. The eigenvalues can be accessed
with eigenvals. cca and the regression coefficients for constraints with coef.cca. The eigenval-
ues can be plotted with screeplot. cca, and the (adjusted) R? can be found with RsquareAdj . rda.
The scores can be also calculated for new data sets with predict. cca which allows adding points to
ordinations. The values of constraints can be inferred from ordination and community composition
with calibrate.cca.

Diagnostic statistics can be found with goodness. cca, inertcomp, spenvcor, intersetcor, tolerance.cca,
and vif.cca. Function as.mlm. cca refits the result object as a multiple 1m object, and this allows
finding influence statistics (1m. influence, cooks.distance etc.).

Permutation based significance for the overall model, single constraining variables or axes can
be found with anova.cca. Automatic model building with R step function is possible with
deviance.cca, addl.cca and drop1.cca. Functions ordistep and ordiR2step (for RDA) are
special functions for constrained ordination. Randomized data sets can be generated with simulate. cca.
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Separate methods based on constrained ordination model are principal response curves (prc) and
variance partitioning between several components (varpart).

Design decisions are explained in vignette on “Design decisions” which can be accessed with
browseVignettes("vegan").

Examples

data(varespec)

data(varechem)

## Common but bad way: use all variables you happen to have in your
## environmental data matrix

vare.cca <- cca(varespec, varechem)

vare.cca

plot(vare.cca)

## Formula interface and a better model

vare.cca <- cca(varespec ~ Al + Px(K + Baresoil), data=varechem)
vare.cca

plot(vare.cca)

## Partialling out and negative components of variance
cca(varespec ~ Ca, varechem)

cca(varespec ~ Ca + Condition(pH), varechem)

## RDA

data(dune)

data(dune.env)

dune.Manure <- rda(dune ~ Manure, dune.env)

plot(dune.Manure)

cca.object Result Object from Constrained Ordination

Description

Ordination methods cca, rda, dbrda and capscale return similar result objects. All these methods
use the same internal function ordConstrained. They differ only in (1) initial transformation of
the data and in defining inertia, (2) weighting, and (3) the use of rectangular rows X columns
data or symmetric rows x rows dissimilarities: rda initializes data to give variance or correlations
as inertia, cca is based on double-standardized data to give Chi-square inertia and uses row and
column weights, capscale maps the real part of dissimilarities to rectangular data and performs
RDA, and dbrda performs an RDA-like analysis directly on symmetric dissimilarities.

Function ordConstrained returns the same result components for all these methods, and the calling
function may add some more components to the final result. However, you should not access these
result components directly (using $): the internal structure is not regarded as stable application
interface (API), but it can change at any release. If you access the results components directly,
you take a risk of breakage at any vegan release. The vegan provides a wide set of accessor
functions to those components, and these functions are updated when the result object changes.
This documentation gives an overview of accessor functions to the cca result object.
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Usage

ordiYbar(x, model = c("CCA", "CA", "pCCA", "partial”, "initial"))
## S3 method for class 'cca'

model.frame(formula, ...)

## S3 method for class 'cca'

model.matrix(object, ...)

## S3 method for class 'cca'

weights(object, display = "sites”, ...)
Arguments

object, x, formula
A result object from cca, rda, dbrda, or capscale.

model Show constrained ("CCA"), unconstrained ("CA") or conditioned “partial” ("pCCA")
results. In ordiYbar the value can also be "initial” for the internal working
input data, and "partial” for the internal working input data after removing
the partial effects.

display Display either "sites” or "species”.
Other arguments passed to the the function.

Details

The internal (“working”) form of the dependent (community) data can be accessed with function
ordiYbar. The form depends on the ordination method: for instance, in cca the data are weighted
and Chi-square transformed, and in dbrda they are Gower-centred dissimilarities. The input data
in the original (“response”) form can be accessed with fitted.cca and residuals.cca. Function
predict.cca can return either working or response data, and also their lower-rank approximations.

The model matrix of independent data (“Constraints” and “Conditions”) can be extracted with
model.matrix. In partial analysis, the function returns a list of design matrices called Conditions
and Constraints. If either component was missing, a single matrix is returned. The redundant
(aliased) terms do not appear in the model matrix. These terms can be found with alias.cca.
Function model . frame tries to reconstruct the data frame from which the model matrices were de-
rived. This is only possible if the original model was fitted with formula and data arguments, and
still fails if the data are unavailable.

The number of observations can be accessed with nobs. cca, and the residual degrees of freedom
with df . residual. cca. The information on observations with missing values can be accessed with
na.action. The terms and formula of the fitted model can be accessed with formula and terms.

The weights used in cca can be accessed with weights. In unweighted methods (rda) all weights
are equal.

The ordination results are saved in separate components for partial terms, constraints and residual
unconstrained ordination. There is no guarantee that these components will have the same internal
names as currently, and you should be cautious when developing scripts and functions that directly
access these components.

The constrained ordination algorithm is based on QR decomposition of constraints and conditions
(environmental data), and the QR component is saved separately for partial and constrained com-
ponents. The QR decomposition of constraints can be accessed with qr. cca. This will also include
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the residual effects of partial terms (Conditions), and it should be used together with ordiYbar(x,
"partial”). The environmental data are first centred in rda or weighted and centred in cca. The
QR decomposition is used in many functions that access cca results, and it can be used to find many
items that are not directly stored in the object. For examples, see coef.cca, coef.rda, vif.cca,
permutest.cca, predict.cca, predict.rda, calibrate.cca. See gr for other possible uses of
this component. For instance, the rank of the constraints can be found from the QR decomposition.

The eigenvalues of the solution can be accessed with eigenvals. cca. Eigenvalues are not evaluated
for partial component, and they will only be available for constrained and residual components.

The ordination scores are internally stored as (weighted) orthonormal scores matrices. These results
can be accessed with scores.cca and scores.rda functions. The ordination scores are scaled
when accessed with scores functions, but internal (weighted) orthonormal scores can be accessed
by setting scaling = FALSE. Unconstrained residual component has species and site scores, and
constrained component has also fitted site scores or linear combination scores for sites and biplot
scores and centroids for constraint variables. The biplot scores correspond to the model.matrix,
and centroids are calculated for factor variables when they were used. The scores can be selected
by defining the axes, and there is no direct way of accessing all scores of a certain component.
The number of dimensions can be assessed from eigenvals. In addition, some other types can
be derived from the results although not saved in the results. For instance, regression scores and
model coefficients can be accessed with scores and coef functions. Partial component will have
no scores.

Distance-based methods (dbrda, capscale) can have negative eigenvalues and associated imagi-
nary axis scores. In addition, species scores are initially missing in dbrda and they are accessory
and found after analysis in capscale (and may be misleading). Function sppscores can be used
to add species scores or replace them with more meaningful ones.

Note
The latest large change of result object was made in release 2.5-1 in 2016. You can modernize
ancient stray results with modernobject <- update(ancientobject).

Author(s)

Jari Oksanen

References

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English ed. Elsevier.

See Also

The core function is ordConstrained which is called by cca, rda, dbrda, capscale as well as by
unconstrained methods pca, ca and pco. The basic class is "cca” for all methods, and the following
functions are defined for this class: RsquareAdj.cca, SSD.cca, add1.cca, alias.cca, anova. cca,
as.mlm.cca, biplot.cca, bstick.cca, calibrate.cca, coef.cca, cooks.distance.cca, deviance.cca,
df.residual.cca, dropl.cca, eigenvals.cca, extractAIC.cca, fitted.cca, goodness.cca,
hatvalues.cca, labels.cca, model.frame.cca, model.matrix.cca, nobs.cca, permutest.cca,
plot.cca, points.cca, predict.cca, print.cca, gr.cca, residuals.cca, rstandard.cca,
rstudent.cca, scores.cca, screeplot.cca, sigma.cca, simulate.cca, stressplot.cca, summary.cca,
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text.cca, tolerance.cca, vcov.cca, weights. cca. Other functions handling "cca” objects in-
clude inertcomp, intersetcor, mso, ordistep, ordiR2step and vif.cca. Functions that can be
regarded as special cases of "cca” methods include adonis2 and varpart.

CCorA

Canonical Correlation Analysis

Description

Canonical correlation analysis, following Brian McArdle’s unpublished graduate course notes, plus
improvements to allow the calculations in the case of very sparse and collinear matrices, and per-
mutation test of Pillai’s trace statistic.

Usage

CCorA(Y, X, stand.Y=FALSE, stand.X=FALSE, permutations = @, ...)

## S3 method for class 'CCorA'
biplot(x, plot.type="ov", xlabs, plot.axes = 1:2, int=0.5,

col.Y="red", col.X="blue", cex=c(0.7,0.9), ...)
Arguments

Y Left matrix (object class: matrix or data. frame).

X Right matrix (object class: matrix or data. frame).

stand.Y Logical; should Y be standardized?

stand. X Logical; should X be standardized?

permutations  alist of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

X CCoaR result object.

plot.type A character string indicating which of the following plots should be produced:
"objects”, "variables”, "ov" (separate graphs for objects and variables), or
"biplots”. Any unambiguous subset containing the first letters of these names
can be used instead of the full names.

xlabs Row labels. The default is to use row names, NULL uses row numbers instead,
and NA suppresses plotting row names completely.

plot.axes A vector with 2 values containing the order numbers of the canonical axes to be
plotted. Default: first two axes.

int Radius of the inner circles plotted as visual references in the plots of the vari-
ables. Default: int=0.5. With int=0, no inner circle is plotted.

col.Y Color used for objects and variables in the first data table (Y) plots. In biplots,
the objects are in black.

col.X Color used for objects and variables in the second data table (X) plots.
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cex A vector with 2 values containing the size reduction factors for the object and
variable names, respectively, in the plots. Default values: cex=c(0.7,0.9).

Other arguments passed to these functions. The function biplot.CCorA passes
graphical arguments to biplot and biplot.default. CCorA currently ignores
extra arguments.

Details

Canonical correlation analysis (Hotelling 1936) seeks linear combinations of the variables of Y that
are maximally correlated to linear combinations of the variables of X. The analysis estimates the re-
lationships and displays them in graphs. Pillai’s trace statistic is computed and tested parametrically
(F-test); a permutation test is also available.

Algorithmic note — The blunt approach would be to read the two matrices, compute the covariance
matrices, then the matrix S12 %*% inv(S22) %*% t(S12) %*% inv(S11). Its trace is Pillai’s trace
statistic. This approach may fail, however, when there is heavy multicollinearity in very sparse data
matrices. The safe approach is to replace all data matrices by their PCA object scores.

The function can produce different types of plots depending on the option chosen: "objects”
produces two plots of the objects, one in the space of Y, the second in the space of X; "variables”
produces two plots of the variables, one of the variables of Y in the space of Y, the second of
the variables of X in the space of X; "ov" produces four plots, two of the objects and two of the
variables; "biplots” produces two biplots, one for the first matrix (Y) and one for second matrix
(X) solutions. For biplots, the function passes all arguments to biplot.default; consult its help
page for configuring biplots.

Value

Function CCorA returns a list containing the following elements:

Pillai Pillai’s trace statistic = sum of the canonical eigenvalues.

Eigenvalues Canonical eigenvalues. They are the squares of the canonical correlations.
CanCorr Canonical correlations.

Mat.ranks Ranks of matrices Y and X.

RDA.Rsquares Bimultivariate redundancy coefficients (R-squares) of RDAs of YIX and XIY.

RDA.adj.Rsq RDA.Rsquares adjusted for n and the number of explanatory variables.
nperm Number of permutations.

p.Pillai Parametric probability value associated with Pillai’s trace.

p.perm Permutational probability associated with Pillai’s trace.

Cy Object scores in Y biplot.

Cx Object scores in X biplot.

corr.Y.Cy Scores of Y variables in Y biplot, computed as cor(Y,Cy).

corr.X.Cx Scores of X variables in X biplot, computed as cor(X,Cx).

corr.Y.Cx cor(Y,Cy) available for plotting variables Y in space of X manually.
corr.X.Cy cor(X,Cx) available for plotting variables X in space of Y manually.
control A list of control values for the permutations as returned by the function how.

call Call to the CCorA function.
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Author(s)

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal. Implemented in
vegan with the help of Jari Oksanen.

References

Hotelling, H. 1936. Relations between two sets of variates. Biometrika 28: 321-377.

Legendre, P. 2005. Species associations: the Kendall coefficient of concordance revisited. Journal
of Agricultural, Biological, and Environmental Statistics 10: 226-245.

Examples

# Example using two mite groups. The mite data are available in vegan
data(mite)

# Two mite species associations (Legendre 2005, Fig. 4)

group.1 <- ¢(1,2,4:8,10:15,17,19:22,24,26:30)

group.2 <- ¢(3,9,16,18,23,25,31:35)

# Separate Hellinger transformations of the two groups of species
mite.hel.1 <- decostand(mite[,group.1], "hel")

mite.hel.2 <- decostand(mite[,group.2], "hel")

rownames(mite.hel.1) = paste(”S",1:nrow(mite),sep="")
rownames(mite.hel.2) = paste(”"S",1:nrow(mite),sep="")

out <- CCorA(mite.hel.1, mite.hel.2)

out

biplot(out, "ob")

biplot(out, "v", cex=c(0.7,0.6))
biplot(out, "ov", cex=c(0.7,0.6))
biplot(out, "b", cex=c(0.7,0.6)) Two biplots

biplot(out, xlabs = NA, plot.axes = c(3,5)) # Plot axes 3, 5. No object names
biplot(out, plot.type="biplots”, xlabs = NULL) # Replace object names by numbers

Two plots of objects
Two plots of variables
Four plots (2 for objects, 2 for variables)

T

# Example using random numbers. No significant relationship is expected
matl <- matrix(rnorm(690),20,3)

mat2 <- matrix(rnorm(100),20,5)

out2 = CCorA(matl, mat2, permutations=99)

out2

biplot(out2, "b")

clamtest Multinomial Species Classification Method (CLAM)

Description

The CLAM statistical approach for classifying generalists and specialists in two distinct habitats is
described in Chazdon et al. (2011).



clamtest

Usage

53

clamtest(comm, groups, coverage.limit = 10, specialization = 2/3,
npoints = 20, alpha = 0.05/20)
## S3 method for class 'clamtest'

summary (object,

>

## S3 method for class 'clamtest'
plot(x, xlab, ylab, main, pch = 21:24, col.points = 1:4,

col.lines = 2:4, 1ty = 1:3, position = "bottomright”, ...)
Arguments
comm Community matrix, consisting of counts.

groups

coverage.limit

specialization

npoints

alpha

X, object

xlab, ylab

main

pch, col.points
1ty, col.lines

position

Details

A vector identifying the two habitats. Must have exactly two unique values or
levels. Habitat IDs in the grouping vector must match corresponding rows in the
community matrix comm.

Integer, the sample coverage based correction is applied to rare species with
counts below this limit. Sample coverage is calculated separately for the two
habitats. Sample relative abundances are used for species with higher than or
equal to coverage.limit total counts per habitat.

Numeric, specialization threshold value between 0 and 1. The value of 2/3 rep-
resents ‘supermajority’ rule, while a value of 1/2 represents a ‘simple majority’
rule to assign shared species as habitat specialists.

Integer, number of points used to determine the boundary lines in the plots.

Numeric, nominal significance level for individual tests. The default value re-
duces the conventional limit of 0.05 to account for overdispersion and multiple
testing for several species simultaneously. However, the is no firm reason for
exactly this limit.

Fitted model object of class "clamtest”.

Labels for the plot axes.

Main title of the plot.

Symbols and colors used in plotting species groups.

Line types and colors for boundary lines in plot to separate species groups.

Position of figure legend, see legend for specification details. Legend not shown
if position = NULL.

Additional arguments passed to methods.

The method uses a multinomial model based on estimated species relative abundance in two habitats
(A, B). It minimizes bias due to differences in sampling intensities between two habitat types as
well as bias due to insufficient sampling within each habitat. The method permits a robust statistical
classification of habitat specialists and generalists, without excluding rare species a priori (Chazdon
et al. 2011). Based on a user-defined specialization threshold, the model classifies species into
one of four groups: (1) generalists; (2) habitat A specialists; (3) habitat B specialists; and (4) too
rare to classify with confidence.
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Value

A data frame (with class attribute "clamtest"), with columns:

Species: species name (column names from comm),

Total_*Ax: total count in habitat A,

Total_*Bx*: total count in habitat B,

Classes: species classification, a factor with levels Generalist, Specialist_xA*, Specialist_#Bx,

and Too_rare.

*Ax and *B= are placeholders for habitat names/labels found in the data.

The summary method returns descriptive statistics of the results. The plot method returns values in-
visibly and produces a bivariate scatterplot of species total abundances in the two habitats. Symbols
and boundary lines are shown for species groups.

Note

The code was tested against standalone CLAM software provided on the website of Anne Chao
(which were then at http://chao.stat.nthu.edu.tw/wordpress); minor inconsistencies were found, es-
pecially for finding the threshold for ’too rare’ species. These inconsistencies are probably due to
numerical differences between the two implementation. The current R implementation uses root
finding for iso-lines instead of iterative search.

The original method (Chazdon et al. 2011) has two major problems:

1. It assumes that the error distribution is multinomial. This is a justified choice if individuals
are freely distributed, and there is no over-dispersion or clustering of individuals. In most
ecological data, the variance is much higher than multinomial assumption, and therefore test
statistic are too optimistic.

2. The original authors suggest that multiple testing adjustment for multiple testing should be
based on the number of points (npoints) used to draw the critical lines on the plot, whereas
the adjustment should be based on the number of tests (i.e., tested species). The function uses
the same numerical values as the original paper, but there is no automatic connection between
npoints and alpha arguments, but you must work out the adjustment yourself.

Author(s)

Peter Solymos <solymos@ualberta.ca>

References

Chazdon, R. L., Chao, A., Colwell, R. K., Lin, S.-Y., Norden, N., Letcher, S. G., Clark, D. B.,
Finegan, B. and Arroyo J. P.(2011). A novel statistical method for classifying habitat generalists
and specialists. Ecology 92, 1332-1343.
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Examples

data(mite)

data(mite.env)

sol <- with(mite.env, clamtest(mite, Shrub=="None", alpha=0.005))
summary (sol)

head(sol)

plot(sol)

commsim Create an Object for Null Model Algorithms

Description

The commsim function can be used to feed Null Model algorithms into nullmodel analysis. The
make.commsim function returns various predefined algorithm types (see Details). These functions
represent low level interface for community null model infrastructure in vegan with the intent of
extensibility, and less emphasis on direct use by users.

Usage

commsim(method, fun, binary, isSeq, mode)
make.commsim(method)
## S3 method for class 'commsim'

print(x, ...)
Arguments
method Character, name of the algorithm.
fun A function. For possible formal arguments of this function see Details.
binary Logical, if the algorithm applies to presence-absence or count matrices.
isSeq Logical, if the algorithm is sequential (needs burnin and thinning) or not.
mode Character, storage mode of the community matrix, either "integer" or "double”.
X An object of class commsim.
Additional arguments.
Details

The function fun must return an array of dim(nr, nc, n), and must take some of the following
arguments:

X: input matrix,

n: number of permuted matrices in output,

nr: number of rows,

nc: number of columns,

rs: vector of row sums,
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cs: vector of column sums,

rf: vector of row frequencies (non-zero cells),
cf: vector of column frequencies (non-zero cells),
s: total sum of x,

fill: matrix fill (non-zero cells),

thin: thinning value for sequential algorithms,

additional arguments.

You can define your own null model, but several null model algorithm are pre-defined and can be
called by their name. The predefined algorithms are described in detail in the following chapters.
The binary null models produce matrices of zeros (absences) and ones (presences) also when input
matrix is quantitative. There are two types of quantitative data: Counts are integers with a natural
unit so that individuals can be shuffled, but abundances can have real (floating point) values and do
not have a natural subunit for shuffling. All quantitative models can handle counts (integers), but
only some are able to handle real values. Some of the null models are sequential so that the next
matrix is derived from the current one. This makes models dependent from previous models, and
usually you must thin these matrices and study the sequences for stability: see oecosimu for details
and instructions.

See Examples for structural constraints imposed by each algorithm and defining your own null
model.

Value

An object of class commsim with elements corresponding to the arguments (method, binary, isSeq,
mode, fun).

If the input of make.comsimm is a commsim object, it is returned without further evaluation. If this
is not the case, the character method argument is matched against predefined algorithm names. An
error message is issued if none such is found. If the method argument is missing, the function
returns names of all currently available null model algorithms as a character vector.

Binary null models

All binary null models preserve fill: number of presences or conversely the number of absences.
The classic models may also preserve column (species) frequencies (c@) or row frequencies or
species richness of each site (r@) and take into account commonness and rarity of species (r1, r2).
Algorithms swap, tswap, curveball, quasiswap and backtrack preserve both row and column
frequencies. Three first ones are sequential but the two latter are non-sequential and produce inde-
pendent matrices. Basic algorithms are reviewed by Wright et al. (1998).

"re@": non-sequential algorithm for binary matrices that only preserves the number of presences
(fill).

"r@": non-sequential algorithm for binary matrices that preserves the site (row) frequencies.

"r1": mnon-sequential algorithm for binary matrices that preserves the site (row) frequencies, but
uses column marginal frequencies as probabilities of selecting species.

"r2": non-sequential algorithm for binary matrices that preserves the site (row) frequencies, and
uses squared column marginal frequencies as as probabilities of selecting species.
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"c@": mnon-sequential algorithm for binary matrices that preserves species frequencies (Jonsson
2001).

"swap”: sequential algorithm for binary matrices that changes the matrix structure, but does not
influence marginal sums (Gotelli & Entsminger 2003). This inspects 2 x 2 submatrices so
long that a swap can be done. Some arbitrary matrix with (nearly) complete fill cannot be
swapped; function nestedchecker gives the number of swappable submatrices. This also
applies to other swap models.

"tswap”: sequential algorithm for binary matrices. Same as the "swap” algorithm, but it tries a
fixed number of times and performs zero to many swaps at one step (according to the thin
argument in the call). This approach was suggested by Miklds & Podani (2004) because they
found that ordinary swap may lead to biased sequences, since some columns or rows are more
easily swapped.

"curveball”: sequential method for binary matrices that implements the ‘Curveball’ algorithm
of Strona et al. (2014). The algorithm selects two random rows and finds the set of unique
species that occur only in one of these rows. The algorithm distributes the set of unique species
to rows preserving the original row frequencies. Zero to several species are swapped in one
step, and usually the matrix is perturbed more strongly than in other sequential methods.

"quasiswap”: non-sequential algorithm for binary matrices that implements a method where ma-
trix is first filled honouring row and column totals, but with integers that may be larger than
one. Then the method inspects random 2 X 2 matrices and performs a quasiswap on them.
In addition to ordinary swaps, quasiswap can reduce numbers above one to ones preserving
marginal totals (Miklés & Podani 2004). The method is non-sequential, but it accepts thin
argument: the convergence is checked at every thin steps. This allows performing several
ordinary swaps in addition to fill changing swaps which helps in reducing or removing the
bias.

"greedyqgswap”: A greedy variant of quasiswap. In greedy step, one element of the 2 x 2 matrix
is taken from > 1 elements. The greedy steps are biased, but the method can be thinned,
and only the first of thin steps is greedy. Even modest thinning (say thin = 20) removes or
reduces the bias, and thin = 100 (1% greedy steps) looks completely safe and still speeds up
simulation. The code is experimental and it is provided here for further scrutiny, and should
be tested for bias before use.

"backtrack”: non-sequential algorithm for binary matrices that implements a filling method with
constraints both for row and column frequencies (Gotelli & Entsminger 2001). The matrix is
first filled randomly, but typically row and column sums are reached before all incidences are
filled in. After this the function “backtracks” removing some incidences and starting to fill
again. This backtracking is done so many times that all incidences will be filled into matrix.
The results may be biased and should be inspected carefully before use.

Quantitative Models for Counts with Fixed Marginal Sums

These models shuffle individuals of counts and keep marginal sums fixed, but marginal frequencies
are not preserved. Algorithm r2dtable uses standard R function r2dtable also used for simulated
P-values in chisq.test. Algorithm quasiswap_count uses the same, but preserves the original
fill. Typically this means increasing numbers of zero cells and the result is zero-inflated with respect
to r2dtable.

"r2dtable”: non-sequential algorithm for count matrices. This algorithm keeps matrix sum and
row/column sums constant. Based on r2dtable.
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"quasiswap_count”: non-sequential algorithm for count matrices. This algorithm is similar as
Carsten Dormann’s swap.web function in the package bipartite. First, a random matrix is
generated by the r2dtable function preserving row and column sums. Then the original
matrix fill is reconstructed by sequential steps to increase or decrease matrix fill in the random
matrix. These steps are based on swapping 2 X 2 submatrices (see "swap_count” algorithm
for details) to maintain row and column totals.

Quantitative Swap Models

Quantitative swap models are similar to binary swap, but they swap the largest permissible value.
The models in this section all maintain the fill and perform a quantitative swap only if this can
be done without changing the fill. Single step of swap often changes the matrix very little. In
particular, if cell counts are variable, high values change very slowly. Checking the chain stability
and independence is even more crucial than in binary swap, and very strong thinning is often
needed. These models should never be used without inspecting their properties for the current data.
These null models can also be defined using permatswap function.

"swap_count”: sequential algorithm for count matrices. This algorithm find 2 x 2 submatrices
that can be swapped leaving column and row totals and fill unchanged. The algorithm finds
the largest value in the submatrix that can be swapped (d). Swap means that the values in
diagonal or antidiagonal positions are decreased by d, while remaining cells are increased by
d. A swap is made only if fill does not change.

"abuswap_r": sequential algorithm for count or nonnegative real valued matrices with fixed row
frequencies (see also permatswap). The algorithm is similar to swap_count, but uses different
swap value for each row of the 2 x 2 submatrix. Each step changes the the corresponding
column sums, but honours matrix fill, row sums, and row/column frequencies (Hardy 2008;
randomization scheme 2x).

"abuswap_c": sequential algorithm for count or nonnegative real valued matrices with fixed col-
umn frequencies (see also permatswap). The algorithm is similar as the previous one, but
operates on columns. Each step changes the the corresponding row sums, but honours matrix
fill, column sums, and row/column frequencies (Hardy 2008; randomization scheme 3x).

Quantitative Swap and Shuffle Models

Quantitative Swap and Shuffle methods (swsh methods) preserve fill and column and row frequen-
cies, and also either row or column sums. The methods first perform a binary quasiswap and then
shuffle original quantitative data to non-zero cells. The samp methods shuffle original non-zero
cell values and can be used also with non-integer data. The both methods redistribute individuals
randomly among non-zero cells and can only be used with integer data. The shuffling is either free
over the whole matrix, or within rows (r methods) or within columns (¢ methods). Shuffling within
a row preserves row sums, and shuffling within a column preserves column sums. These models
can also be defined with permatswap.

"swsh_samp”: non-sequential algorithm for quantitative data (either integer counts or non-integer
values). Original non-zero values values are shuffled.

"swsh_both"”: non-sequential algorithm for count data. Individuals are shuffled freely over non-
zero cells.

"swsh_samp_r": non-sequential algorithm for quantitative data. Non-zero values (samples) are
shuffled separately for each row.
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"swsh_samp_c": non-sequential algorithm for quantitative data. Non-zero values (samples) are
shuffled separately for each column.

"swsh_both_r": non-sequential algorithm for count matrices. Individuals are shuffled freely for
non-zero values within each row.

"swsh_both_c"”: non-sequential algorithm for count matrices. Individuals are shuffled freely for
non-zero values with each column.

Quantitative Shuffle Methods

Quantitative shuffle methods are generalizations of binary models r@o, r@ and c@. The _ind meth-
ods shuffle individuals so that the grand sum, row sum or column sums are preserved. These
methods are similar as r2dtable but with still slacker constraints on marginal sums. The _samp
and _both methods first apply the corresponding binary model with similar restriction on marginal
frequencies and then distribute quantitative values over non-zero cells. The _samp models shuffle
original cell values and can therefore handle also non-count real values. The _both models shuffle
individuals among non-zero values. The shuffling is over the whole matrix in r@@_, and within row
in r@_ and within column in c@_ in all cases.

"r@o_ind": non-sequential algorithm for count matrices. This algorithm preserves grand sum and
individuals are shuffled among cells of the matrix.

"r@_ind": non-sequential algorithm for count matrices. This algorithm preserves row sums and
individuals are shuffled among cells of each row of the matrix.

"c@_ind": non-sequential algorithm for count matrices. This algorithm preserves column sums
and individuals are shuffled among cells of each column of the matrix.

"r@o_samp”: non-sequential algorithm for count or nonnegative real valued (mode = "double")
matrices. This algorithm preserves grand sum and cells of the matrix are shuffled.

"r@_samp”: non-sequential algorithm for count or nonnegative real valued (mode = "double")
matrices. This algorithm preserves row sums and cells within each row are shuffled.

"c@_samp”: non-sequential algorithm for count or nonnegative real valued (mode = "double")
matrices. This algorithm preserves column sums constant and cells within each column are
shuffled.

"r@@_both": non-sequential algorithm for count matrices. This algorithm preserves grand sum
and cells and individuals among cells of the matrix are shuffled.

"r@_both": non-sequential algorithm for count matrices. This algorithm preserves grand sum and
cells and individuals among cells of each row are shuffled.

"c@_both": non-sequential algorithm for count matrices. This algorithm preserves grand sum and
cells and individuals among cells of each column are shuffled.
Author(s)

Jari Oksanen and Peter Solymos

References

Gotelli, N.J. & Entsminger, N.J. (2001). Swap and fill algorithms in null model analysis: rethinking
the knight’s tour. Oecologia 129, 281-291.
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See Also

See permatfull, permatswap for alternative specification of quantitative null models. Function
oecosimu gives a higher-level interface for applying null models in hypothesis testing and analysis
of models. Function nullmodel and simulate.nullmodel are used to generate arrays of simulated
null model matrices.

Examples

## write the ro@ algorithm
f <- function(x, n, ...)
array(replicate(n, sample(x)), c(dim(x), n))
(cs <- commsim("r@e@", fun=f, binary=TRUE,
isSeq=FALSE, mode="integer"))

## retrieving the sequential swap algorithm
(cs <- make.commsim("swap”))

## feeding a commsim object as argument
make.commsim(cs)

## making the missing c1 model using r1 as a template
##  non-sequential algorithm for binary matrices
##  that preserves the species (column) frequencies,
##  but uses row marginal frequencies
## as probabilities of selecting sites
f <- function (x, n, nr, nc, rs, cs, ...) {

out <- array(eL, c(nr, nc, n))

J <- seqg_len(nc)

storage.mode(rs) <- "double"

for (k in seg_len(n))

for (j in J)


https://doi.org/10.1038/ncomms5114

contribdiv 61

out[sample.int(nr, cs[j], prob = rs), j, k] <= 1L
out
3
cs <- make.commsim("r1")
cs$method <- "c1”
cs$fun <- f

## structural constraints
diagfun <- function(x, y) {

c(sum = sum(y) == sum(x),
fill = sum(y > @) == sum(x > @),
rowSums = all(rowSums(y) == rowSums(x)),
colSums = all(colSums(y) == colSums(x)),
rowFreq = all(rowSums(y > @) == rowSums(x > 0)),

colFreq = all(colSums(y > @) == colSums(x > 0)))
3
evalfun <- function(meth, x, n) {
m <- nullmodel(x, meth)
y <- simulate(m, nsim=n)
out <- rowMeans(sapply(1:dim(y)[3],
function(i) diagfun(attr(y, "data"), y[,,il)))
z <- as.numeric(c(attr(y, "binary"”), attr(y, "isSeq"),

attr(y, "mode”) == "double"))
names(z) <- c("binary”, "isSeq”, "double")
c(z, out)

3

x <- matrix(rbinom(10%12, 1, @.5)*rpois(10x12, 3), 12, 10)
algos <- make.commsim()

a <- t(sapply(algos, evalfun, x=x, n=10))

print(as.table(ifelse(a==1,1,0)), zero.print = ".")
contribdiv Contribution Diversity Approach
Description

The contribution diversity approach is based in the differentiation of within-unit and among-unit
diversity by using additive diversity partitioning and unit distinctiveness.

Usage

contribdiv(comm, index = c("richness"”, "simpson"),
relative = FALSE, scaled = TRUE, drop.zero = FALSE)

## S3 method for class 'contribdiv'

plot(x, sub, xlab, ylab, ylim, col, ...)

Arguments

comm The community data matrix with samples as rows and species as column.
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index Character, the diversity index to be calculated.
relative Logical, if TRUE then contribution diversity values are expressed as their signed
deviation from their mean. See details.
scaled Logical, if TRUE then relative contribution diversity values are scaled by the sum
of gamma values (if index = "richness"”) or by sum of gamma values times
the number of rows in comm (if index = "simpson”). See details.
drop.zero Logical, should empty rows dropped from the result? If empty rows are not
dropped, their corresponding results will be NAs.
X An object of class "contribdiv”.
sub, xlab, ylab, ylim, col
Graphical arguments passed to plot.
Other arguments passed to plot.
Details

This approach was proposed by Lu et al. (2007). Additive diversity partitioning (see adipart for
more references) deals with the relation of mean alpha and the total (gamma) diversity. Although
alpha diversity values often vary considerably. Thus, contributions of the sites to the total diversity
are uneven. This site specific contribution is measured by contribution diversity components. A
unit that has e.g. many unique species will contribute more to the higher level (gamma) diversity
than another unit with the same number of species, but all of which common.

Distinctiveness of species j can be defined as the number of sites where it occurs (n;), or the sum
of its relative frequencies (p;). Relative frequencies are computed sitewise and sum,;p;js at site ¢
sum up to 1.

The contribution of site ¢ to the total diversity is given by alpha; = sum;(1/n;j) when dealing
with richness and alpha; = sum(p;; * (1 — p;;)) for the Simpson index.

The unit distinctiveness of site 7 is the average of the species distinctiveness, averaging only those
species which occur at site 7. For species richness: alpha; = mean(n;) (in the paper, the second
equation contains a typo, n is without index). For the Simpson index: alpha; = mean(n;).

The Lu et al. (2007) gives an in-depth description of the different indices.

Value

An object of class "contribdiv” inheriting from data frame.

Returned values are alpha, beta and gamma components for each sites (rows) of the community
matrix. The "diff.coef" attribute gives the differentiation coefficient (see Examples).

Author(s)

Péter S6lymos, <solymos@ualberta.ca>

References

Lu, H. P., Wagner, H. H. and Chen, X. Y. 2007. A contribution diversity approach to evaluate
species diversity. Basic and Applied Ecology, 8, 1-12.
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See Also

adipart, diversity

Examples

## Artificial example given in

## Table 2 in Lu et al. 2007

x <= matrix(c(

1/3,1/3,1/3,0,0,0,

0,0,1/3,1/3,1/3,0,

0,0,0,1/3,1/3,1/3),

3, 6, byrow = TRUE,

dimnames = 1ist(LETTERS[1:3],letters[1:6]))

X

## Compare results with Table 2

contribdiv(x, "richness")

contribdiv(x, "simpson")

## Relative contribution (C values), compare with Table 2

(cd1 <- contribdiv(x, "richness"”, relative = TRUE, scaled = FALSE))
(cd2 <- contribdiv(x, "simpson”, relative = TRUE, scaled = FALSE))
## Differentiation coefficients

attr(cdl, "diff.coef"”) # D_ST

attr(cd2, "diff.coef"”) # D_DT

## BCI data set

data(BCI)

opar <- par(mfrow=c(2,2))

plot(contribdiv(BCI, "richness”), main = "Absolute")
plot(contribdiv(BCI, "richness"”, relative = TRUE), main = "Relative")
plot(contribdiv(BCI, "simpson”))

plot(contribdiv(BCI, "simpson”, relative = TRUE))

par (opar)
dbrda Principal Coordinates Analysis and [Partial] Distance-based Redun-
dancy Analysis
Description

Distance-based redundancy analysis (dbRDA) is an ordination method similar to Redundancy Anal-
ysis (rda), but it allows non-Euclidean dissimilarity indices, such as Manhattan or Bray-Curtis dis-
tance. Despite this non-Euclidean feature, the analysis is strictly linear and metric. If called with
Euclidean distance, the results are identical to rda, but dbRDA will be less efficient. Functions
dbrda is constrained versions of metric scaling, a.k.a. principal coordinates analysis, which are
based on the Euclidean distance but can be used, and are more useful, with other dissimilarity
measures. Function capscale is a simplified version based on Euclidean approximation of dis-
similarities. The functions can also perform unconstrained principal coordinates analysis (PCO),
optionally using extended dissimilarities. pco() is a wrapper to dbrda(), which performs PCO.
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Usage

dbrda(formula, data, distance = "euclidean”, sqrt.dist = FALSE,
add = FALSE, dfun = vegdist, metaMDSdist = FALSE,

na.action = na.fail, subset = NULL, ...)
capscale(formula, data, distance = "euclidean”, sqgrt.dist = FALSE,
comm = NULL, add = FALSE, dfun = vegdist, metaMDSdist = FALSE,
na.action = na.fail, subset = NULL, ...)
pco(X, ...)
Arguments
formula Model formula. The function can be called only with the formula interface.

Most usual features of formula hold, especially as defined in cca and rda. The
LHS must be either a community data matrix or a dissimilarity matrix, e.g., from
vegdist or dist. If the LHS is a data matrix, function vegdist or function
given in dfun will be used to find the dissimilarities. The RHS defines the
constraints. The constraints can be continuous variables or factors, they can be
transformed within the formula, and they can have interactions as in a typical
formula. The RHS can have a special term Condition that defines variables to
be “partialled out” before constraints, just like in rda or cca. This allows the

use of partial dbRDA.
X Community data matrix.
data Data frame containing the variables on the right hand side of the model formula.
distance The name of the dissimilarity (or distance) index if the LHS of the formulais a

data frame instead of dissimilarity matrix.
sqrt.dist Take square roots of dissimilarities. See section Details below.

comm Community data frame which will be used for finding species scores when the
LHS of the formula was a dissimilarity matrix. This is not used if the LHS is
a data frame. If this is not supplied, the “species scores” are unavailable when
dissimilarities were supplied. N.B., this is only available in capscale: dbrda
does not return species scores. Function sppscores can be used to add species
scores if they are missing.

add Add a constant to the non-diagonal dissimilarities such that all eigenvalues are
non-negative in the underlying Principal Co-ordinates Analysis (see wcmdscale
for details). "lingoes” (or TRUE) uses the recommended method of Legendre
& Anderson (1999: “method 1) and "cailliez” uses their “method 2. The
latter is the only one in cmdscale.

dfun Distance or dissimilarity function used. Any function returning standard "dist”
and taking the index name as the first argument can be used.

metaMDSdist Use metaMDSdist similarly as in metaMDS. This means automatic data transfor-
mation and using extended flexible shortest path dissimilarities (function stepacross)
when there are many dissimilarities based on no shared species.

na.action Handling of missing values in constraints or conditions. The default (na.fail)
is to stop with missing values. Choices na.omit and na.exclude delete rows
with missing values, but differ in representation of results. With na.omit only
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non-missing site scores are shown, but na.exclude gives NA for scores of miss-
ing observations. Unlike in rda, no WA scores are available for missing con-
straints or conditions.

subset Subset of data rows. This can be a logical vector which is TRUE for kept ob-
servations, or a logical expression which can contain variables in the working
environment, data or species names of the community data (if given in the for-
mula or as comm argument).

Other parameters passed to underlying functions (e.g., metaMDSdist). For pco()
argument are passed to dbrda().

Details

Functions dbrda and capscale provide two alternative implementations of dbRDA. Function dbrda
is based on McArdle & Anderson (2001) and directly decomposes dissimilarities. With Euclidean
distances results are identical to rda. Non-Euclidean dissimilarities may give negative eigenvalues
associated with imaginary axes. Function capscale is based on Legendre & Anderson (1999): the
dissimilarity data are first ordinated using metric scaling, and the ordination results are analysed as
rda. capscale ignores the imaginary component and will not give negative eigenvalues (but will
report the magnitude on imaginary component).

If the user supplied a community data frame instead of dissimilarities, the functions will find dissim-
ilarities using vegdist or distance function given in dfun with specified distance. The functions
will accept distance objects from vegdist, dist, or any other method producing compatible ob-
jects. The constraining variables can be continuous or factors or both, they can have interaction
terms, or they can be transformed in the call. Moreover, there can be a special term Condition just
like in rda and cca so that “partial” analysis can be performed.

Function dbrda does not return species scores, and they can also be missing in capscale, but they
can be added after the analysis using function sppscores.

Non-Euclidean dissimilarities can produce negative eigenvalues (Legendre & Anderson 1999, McAr-
dle & Anderson 2001). If there are negative eigenvalues, the printed output of capscale will add a

column with sums of positive eigenvalues and an item of sum of negative eigenvalues, and dbrda

will add a column giving the number of real dimensions with positive eigenvalues. If negative

eigenvalues are disturbing, functions let you distort the dissimilarities so that only non-negative

eigenvalues will be produced with argument add = TRUE. Alternatively, with sqrt.dist = TRUE,

square roots of dissimilarities can be used which may help in avoiding negative eigenvalues (Leg-

endre & Anderson 1999).

The functions can be also used to perform ordinary metric scaling a.k.a. principal coordinates
analysis by using a formula with only a constant on the right hand side, or comm ~ 1. The new
function pco() implements principal coordinates analysis via dbrda() directly, using this formula.
With metaMDSdist = TRUE, the function can do automatic data standardization and use extended
dissimilarities using function stepacross similarly as in non-metric multidimensional scaling with
metaMDS.

Value

The functions return an object of class dbrda or capscale which inherit from rda. See cca.object
for description of the result object. Function pco() returns an object of class "vegan_pco” (which
inherits from class "dbrda") to avoid clashes with other packages.
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Note

Function dbrda implements real distance-based RDA and is preferred over capscale. capscale
was originally developed as a variant of constrained analysis of proximities (Anderson & Willis
2003), but these developments made it more similar to dbRDA. However, it discards the imaginary
dimensions with negative eigenvalues and ordination and significance tests area only based on real
dimensions and positive eigenvalues. capscale may be removed from vegan in the future. It has
been in vegan since 2003 (CRAN release 1.6-0) while dbrda was first released in 2016 (version
2.4-0), and removal of capscale may be disruptive to historical examples and scripts, but in modern
times dbrda should be used.

The inertia is named after the dissimilarity index as defined in the dissimilarity data, or as unknown
distance if such information is missing. If the largest original dissimilarity was larger than 4,
capscale handles input similarly as rda and bases its analysis on variance instead of sum of
squares. Keyword mean is added to the inertia in these cases, e.g. with Euclidean and Manhattan
distances. Inertia is based on squared index, and keyword squared is added to the name of distance,
unless data were square root transformed (argument sqrt.dist=TRUE). If an additive constant was
used with argument add, Lingoes or Cailliez adjusted is added to the the name of inertia, and
the value of the constant is printed.

Author(s)

Jari Oksanen

References
Anderson, M.J. & Willis, T.J. (2003). Canonical analysis of principal coordinates: a useful method
of constrained ordination for ecology. Ecology 84, 511-525.

Gower, J.C. (1985). Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra
and its Applications 67, 81-97.

Legendre, P. & Anderson, M. J. (1999). Distance-based redundancy analysis: testing multispecies
responses in multifactorial ecological experiments. Ecological Monographs 69, 1-24.

Legendre, P. & Legendre, L. (2012). Numerical Ecology. 3rd English Edition. Elsevier.

McAurdle, B.H. & Anderson, M.J. (2001). Fitting multivariate models to community data: a com-
ment on distance-based redundancy analysis. Ecology 82, 290-297.

See Also

rda, cca, plot.cca, anova.cca, vegdist, dist, cmdscale, wemdscale for underlying and related
functions. Function sppscores can add species scores or replace existing species scores.

The function returns similar result object as rda (see cca.object). This section for rda gives a
more complete list of functions that can be used to access and analyse dbRDA results.

Examples

data(varespec, varechem)

## dbrda

dbrda(varespec ~ N + P + K + Condition(Al), varechem, dist="bray")
## avoid negative eigenvalues with sqrt distances
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dbrda(varespec ~ N + P + K + Condition(Al), varechem, dist="bray",
sqrt.dist = TRUE)
## avoid negative eigenvalues also with Jaccard distances
(m <- dbrda(varespec ~ N + P + K + Condition(Al), varechem, dist="jaccard"))
## add species scores
sppscores(m) <- wisconsin(varespec)
## pco
pco(varespec, dist = "bray”, sqrt.dist = TRUE)

decorana Detrended Correspondence Analysis and Basic Reciprocal Averaging

Description

Performs detrended correspondence analysis and basic reciprocal averaging or orthogonal corre-
spondence analysis.

Usage

decorana(veg, iweigh=0, iresc=4, ira=0, mk=26, short=0,
before=NULL, after=NULL)

## S3 method for class 'decorana'

plot(x, choices=c(1,2), origin=TRUE,
display=c("both”,"sites"”, "species”,"none"),
cex = 0.7, cols = c(1,2), type, xlim, ylim, ...)

## S3 method for class 'decorana'
text(x, display = c("sites"”, "species"”), labels,
choices = 1:2, origin = TRUE, select, ...)

## S3 method for class 'decorana'
points(x, display = c("sites"”, "species"),
choices=1:2, origin = TRUE, select, ...)

## S3 method for class 'decorana'
scores(x, display="sites"”, choices=1:4,

origin=TRUE, tidy=FALSE, ...)

downweight(veg, fraction = 5)

Arguments
veg Community data, a matrix-like object.
iweigh Downweighting of rare species (0: no).
iresc Number of rescaling cycles (0: no rescaling).

ira Type of analysis (0: detrended, 1: basic reciprocal averaging).
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mk Number of segments in rescaling.

short Shortest gradient to be rescaled.

before Hill’s piecewise transformation: values before transformation.

after Hill’s piecewise transformation: values after transformation — these must corre-
spond to values in before.

X A decorana result object.

choices Axes shown.

origin Use true origin even in detrended correspondence analysis.

display Display only sites, only species, both or neither.

cex Plot character size.

cols Colours used for sites and species.

type Type of plots, partial match to "text"”, "points” or "none”.

labels Optional text to be used instead of row names. If select is used, labels are
given only to selected items in the order they occur in the scores.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices or names (labels) of scores.

x1lim, ylim the x and y limits (min,max) of the plot.

fraction Abundance fraction where downweighting begins.

tidy Return scores that are compatible with ggplot2: all scores are in a single data. frame,

score type is identified by factor variable score ("sites"”, "species”), the
names by variable label. These scores are incompatible with conventional plot
functions, but they can be used in ggplot2.

Other arguments for plot function.

Details

In late 1970s, correspondence analysis became the method of choice for ordination in vegetation
science, since it seemed better able to cope with non-linear species responses than principal compo-
nents analysis. However, even correspondence analysis can produce an arc-shaped configuration of
a single gradient. Mark Hill developed detrended correspondence analysis to correct two assumed
‘faults’ in correspondence analysis: curvature of straight gradients and packing of sites at the ends
of the gradient.

The curvature is removed by replacing the orthogonalization of axes with detrending. In orthog-
onalization successive axes are made non-correlated, but detrending should remove all systematic
dependence between axes. Detrending is performed using a smoothing window on mk segments.
The packing of sites at the ends of the gradient is undone by rescaling the axes after extraction. Af-
ter rescaling, the axis is supposed to be scaled by ‘SD’ units, so that the average width of Gaussian
species responses is supposed to be one over whole axis. Other innovations were the piecewise lin-
ear transformation of species abundances and downweighting of rare species which were regarded
to have an unduly high influence on ordination axes.

It seems that detrending actually works by twisting the ordination space, so that the results look
non-curved in two-dimensional projections (‘lolly paper effect’). As a result, the points usually
have an easily recognized triangular or diamond shaped pattern, obviously an artefact of detrend-
ing. Rescaling works differently than commonly presented, too. decorana does not use, or even
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evaluate, the widths of species responses. Instead, it tries to equalize the weighted standard de-
viation of species scores on axis segments (parameter mk has no effect, since decorana finds the
segments internally). Function tolerance returns this internal criterion and can be used to assess
the success of rescaling.

The plot method plots species and site scores. Classical decorana scaled the axes so that smallest
site score was 0 (and smallest species score was negative), but summary, plot and scores use the
true origin, unless origin = FALSE.

In addition to proper eigenvalues, the function reports ‘decorana values’ in detrended analysis.
These ‘decorana values’ are the values that the legacy code of decorana returns as eigenvalues.
They are estimated during iteration, and describe the joint effects of axes and detrending. The
‘decorana values’ are estimated before rescaling and do not show its effect on eigenvalues. The
proper eigenvalues are estimated after extraction of the axes and they are the ratio of weighted sum
of squares of site and species scores even in detrended and rescaled solutions. These eigenvalues
are estimated for each axis separately, but they are not additive, because higher decorana axes can
show effects already explained by prior axes. ‘Additive eigenvalues’ are cleansed from the effects
of prior axes, and they can be assumed to add up to total inertia (scaled Chi-square). For proportions
and cumulative proportions explained you can use eigenvals.decorana.

Value

decorana returns an object of class "decorana”, which has print, summary, scores, plot, points
and text methods, and support functions eigenvals, bstick, screeplot, predict and tolerance.
downweight is an independent function that can also be used with other methods than decorana.

Note

decorana uses the central numerical engine of the original Fortran code (which is in the public
domain), or about 1/3 of the original program. I have tried to implement the original behaviour,
although a great part of preparatory steps were written in R language, and may differ somewhat
from the original code. However, well-known bugs are corrected and strict criteria used (Oksanen
& Minchin 1997).

Please note that there really is no need for piecewise transformation or even downweighting within
decorana, since there are more powerful and extensive alternatives in R, but these options are
included for compliance with the original software. If a different fraction of abundance is needed
in downweighting, function downweight must be applied before decorana. Function downweight
indeed can be applied prior to correspondence analysis, and so it can be used together with cca, too.

Github package natto has an R implementation of decorana which allows easier inspection of the
algorithm and also easier development of the function.

vegan 2.6-6 and earlier had a summary method, but it did nothing useful and is now defunct. All its
former information can be extracted with scores or weights.decorana.

Author(s)

Mark O. Hill wrote the original Fortran code, the R port was by Jari Oksanen.
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See Also

For unconstrained ordination, non-metric multidimensional scaling in monoMDS may be more robust
(see also metaMDS). Constrained (or ‘canonical’) correspondence analysis can be made with cca.
Orthogonal correspondence analysis can be made with decorana or cca, but the scaling of results
vary (and the one in decorana corresponds to scaling = "sites” and hill = TRUE in cca.). See

predict.decorana for adding new points to an ordination.

Examples
data(varespec)
vare.dca <- decorana(varespec)
vare.dca

plot(vare.dca)

### the detrending rationale:

gaussresp <- function(x,u) exp(-(x-u)*2/2)

x <- seq(0,6,length=15) ## The gradient

u <- seq(-2,8,len=23) ## The optima

pack <- outer(x,u,gaussresp)

matplot(x, pack, type="1", main="Species packing")

opar <- par(mfrow=c(2,2))

plot(scores(prcomp(pack)), asp=1, type="b", main="PCA")
plot(scores(decorana(pack, ira=1)), asp=1, type="b", main="CA")
plot(scores(decorana(pack)), asp=1, type="b", main="DCA")
plot(scores(cca(pack ~ x), dis="sites"), asp=1, type="b", main="CCA")

### Let's add some noise:

noisy <- (0.5 + runif(length(pack)))*pack

par(mfrow=c(2,1))

matplot(x, pack, type="1", main="Ideal model")

matplot(x, noisy, type="1", main="Noisy model”)
par(mfrow=c(2,2))

plot(scores(prcomp(noisy)), type="b", main="PCA", asp=1)
plot(scores(decorana(noisy, ira=1)), type="b", main="CA", asp=1)
plot(scores(decorana(noisy)), type="b", main="DCA", asp=1)
plot(scores(cca(noisy ~ x), dis="sites"), asp=1, type="b", main="CCA")
par (opar)

decostand Standardization Methods for Community Ecology
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Description

The function provides some popular (and effective) standardization methods for community ecolo-
gists.

Usage

decostand(x, method, MARGIN, range.global, logbase = 2, na.rm=FALSE, ...)
wisconsin(x)
decobackstand(x, zap = TRUE)

Arguments
X Community data, a matrix-like object. For decobackstand standardized data.
method Standardization method. See Details for available options.
MARGIN Margin, if default is not acceptable. 1 = rows, and 2 = columns of x.

range.global Matrix from which the range is found in method = "range”. This allows using
same ranges across subsets of data. The dimensions of MARGIN must match with

X.
logbase The logarithm base used in method = "1log".
na.rm Ignore missing values in row or column standardizations. The NA values remain

as NA, but they are ignored in standardization of other values.

zap Make near-zero values exact zeros to avoid negative values and exaggerated
estimates of species richness.

Other arguments to the function (ignored).

Details
The function offers following standardization methods for community data:

* total: divide by margin total (default MARGIN = 1).
* max: divide by margin maximum (default MARGIN = 2).

* frequency: divide by margin total and multiply by the number of non-zero items, so that the
average of non-zero entries is one (Oksanen 1983; default MARGIN = 2).

* normalize: make margin sum of squares equal to one (default MARGIN = 1).

* range: standardize values into range O ... 1 (default MARGIN = 2). If all values are constant,
they will be transformed to 0.

* rank, rrank: rank replaces abundance values by their increasing ranks leaving zeros un-

changed, and rrank is similar but uses relative ranks with maximum 1 (default MARGIN = 1).
Average ranks are used for tied values.

¢ standardize: scale x to zero mean and unit variance (default MARGIN = 2).

* pa: scale x to presence/absence scale (0/1).

* chi.square: divide by row sums and square root of column sums, and adjust for square
root of matrix total (Legendre & Gallagher 2001). When used with the Euclidean distance,
the distances should be similar to the Chi-square distance used in correspondence analysis.

However, the results from cmdscale would still differ, since CA is a weighted ordination
method (default MARGIN = 1).
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* hellinger: square root of method = "total” (Legendre & Gallagher 2001).

* log: logarithmic transformation as suggested by Anderson et al. (2006): log,(z) + 1 for
x > 0, where b is the base of the logarithm; zeros are left as zeros. Higher bases give less
weight to quantities and more to presences, and logbase = Inf gives the presence/absence
scaling. Please note this is nor log(x + 1). Anderson et al. (2006) suggested this for their
(strongly) modified Gower distance (implemented as method = "altGower" in vegdist), but
the standardization can be used independently of distance indices.

e alr: Additive log ratio ("alr") transformation (Aitchison 1986) reduces data skewness and
compositionality bias. The transformation assumes positive values, pseudocounts can be
added with the argument pseudocount. One of the rows/columns is a reference that can
be given by reference (name of index). The first row/column is used by default (reference
=1). Note that this transformation drops one row or column from the transformed output data.
The alr transformation is defined formally as follows:

ATD—l}

T

alr = [log—l7 ..., log
D D

where the denominator sample xp can be chosen arbitrarily. This transformation is often used

with pH and other chemistry measurements. It is also commonly used as multinomial logistic

regression. Default MARGIN = 1 uses row as the reference.

* clr: centered log ratio ("clr") transformation proposed by Aitchison (1986) and it is used to
reduce data skewness and compositionality bias. This transformation has frequent applications
in microbial ecology (see e.g. Gloor et al., 2017). The clr transformation is defined as:

x
cr =log—— = logx — logg(x
9(x) (®)

where z is a single value, and g(x) is the geometric mean of z. The method can operate only
with positive data; a common way to deal with zeroes is to add pseudocount (e.g. the smallest
positive value in the data), either by adding it manually to the input data, or by using the
argument pseudocount as in decostand(x, method = "clr"”, na.rm = TRUE, pseudocount
=1). Adding pseudocount will inevitably introduce some bias; see the rclr method for an
alternative.

e rclr: robust clr ("rclr") is similar to regular clr (see above) but it allows data with zeroes. This
method can avoid the use of pseudocounts, unlike the standard clr. The robust clr (rclr) the
logarithmizes the data and divides it by the geometric mean of the observed features within
each sample. In high dimensional data the geometric mean of rclr approximates the true
geometric mean; see e.g. Martino et al. (2019). The rclr transformation is defined formally
as follows:

lr = logL
TERYT)

where z is a single value, and g(z > 0) is the geometric mean of sample-wide values 2 that

are positive (> 0). The optspace algorithm performs matrix completion for the missing values

that result from log transformation of the zero entries in the original input data. See optspace
for more details. The following parameters can be passed to optspace through decostand:

"ropt" NA to guess the rank, or a positive integer as a pre-defined rank (default: 3); "niter"

maximum number of iterations allowed (default: 5); "tol" stopping criterion for reconstruction

in Frobenius norm (default: 1e-5); "verbose" a logical value; TRUE to show progress, FALSE

otherwise (default: FALSE); "impute" to switch on/off the matrix completion (default: im-

pute=TRUE).
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Standardization, as contrasted to transformation, means that the entries are transformed relative to
other entries.

All methods have a default margin. MARGIN=1 means rows (sites in a normal data set) and MARGIN=2
means columns (species in a normal data set).

Command wisconsin is a shortcut to common Wisconsin double standardization where species
(MARGIN=2) are first standardized by maxima (max) and then sites (MARGIN=1) by site totals (tot).

Most standardization methods will give nonsense results with negative data entries that normally
should not occur in the community data. If there are empty sites or species (or constant with method
= "range"), many standardization will change these into NaN.

Function decobackstand can be used to transform standardized data back to original. This is not
possible for all standardization and may not be implemented to all cases where it would be possible.
There are round-off errors and back-transformation is not exact, and it is wise not to overwrite the
original data. With zap=TRUE original zeros should be exact.

Value

Returns the standardized data frame, and adds an attribute "decostand” giving the name of applied
standardization "method” and attribute "parameters” with appropriate transformation parameters.

Note

Common transformations can be made with standard R functions.

Author(s)

Jari Oksanen, Etienne Laliberté (method = "log"), Leo Lahti (alr, "clr” and "rclr”).
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Examples

data(varespec)

sptrans <- decostand(varespec, "max")
apply(sptrans, 2, max)

sptrans <- wisconsin(varespec)

# CLR transformation for rows, with pseudocount
varespec.clr <- decostand(varespec, "clr"”, pseudocount = 1)

# Robust CLR (rclr) transformation for rows, no pseudocount necessary
varespec.rclr <- decostand(varespec, "rclr”, impute = TRUE)

# ALR transformation for rows, with pseudocount and reference sample
varespec.alr <- decostand(varespec, "alr", pseudocount = 1, reference = 1)

## Chi-square: PCA similar but not identical to CA.

## Use wcmdscale for weighted analysis and identical results.
sptrans <- decostand(varespec, "chi.square”)
plot(procrustes(rda(sptrans), cca(varespec)))

designdist Design your own Dissimilarities

Description

Function designdist lets you define your own dissimilarities using terms for shared and total
quantities, number of rows and number of columns. The shared and total quantities can be binary,
quadratic or minimum terms. In binary terms, the shared component is number of shared species,
and totals are numbers of species on sites. The quadratic terms are cross-products and sums of
squares, and minimum terms are sums of parallel minima and row totals. Function designdist2 is
similar, but finds dissimilarities among two data sets. Function chaodist lets you define your own
dissimilarities using terms that are supposed to take into account the “unseen species” (see Chao et
al., 2005 and Details in vegdist).

Usage

designdist(x, method = "(A+B-2%J)/(A+B)",
terms = c("binary"”, "quadratic”, "minimum"),
abcd = FALSE, alphagamma = FALSE, name, maxdist)
designdist2(x, y, method = "(A+B-2%J)/(A+B)",
terms = c("binary”, "quadratic”, "minimum"),
abcd = FALSE, alphagamma = FALSE, name, maxdist)
chaodist(x, method = "1 - 2xU*V/(U+V)", name)
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Arguments

X

y

method

terms

abcd

alphagamma

name

maxdist

Details

75

Input data.

Another input data set: dissimilarities will be calculated among rows of x and
rows of y.

Equation for your dissimilarities. This can use terms J for shared quantity, A and
B for totals, N for the number of rows (sites) and P for the number of columns
(species) or in chaodist it can use terms U and V. The equation can also contain
any R functions that accepts vector arguments and returns vectors of the same
length. It can also include functions of input x that return a scalar or a dist
vector.

How shared and total components are found. For vectors x and y the "quadratic”
terms are J = sum(x*y), A = sum(x*2), B = sum(y*2), and "minimum” terms are
J = sum(pmin(x,y)), A=sum(x) and B = sum(y), and "binary” terms are ei-
ther of these after transforming data into binary form (shared number of species,
and number of species for each row).

Use 2x2 contingency table notation for binary data: a is the number of shared
species, b and ¢ are the numbers of species occurring only one of the sites but
not in both, and d is the number of species that occur on neither of the sites.

Use beta diversity notation with terms alpha for average alpha diversity for
compared sites, gamma for diversity in pooled sites, and delta for the absolute
value of difference of average alpha and alpha diversities of compared sites.
Terms A and B refer to alpha diversities of compared sites.

The name you want to use for your index. The default is to combine the method
equation and terms argument.

Theoretical maximum of the dissimilarity, or NA if index is open and has no
absolute maximum. This is not a necessary argument, but only used in some
vegan functions, and if you are not certain about the maximum, it is better not
supply any value.

Most popular dissimilarity measures in ecology can be expressed with the help of terms J, A and B,
and some also involve matrix dimensions N and P. Some examples you can define in designdist

are:

A+B-2*%J

A+B-2%J
(A+B-2%J) / (A+B)
(A+B-2%J)/(A+B)
(A+B-2%J)/(A+B-J)
(A+B-2%J)/(A+B-J)
(A+B-2%J)/(A+B-J)
1-J/sqrt(A*B)
1-J/sqrt(A*B)
1-phyper(J-1, A, P-A, B)

"quadratic” squared Euclidean

"minimum” Manhattan
"minimum” Bray-Curtis
"binary” Sdrensen

"binary"” Jaccard
"minimum” Ruzicka
"quadratic” (dis)similarity ratio
"binary"” Ochiai

"quadratic” cosine complement
"binary"” Raup-Crick (but see raupcrick)
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The function designdist can implement most dissimilarity indices in vegdist or elsewhere, and
it can also be used to implement many other indices, amongst them, most of those described in
Legendre & Legendre (2012). It can also be used to implement all indices of beta diversity described
in Koleff et al. (2003), but there also is a specific function betadiver for the purpose.

If you want to implement binary dissimilarities based on the 2x2 contingency table notation, you
can set abcd = TRUE. In this notation a=7J, b = A-J, ¢ =B-J, d = P-A-B+J. This notation is often
used instead of the more more tangible default notation for reasons that are opaque to me.

With alphagamma = TRUE it is possible to use beta diversity notation with terms alpha for average
alpha diversity and gamma for gamma diversity in two compared sites. The terms are calculated
as alpha = (A+B)/2, gamma = A+B-J and delta = abs(A-B)/2. Terms A and B are also available
and give the alpha diversities of the individual compared sites. The beta diversity terms may make
sense only for binary terms (so that diversities are expressed in numbers of species), but they are
calculated for quadratic and minimum terms as well (with a warning).

Function chaodist is similar to designgist, but uses terms U and V of Chao et al. (2005). These
terms are supposed to take into account the effects of unseen species. Both U and V are scaled
to range 0...1. They take the place of A and B and the product UV is used in the place of J of
designdist. Function chaodist can implement any commonly used Chao et al. (2005) style

dissimilarity:
1 = 2xUxV/ (U+V) Sgrensen type
1 - UxV/ (U+V-U*V) Jaccard type
1 - sqrt(UxV) Ochiai type

(pmin(U,V) - UxV)/pmin(U,V) Simpson type

Function vegdist implements Jaccard-type Chao distance, and its documentation contains more
complete discussion on the calculation of the terms.

Value

designdist returns an object of class dist.

Note

designdist does not use compiled code, but it is based on vectorized R code. The designdist
function can be much faster than vegdist, although the latter uses compiled code. However,
designdist cannot skip missing values and uses much more memory during calculations.

The use of sum terms can be numerically unstable. In particularly, when these terms are large, the
precision may be lost. The risk is large when the number of columns is high, and particularly large
with quadratic terms. For precise calculations it is better to use functions like dist and vegdist
which are more robust against numerical problems.

Author(s)

Jari Oksanen
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References

Chao, A., Chazdon, R. L., Colwell, R. K. and Shen, T. (2005) A new statistical approach for as-
sessing similarity of species composition with incidence and abundance data. Ecology Letters 8,
148-159.

Koleff, P., Gaston, K.J. and Lennon, J.J. (2003) Measuring beta diversity for presence—absence data.
J. Animal Ecol. 72, 367-382.

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English ed. Elsevier

See Also

vegdist, betadiver, dist, raupcrick.

Examples

data(BCI)

## Five ways of calculating the same Sgrensen dissimilarity

do <- vegdist(BCI, "bray"”, binary = TRUE)

dl <- designdist(BCI, "(A+B-2xJ)/(A+B)")

d2 <- designdist(BCI, "(b+c)/(2*xa+b+c)", abcd = TRUE)

d3 <- designdist(BCI, "gamma/alpha - 1", alphagamma = TRUE)

d4 <- designdist(BCI, "dist(x, 'manhattan')/(A+B)")

## Zero-adjusted Bray-Curtis of Clarke et al. (J Exp Marine Biol & Ecol
## 330:55-80; 2006)

dbro <- designdist(BCI, "(A+B-2xJ)/(A+B+2xmin(x[x>0]1))", terms = "minimum”)
## Arrhenius dissimilarity: the value of z in the species-area model

## S = c*A*z when combining two sites of equal areas, where S is the

## number of species, A is the area, and c and z are model parameters.
## The A below is not the area (which cancels out), but number of

## species in one of the sites, as defined in designdist().

dis <- designdist(BCI, "(log(A+B-J)-log(A+B)+log(2))/log(2)")

## This can be used in clustering or ordination...
ordiplot(cmdscale(dis))

## ... or in analysing beta diversity (without gradients)
summary (dis)
deviance.cca Statistics Resembling Deviance and AIC for Constrained Ordination
Description

The functions extract statistics that resemble deviance and AIC from the result of constrained cor-
respondence analysis cca or redundancy analysis rda. These functions are rarely needed directly,
but they are called by step in automatic model building. Actually, cca and rda do not have AIC
and these functions are certainly wrong.
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Usage

## S3 method for class 'cca'
deviance(object, ...)

## S3 method for class 'cca'

extractAIC(fit, scale = 0, k =2, ...)
Arguments
object the result of a constrained ordination (cca or rda).
fit fitted model from constrained ordination.
scale optional numeric specifying the scale parameter of the model, see scale in
step.
k numeric specifying the "weight" of the equivalent degrees of freedom (=:edf)

part in the AIC formula.

further arguments.

Details

The functions find statistics that resemble deviance and AIC in constrained ordination. Actually,
constrained ordination methods do not have a log-Likelihood, which means that they cannot have
AIC and deviance. Therefore you should not use these functions, and if you use them, you should
not trust them. If you use these functions, it remains as your responsibility to check the adequacy
of the result.

The deviance of cca is equal to the Chi-square of the residual data matrix after fitting the constraints.
The deviance of rda is defined as the residual sum of squares. The deviance function of rda is also
used for distance-based RDA dbrda. Function extractAIC mimics extractAIC. 1m in translating
deviance to AIC.

There is little need to call these functions directly. However, they are called implicitly in step
function used in automatic selection of constraining variables. You should check the resulting
model with some other criteria, because the statistics used here are unfounded. In particular, the
penalty k is not properly defined, and the default k = 2 is not justified theoretically. If you have only
continuous covariates, the step function will base the model building on magnitude of eigenvalues,
and the value of k only influences the stopping point (but the variables with the highest eigenvalues
are not necessarily the most significant in permutation tests in anova. cca). If you also have multi-
class factors, the value of k will have a capricious effect in model building. The step function
will pass arguments to add1.cca and drop1.cca, and setting test = "permutation” will provide
permutation tests of each deletion and addition which can help in judging the validity of the model
building.

Value

The deviance functions return “deviance”, and extractAIC returns effective degrees of freedom
and “AIC”.
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Note
These functions are unfounded and untested and they should not be used directly or implicitly.
Moreover, usual caveats in using step are very valid.

Author(s)

Jari Oksanen

References

Godinez-Dominguez, E. & Freire, J. (2003) Information-theoretic approach for selection of spatial
and temporal models of community organization. Marine Ecology Progress Series 253, 17-24.

See Also

cca, rda, anova.cca, step, extractAIC, add1.cca, drop1.cca.

Examples

# The deviance of correspondence analysis equals Chi-square
data(dune)

data(dune.env)

chisq.test(dune)

deviance(cca(dune))
# Stepwise selection (forward from an empty model "dune ~ 1")
ord <- cca(dune ~ ., dune.env)

step(cca(dune ~ 1, dune.env), scope = formula(ord))

dispindmorisita Morisita index of intraspecific aggregation

Description
Calculates the Morisita index of dispersion, standardized index values, and the so called clumped-
ness and uniform indices.

Usage

dispindmorisita(x, unique.rm = FALSE, crit = 0.05, na.rm = FALSE)

Arguments
X community data matrix, with sites (samples) as rows and species as columns.
unique.rm logical, if TRUE, unique species (occurring in only one sample) are removed from
the result.
crit two-sided p-value used to calculate critical Chi-squared values.

na.rm logical. Should missing values (including NaN) be omitted from the calculations?
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Details

The Morisita index of dispersion is defined as (Morisita 1959, 1962):
Imor =n* (sum(xi”*2) - sum(xi)) / (sum(xi)*2 - sum(xi))

where x¢ is the count of individuals in sample ¢, and n is the number of samples (: = 1,2,...,n).
Imor has values from O to n. In uniform (hyperdispersed) patterns its value falls between 0 and 1,
in clumped patterns it falls between 1 and n. For increasing sample sizes (i.e. joining neighbouring
quadrats), Imor goes to n as the quadrat size approaches clump size. For random patterns, Imor =
1 and counts in the samples follow Poisson frequency distribution.

The deviation from random expectation (null hypothesis) can be tested using critical values of the
Chi-squared distribution with n — 1 degrees of freedom. Confidence intervals around 1 can be
calculated by the clumped M clu and uniform Mwuni indices (Hairston et al. 1971, Krebs 1999)
(Chi2Lower and Chi2Upper refers to e.g. 0.025 and 0.975 quantile values of the Chi-squared dis-
tribution with n — 1 degrees of freedom, respectively, for crit = @.05):

Mclu = (Chi2Lower - n+sum(xi)) / (sum(xi) - 1)
Muni = (Chi2Upper - n + sum(xi)) / (sum(xi) - 1)

Smith-Gill (1975) proposed scaling of Morisita index from [0, n] interval into [-1, 1], and setting
up -0.5 and 0.5 values as confidence limits around random distribution with rescaled value 0. To
rescale the Morisita index, one of the following four equations apply to calculate the standardized
index I'mst:

(@) Imor >=Mclu>1: Imst=0.5+0.5 (Imor - Mclu) / (n-Mclu),
(b)Mclu > Imor >=1: Imst =0.5 (Imor - 1) / (Mclu-1),

(¢) 1> Imor >Muni: Imst=-0.5 (Imor - 1) / (Muni - 1),

(d) 1 >Muni > Imor: Imst=-0.5+@.5 (Imor - Muni) / Muni.

Value

Returns a data frame with as many rows as the number of columns in the input data, and with four
columns. Columns are: imor the unstandardized Morisita index, mclu the clumpedness index, muni
the uniform index, imst the standardized Morisita index, pchisq the Chi-squared based probability
for the null hypothesis of random expectation.

Note

A common error found in several papers is that when standardizing as in the case (b), the denomi-
nator is given as Muni - 1. This results in a hiatus in the [0, 0.5] interval of the standardized index.
The root of this typo is the book of Krebs (1999), see the Errata for the book (Page 217, currently
https://www.zoology.ubc.ca/~krebs/downloads/errors_2nd_printing.pdf).

Author(s)

Péter S6lymos, <solymos@ualberta.ca>
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References

Morisita, M. 1959. Measuring of the dispersion of individuals and analysis of the distributional
patterns. Mem. Fac. Sci. Kyushu Univ. Ser. E 2,215-235.

Morisita, M. 1962. Id-index, a measure of dispersion of individuals. Res. Popul. Ecol. 4, 1-7.

Smith-Gill, S. J. 1975. Cytophysiological basis of disruptive pigmentary patterns in the leopard
frog, Rana pipiens. 11. Wild type and mutant cell specific patterns. J. Morphol. 146, 35-54.

Hairston, N. G., Hill, R. and Ritte, U. 1971. The interpretation of aggregation patterns. In: Patil,
G. P, Pileou, E. C. and Waters, W. E. eds. Statistical Ecology 1: Spatial Patterns and Statistical
Distributions. Penn. State Univ. Press, University Park.

Krebs, C. J. 1999. Ecological Methodology. 2nd ed. Benjamin Cummings Publishers.

Examples

data(dune)

X <- dispindmorisita(dune)

X

y <- dispindmorisita(dune, unique.rm = TRUE)
y

dim(x) ## with unique species

dim(y) ## unique species removed

dispweight Dispersion-based weighting of species counts

Description

Transform abundance data downweighting species that are overdispersed to the Poisson error.

Usage

dispweight(comm, groups, nsimul = 999, nullmodel = "c@_ind",
plimit = 0.05)

gdispweight(formula, data, plimit = 0.05)

## S3 method for class 'dispweight'

summary (object, ...)
Arguments

comm Community data matrix.

groups Factor describing the group structure. If missing, all sites are regarded as be-
longing to one group. NA values are not allowed.

nsimul Number of simulations.

nullmodel The nullmodel used in commsim within groups. The default follows Clarke et
al. (2006).

plimit Downweight species if their p-value is at or below this limit.
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formula, data  Formula where the left-hand side is the community data frame and right-hand
side gives the explanatory variables. The explanatory variables are found in the
data frame given in data or in the parent frame.

object Result object from dispweight or gdispweight.

Other parameters passed to functions.

Details

The dispersion index (D) is calculated as ratio between variance and expected value for each
species. If the species abundances follow Poisson distribution, expected dispersion is E(D) = 1,
and if D > 1, the species is overdispersed. The inverse 1/D can be used to downweight species
abundances. Species are only downweighted when overdispersion is judged to be statistically sig-
nificant (Clarke et al. 2006).

Function dispweight implements the original procedure of Clarke et al. (2006). Only one factor
can be used to group the sites and to find the species means. The significance of overdispersion
is assessed freely distributing individuals of each species within factor levels. This is achieved by
using nullmodel "c@_ind"” (which accords to Clarke et al. 2006), but other nullmodels can be
used, though they may not be meaningful (see commsim for alternatives). If a species is absent in
some factor level, the whole level is ignored in calculation of overdispersion, and the number of
degrees of freedom can vary among species. The reduced number of degrees of freedom is used as
a divisor for overdispersion D, and such species have higher dispersion and hence lower weights in
transformation.

Function gdispweight is a generalized parametric version of dispweight. The function is based
on glm with quasipoisson error family. Any glm model can be used, including several factors
or continuous covariates. Function gdispweight uses the same test statistic as dispweight (Pear-
son Chi-square), but it does not ignore factor levels where species is absent, and the number of
degrees of freedom is equal for all species. Therefore transformation weights can be higher than
in dispweight. The gdispweight function evaluates the significance of overdispersion parametri-
cally from Chi-square distribution (pchisg).

Functions dispweight and gdispweight transform data, but they add information on overdisper-
sion and weights as attributes of the result. The summary can be used to extract and print that
information.

Value

Function returns transformed data with the following new attributes:

D Dispersion statistic.

df Degrees of freedom for each species.

p p-value of the Dispersion statistic D.

weights weights applied to community data.

nsimul Number of simulations used to assess the p-value, or NA when simulations were

not performed.

nullmodel The name of commsim null model, or NA when simulations were not performed.
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Author(s)

Eduard Szocs <eduardszoesc@gmail.com> wrote the original dispweight, Jari Oksanen signifi-
cantly modified the code, provided support functions and developed gdispweight.

References

Clarke, K. R., M. G. Chapman, P. J. Somerfield, and H. R. Needham. 2006. Dispersion-based
weighting of species counts in assemblage analyses. Marine Ecology Progress Series, 320, 11-27.

Examples

data(mite, mite.env)

## dispweight and its summary

mite.dw <- with(mite.env, dispweight(mite, Shrub, nsimul = 99))
## IGNORE_RDIFF_BEGIN

summary(mite.dw)

## IGNORE_RDIFF_END

## generalized dispersion weighting

mite.dw <- gdispweight(mite ~ Shrub + WatrCont, data = mite.env)
rda(mite.dw ~ Shrub + WatrCont, data = mite.env)

distconnected Connectedness of Dissimilarities

Description

Function distconnected finds groups that are connected disregarding dissimilarities that are at or
above a threshold or NA. The function can be used to find groups that can be ordinated together
or transformed by stepacross. Function no.shared returns a logical dissimilarity object, where
TRUE means that sites have no species in common. This is a minimal structure for distconnected
or can be used to set missing values to dissimilarities.

Usage

distconnected(dis, toolong = 1, trace = TRUE)

no.shared(x)

Arguments

dis Dissimilarity data inheriting from class dist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functions vegdist and dist are
some functions producing suitable dissimilarity data.

toolong Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that dis-
similarities close to the limit will be made NA, too. If toolong = @ (or negative),
no dissimilarity is regarded as too long.

trace Summarize results of distconnected

X Community data.
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Details

Data sets are disconnected if they have sample plots or groups of sample plots which share no
species with other sites or groups of sites. Such data sets cannot be sensibly ordinated by any
unconstrained method because these subsets cannot be related to each other. For instance, corre-
spondence analysis will polarize these subsets with eigenvalue 1. Neither can such dissimilarities be
transformed with stepacross, because there is no path between all points, and result will contain
NAs. Function distconnected will find such subsets in dissimilarity matrices. The function will
return a grouping vector that can be used for sub-setting the data. If data are connected, the result
vector will be all 1s. The connectedness between two points can be defined either by a threshold
toolong or using input dissimilarities with NAs.

Function no.shared returns a dist structure having value TRUE when two sites have nothing in
common, and value FALSE when they have at least one shared species. This is a minimal structure
that can be analysed with distconnected. The function can be used to select dissimilarities with
no shared species in indices which do not have a fixed upper limit.

Function distconnected uses depth-first search (Sedgewick 1990).

Value

Function distconnected returns a vector for observations using integers to identify connected
groups. If the data are connected, values will be all 1. Function no.shared returns an object of
class dist.

Author(s)

Jari Oksanen

References

Sedgewick, R. (1990). Algorithms in C. Addison Wesley.

See Also

vegdist or dist for getting dissimilarities, stepacross for a case where you may need distconnected,
and for connecting points spantree.

Examples

## There are no disconnected data in vegan, and the following uses an
## extremely low threshold limit for connectedness. This is for

## illustration only, and not a recommended practice.

data(dune)

dis <- vegdist(dune)

gr <- distconnected(dis, toolong=0.4)

# Make sites with no shared species as NA in Manhattan dissimilarities
dis <- vegdist(dune, "manhattan")

is.na(dis) <- no.shared(dune)
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diversity Ecological Diversity Indices

Description

Shannon, Simpson, and Fisher diversity indices and species richness.

Usage

diversity(x, index = "shannon”, groups, equalize.groups = FALSE,

MARGIN = 1, base = exp(1))
simpson.unb(x, inverse = FALSE)
fisher.alpha(x, MARGIN = 1, ...)
]

specnumber (x, groups, MARGIN = 1)
Arguments
X Community data, a matrix-like object or a vector.
index Diversity index, one of “shannon”, "simpson” or "invsimpson”.
MARGIN Margin for which the index is computed.
base The logarithm base used in shannon.
inverse Use inverse Simpson similarly as in diversity(x, "invsimpson™).
groups A grouping factor: if given, finds the diversity of communities pooled by the

groups.
equalize.groups
Instead of observed abundances, standardize all communities to unit total.

Parameters passed to the function.

Details

Shannon or Shannon-Weaver (or Shannon-Wiener) index is defined as H' = — ). p;log, p;,
where p; is the proportional abundance of species ¢ and b is the base of the logarithm. It is most
popular to use natural logarithms, but some argue for base b = 2 (which makes sense, but no real
difference).

Both variants of Simpson’s index are based on D = Y p?. Choice simpson returns 1 — D and
invsimpson returns 1/D.

simpson.unb finds unbiased Simpson indices for discrete samples (Hurlbert 1971, eq. 5). These
are less sensitive to sample size than the basic Simpson indices. The unbiased indices can be only
calculated for data of integer counts.

The diversity function can find the total (or gamma) diversity of pooled communities with ar-
gument groups. The average alpha diversity can be found as the mean of diversities by the same
groups, and their difference or ratio is an estimate of beta diversity (see Examples). The pooling
can be based either on the observed abundancies, or all communities can be equalized to unit total
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before pooling; see Jost (2007) for discussion. Functions adipart and multipart provide canned
alternatives for estimating alpha, beta and gamma diversities in hierarchical settings.

fisher.alpha estimates the o parameter of Fisher’s logarithmic series (see fisherfit). The esti-
mation is possible only for genuine counts of individuals.

None of these diversity indices is usable for empty sampling units without any species, but some of
the indices can give a numeric value. Filtering out these cases is left for the user.

Function specnumber finds the number of species. With MARGIN = 2, it finds frequencies of species.
If groups is given, finds the total number of species in each group (see example on finding one kind
of beta diversity with this option).

Better stories can be told about Simpson’s index than about Shannon’s index, and still grander
narratives about rarefaction (Hurlbert 1971). However, these indices are all very closely related
(Hill 1973), and there is no reason to despise one more than others (but if you are a graduate student,
don’t drag me in, but obey your Professor’s orders). In particular, the exponent of the Shannon index
is linearly related to inverse Simpson (Hill 1973) although the former may be more sensitive to rare
species. Moreover, inverse Simpson is asymptotically equal to rarefied species richness in sample
of two individuals, and Fisher’s « is very similar to inverse Simpson.

Value

A vector of diversity indices or numbers of species.

Author(s)
Jari Oksanen and Bob O’Hara (fisher.alpha).

References

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species
and the number of individuals in a random sample of animal population. Journal of Animal Ecology
12, 42-58.

Hurlbert, S.H. (1971). The nonconcept of species diversity: a critique and alternative parameters.
Ecology 52, 577-586.

Jost, L. (2007) Partitioning diversity into independent alpha and beta components. Ecology 88,
2427-2439.

See Also

These functions calculate only some basic indices, but many others can be derived with them (see
Examples). Facilities related to diversity are discussed in a vegan vignette that can be read with
browseVignettes("vegan"). Functions renyi and tsallis estimate a series of generalized diver-
sity indices. Function rarefy finds estimated number of species for given sample size. Beta diver-
sity can be estimated with betadiver. Diversities can be partitioned with adipart and multipart.

Examples

data(BCI, BCI.env)
H <- diversity(BCI)
simp <- diversity(BCI, "simpson")
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invsimp <- diversity(BCI, "inv")

## Unbiased Simpson

unbias.simp <- simpson.unb(BCI)

## Fisher alpha

alpha <- fisher.alpha(BCI)

## Plot all

pairs(cbind(H, simp, invsimp, unbias.simp, alpha), pch="+", col="blue")
## Species richness (S) and Pielou's evenness (J):

S <- specnumber(BCI) ## rowSums(BCI > @) does the same...

J <- H/log(S)

## beta diversity defined as gamma/alpha - 1:

## alpha is the average no. of species in a group, and gamma is the
## total number of species in the group

(alpha <- with(BCI.env, tapply(specnumber(BCI), Habitat, mean)))
(gamma <- with(BCI.env, specnumber(BCI, Habitat)))

gamma/alpha - 1

## similar calculations with Shannon diversity

(alpha <- with(BCI.env, tapply(diversity(BCI), Habitat, mean))) # average
(gamma <- with(BCI.env, diversity(BCI, groups=Habitat))) # pooled
## additive beta diversity based on Shannon index

gamma-alpha

dune Vegetation and Environment in Dutch Dune Meadows.

Description

The dune meadow vegetation data, dune, has cover class values of 30 species on 20 sites. The
corresponding environmental data frame dune. env has following entries:

Usage

data(dune)
data(dune.env)

Format

dune is a data frame of observations of 30 species at 20 sites. The species names are abbreviated to
4+4 letters (see make. cepnames). The following names are changed from the original source (Jong-
man et al. 1987): Leontodon autumnalis to Scorzoneroides, and Potentilla palustris to Comarum.

dune.env is a data frame of 20 observations on the following 5 variables:

A1l: anumeric vector of thickness of soil A1l horizon.
Moisture: an ordered factor with levels: 1 <2 <4 <5.

Management: a factor with levels: BF (Biological farming), HF (Hobby farming), NM (Nature Con-
servation Management), and SF (Standard Farming).

Use: an ordered factor of land-use with levels: Hayfield < Haypastu < Pasture.

Manure: an ordered factor with levels: 0 <1<2<3<4.
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Source

Jongman, R.H.G, ter Braak, C.J.F & van Tongeren, O.F.R. (1987). Data Analysis in Community
and Landscape Ecology. Pudoc, Wageningen.

Examples

data(dune)
data(dune.env)

dune. taxon Taxonomic Classification and Phylogeny of Dune Meadow Species

Description

Classification table of the species in the dune data set.

Usage

data(dune. taxon)
data(dune.phylodis)

Format

dune. taxon is data frame with 30 species (rows) classified into five taxonomic levels (columns).
dune.phylodisisadist object of estimated coalescence ages extracted from doi:10.5061/dryad.63q27
(Zanne et al. 2014) using tools in packages ape and phylobase.

Details

The families and orders are based on APG IV (2016) in vascular plants and on Hill et al. (2006) in
mosses. The higher levels (superorder and subclass) are based on Chase & Reveal (2009). Chase
& Reveal (2009) treat Angiosperms and mosses as subclasses of class Equisetopsida (land plants),
but brylogists have traditionally used much more inflated levels which are adjusted here to match
Angiosperm classification.

References

APG IV [Angiosperm Phylogeny Group] (2016) An update of the Angiosperm Phylogeny Group
classification for the orders and families of flowering plants: APG IV. Bot. J. Linnean Soc. 181:
1-20.

Chase, M.W. & Reveal, J. L. (2009) A phylogenetic classification of the land plants to accompany
APG III. Bot. J. Linnean Soc. 161: 122-127.

Hill, M.O et al. (2006) An annotated checklist of the mosses of Europe and Macaronesia. J.
Bryology 28: 198-267.

Zanne A.E., Tank D.C., Cornwell, W.K., Eastman J.M., Smith, S.A., FitzJohn, R.G., McGlinn,
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M., Wright, 1.J., Aarssen, L., Bertin, R.I., Calaminus, A., Govaerts, R., Hemmings, F., Leishman,
M.R., Oleksyn, J., Soltis, P.S., Swenson, N.G., Warman, L. & Beaulieu, J.M. (2014) Three keys to
the radiation of angiosperms into freezing environments. Nature 506: 89-92.

See Also

Functions taxondive, treedive, and treedist use these data sets.

Examples

data(dune. taxon)
data(dune.phylodis)

eigenvals

Extract Eigenvalues from an Ordination Object

Description

Function extracts eigenvalues from an object that has them. Many multivariate methods return such

objects.
Usage
eigenvals(x, ...)
## S3 method for class 'cca'
eigenvals(x, model = c("all”, "unconstrained”, "constrained"”),
constrained = NULL, ...)
## S3 method for class 'decorana'
eigenvals(x, kind = c("additive”, "axiswise"”, "decorana”),
oY)
## S3 method for class 'eigenvals'
summary (object, )
Arguments
X An object from which to extract eigenvalues.
object An eigenvals result object.
model Which eigenvalues to return for objects that inherit from class "cca” only.
constrained Return only constrained eigenvalues. Deprecated as of vegan 2.5-0. Use model
instead.
kind Kind of eigenvalues returned for decorana. Only "additive” eigenvalues can

be used for reporting importances of components in summary. "axiswise"
gives the non-additive eigenvalues, and "decorana” the decorana values (see
decorana for details).

Other arguments to the functions (usually ignored)
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Details

This is a generic function that has methods for cca, wemdscale, pcnm, prcomp, princomp, dudi
(of aded), and pca and pco (of labdsv) result objects. The default method also extracts eigen-
values if the result looks like being from eigen or svd. Functions prcomp and princomp contain
square roots of eigenvalues that all called standard deviations, but eigenvals function returns their
squares. Function svd contains singular values, but function eigenvals returns their squares. For
constrained ordination methods cca, rda and capscale the function returns the both constrained
and unconstrained eigenvalues concatenated in one vector, but the partial component will be ig-
nored. However, with argument constrained = TRUE only constrained eigenvalues are returned.

The summary of eigenvals result returns eigenvalues, proportion explained and cumulative pro-
portion explained. The result object can have some negative eigenvalues (wcmdscale, dbrda, pcnm)
which correspond to imaginary axes of Euclidean mapping of non-Euclidean distances (Gower
1985). In these case real axes (corresponding to positive eigenvalues) will "explain" proportion >1
of total variation, and negative eigenvalues bring the cumulative proportion to 1. capscale will
only find the positive eigenvalues and only these are used in finding proportions. For decorana the
importances and cumulative proportions are only reported for kind = "additive”, because other
alternatives do not add up to total inertia of the input data.

Value

An object of class "eigenvals”, which is a vector of eigenvalues.

The summary method returns an object of class "summary.eigenvals”, which is a matrix.

Author(s)

Jari Oksanen.

References

Gower, J. C. (1985). Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra
and its Applications 67, 81-97.

See Also

eigen, svd, prcomp, princomp, cca, rda, capscale, wcmdscale, cca.object.

Examples

data(varespec)

data(varechem)

mod <- cca(varespec ~ Al + P + K, varechem)
ev <- eigenvals(mod)

ev

summary (ev)

## choose which eignevalues to return
eigenvals(mod, model = "unconstrained")
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envfit Fits an Environmental Vector or Factor onto an Ordination

Description

The function fits environmental vectors or factors onto an ordination. The projections of points onto
vectors have maximum correlation with corresponding environmental variables, and the factors
show the averages of factor levels. For continuous varaibles this is equal to fitting a linear trend
surface (plane in 2D) for a variable (see ordisurf); this trend surface can be presented by showing
its gradient (direction of steepest increase) using an arrow. The environmental variables are the
dependent variables that are explained by the ordination scores, and each dependent variable is
analysed separately.

Usage

## Default S3 method:
envfit(ord, env, permutations = 999, strata = NULL,

choices=c(1,2), display = "sites”, w, na.rm = FALSE, ...)
## S3 method for class 'formula'
envfit(formula, data, ...)

## S3 method for class 'envfit'
plot(x, choices = c(1,2), labels, arrow.mul, at = c(0,0),

axis = FALSE, p.max = NULL, col = "blue”, bg, add = TRUE, ...)

## S3 method for class 'envfit'

scores(x, display, choices, arrow.mul=1, tidy = FALSE, ...)

vectorfit(X, P, permutations = @, strata = NULL, w, ...)

factorfit(X, P, permutations = @, strata = NULL, w, ...)

Arguments

ord An ordination object or other structure from which the ordination scores can
be extracted (including a data frame or matrix of scores).

env Data frame, matrix or vector of environmental variables. The variables can be
of mixed type (factors, continuous variables) in data frames.

X Matrix or data frame of ordination scores.

P Data frame, matrix or vector of environmental variable(s). These must be con-

tinuous for vectorfit and factors or characters for factorfit.

permutations a list of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices. Set permutations = @ to skip permutations.

formula, data Model formula and data.

na.rm Remove points with missing values in ordination scores or environmental vari-
ables. The operation is casewise: the whole row of data is removed if there is a
missing value and na.rm = TRUE.
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X A result object from envfit. For ordiArrowMul and ordiArrowTextXY this
must be a two-column matrix (or matrix-like object) containing the coordinates
of arrow heads on the two plot axes, and other methods extract such a structure
from the envfit results.

choices Axes to plotted.

tidy Return scores that are compatible with ggplot2: all scores are in a single data. frame,
score type is identified by factor variable scores ("vectors” or "factors”),
the names by variable 1abel. These scores are incompatible with conventional
plot functions, but they can be used in ggplot2.

labels Change plotting labels. The argument should be a list with elements vectors
and factors which give the new plotting labels. If either of these elements is
omitted, the default labels will be used. If there is only one type of elements
(only vectors or only factors), the labels can be given as vector. The default
labels can be displayed with labels command.

arrow.mul Multiplier for vector lengths. The arrows are automatically scaled similarly as
in plot.cca if this is not given in plot and add = TRUE. However, in scores it
can be used to adjust arrow lengths when the plot function is not used.

at The origin of fitted arrows in the plot. If you plot arrows in other places then
origin, you probably have to specify arrrow.mul.

axis Plot axis showing the scaling of fitted arrows.

p.max Maximum estimated P value for displayed variables. You must calculate P
values with setting permutations to use this option.

col Colour in plotting.

bg Background colour for labels. If bg is set, the labels are displayed with ordilabel
instead of text. See Examples for using semitransparent background.

add Results added to an existing ordination plot.

strata An integer vector or factor specifying the strata for permutation. If supplied,

observations are permuted only within the specified strata.

display In fitting functions these are ordinary site scores or linear combination scores
("1c") in constrained ordination (cca, rda, dbrda). In scores function they are
either "vectors” or "factors” (with synonyms "bp"” or "cn", resp.).

w Weights used in fitting (concerns mainly cca and decorana results which have
nonconstant weights).

Parameters passed to scores.

Details

Function envfit finds vectors or factor averages of environmental variables. Function plot.envfit
adds these in an ordination diagram. If X is a data. frame, envfit uses factorfit for factor vari-
ables and vectorfit for other variables. If X is a matrix or a vector, envfit uses only vectorfit.
Alternatively, the model can be defined a simplified model formula, where the left hand side must
be an ordination result object or a matrix of ordination scores, and right hand side lists the envi-
ronmental variables. The formula interface can be used for easier selection and/or transformation
of environmental variables. Only the main effects will be analysed even if interaction terms were
defined in the formula.
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The ordination results are extracted with scores and all extra arguments are passed to the scores.
The fitted models only apply to the results defined when extracting the scores when using envfit.
For instance, scaling in constrained ordination (see scores.rda, scores.cca) must be set in the
same way in envfit and in the plot or the ordination results (see Examples).

The printed output of continuous variables (vectors) gives the direction cosines which are the co-
ordinates of the heads of unit length vectors. In plot these are scaled by their correlation (square
root of the column r2) so that “weak” predictors have shorter arrows than “strong” predictors.
You can see the scaled relative lengths using command scores. The plotted (and scaled) arrows
are further adjusted to the current graph using a constant multiplier: this will keep the relative
r2-scaled lengths of the arrows but tries to fill the current plot. You can see the multiplier using
ordiArrowMul (result_of_envfit), and set it with the argument arrow.mul.

Functions vectorfit and factorfit can be called directly. Function vectorfit finds directions
in the ordination space towards which the environmental vectors change most rapidly and to which
they have maximal correlations with the ordination configuration. Function factorfit finds aver-
ages of ordination scores for factor levels. Function factorfit treats ordered and unordered factors
similarly.

If permutations > 0, the significance of fitted vectors or factors is assessed using permutation of
environmental variables. The goodness of fit statistic is squared correlation coefficient (r?). For
factors this is defined as 12 = 1 — ss,, /sst, where ss,, and ss; are within-group and total sums of
squares. See permutations for additional details on permutation tests in Vegan.

User can supply a vector of prior weights w. If the ordination object has weights, these will be
used. In practise this means that the row totals are used as weights with cca or decorana results.
If you do not like this, but want to give equal weights to all sites, you should set w=NULL. The
fitted vectors are similar to biplot arrows in constrained ordination only when fitted to LC scores
(display = "1c") and you set scaling = "species” (see scores.cca). The weighted fitting gives
similar results to biplot arrows and class centroids in cca.

The lengths of arrows for fitted vectors are automatically adjusted for the physical size of the plot,
and the arrow lengths cannot be compared across plots. For similar scaling of arrows, you must ex-
plicitly set the arrow.mul argument in the plot command; see ordiArrowMul and ordiArrowTextXY.

The results can be accessed with scores.envfit function which returns either the fitted vectors
scaled by correlation coefficient or the centroids of the fitted environmental variables, or a named
list of both.

Value

Functions vectorfit and factorfit return lists of classes vectorfit and factorfit which have
a print method. The result object have the following items:

arrows Arrow endpoints from vectorfit. The arrows are scaled to unit length.
centroids Class centroids from factorfit.

r Goodness of fit statistic: Squared correlation coefficient

permutations  Number of permutations.

control A list of control values for the permutations as returned by the function how.
pvals Empirical P-values for each variable.

Function envfit returns a list of class envfit with results of vectorfit and envfit as items.

Function plot.envfit scales the vectors by correlation.
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Note

Fitted vectors have become the method of choice in displaying environmental variables in ordi-
nation. Indeed, they are the optimal way of presenting environmental variables in Constrained
Correspondence Analysis cca, since there they are the linear constraints. In unconstrained ordi-
nation the relation between external variables and ordination configuration may be less linear, and
therefore other methods than arrows may be more useful. The simplest is to adjust the plotting
symbol sizes (cex, symbols) by environmental variables. Fancier methods involve smoothing and
regression methods that abound in R, and ordisurf provides a wrapper for some.

Author(s)

Jari Oksanen. The permutation test derives from the code suggested by Michael Scroggie.

See Also

A better alternative to vectors may be ordisurf.

Examples

data(varespec, varechem)

library(MASS)

ord <- metaMDS(varespec)

(fit <- envfit(ord, varechem, perm = 999))

scores(fit, "vectors")

plot(ord)

plot(fit)

plot(fit, p.max = 0.05, col = "red")

## Adding fitted arrows to CCA. We use "lc" scores, and hope

## that arrows are scaled similarly in cca and envfit plots

ord <- cca(varespec ~ Al + P + K, varechem)

plot(ord, type="p")

fit <- envfit(ord, varechem, perm = 999, display = "1c")

plot(fit, p.max = 0.05, col = "red")

## 'scaling' must be set similarly in envfit and in ordination plot
plot(ord, type = "p", scaling = "sites")

fit <- envfit(ord, varechem, perm = @, display = "lc", scaling = "sites")
plot(fit, col = "red")

## Class variables, formula interface, and displaying the

## inter-class variability with ordispider, and semitransparent

## white background for labels (semitransparent colours are not

## supported by all graphics devices)

data(dune)

data(dune.env)

ord <- cca(dune)

fit <- envfit(ord ~ Moisture + A1, dune.env, perm = 0)

plot(ord, type = "n")

with(dune.env, ordispider(ord, Moisture, col="skyblue"))

with(dune.env, points(ord, display = "sites"”, col = as.numeric(Moisture),
pch=16))

plot(fit, cex=1.2, axis=TRUE, bg = rgb(1, 1, 1, 0.5))
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## Use shorter labels for factor centroids

labels(fit)

plot(ord)

plot(fit, labels=list(factors = paste("M", c(1,2,4,5), sep = "")),
bg = rgb(1,1,0,0.5))

eventstar Scale Parameter at the Minimum of the Tsallis Evenness Profile

Description

The function eventstar finds the minimum (¢*) of the evenness profile based on the Tsallis en-
tropy. This scale factor of the entropy represents a specific weighting of species relative frequencies
that leads to minimum evenness of the community (Mendes et al. 2008).

Usage

eventstar(x, gmax = 5)

Arguments
X A community matrix or a numeric vector.
gmax Maximum scale parameter of the Tsallis entropy to be used in finding the mini-
mum of Tsallis based evenness in the range c(@, gmax).
Details

The function eventstar finds a characteristic value of the scale parameter ¢ of the Tsallis entropy
corresponding to minimum of the evenness (equitability) profile based on Tsallis entropy. This
value was proposed by Mendes et al. (2008) as ¢*.

The ¢* index represents the scale parameter of the one parameter Tsallis diversity family that leads
to the greatest deviation from the maximum equitability given the relative abundance vector of a
community.

The value of ¢* is found by identifying the minimum of the evenness profile over scaling factor ¢
by one-dimensional minimization. Because evenness profile is known to be a convex function, it is
guaranteed that underlying optimize function will find a unique solution if it is in the range c(@,
gmax).

The scale parameter value ¢* is used to find corresponding values of diversity (H,«), evenness
(H,~ (max)), and numbers equivalent (D,+). For calculation details, see tsallis and Examples
below.

Mendes et al. (2008) advocated the use of ¢* and corresponding diversity, evenness, and Hill num-
bers, because it is a unique value representing the diversity profile, and is is positively associated
with rare species in the community, thus it is a potentially useful indicator of certain relative abun-
dance distributions of the communities.
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Value

A data frame with columns:

gstar scale parameter value g corresponding to minimum value of Tsallis based even-
ness profile.

Estar Value of evenness based on normalized Tsallis entropy at ¢*.

Hstar Value of Tsallis entropy at ¢*.

Dstar Value of Tsallis entropy at ¢* converted to numbers equivalents (also called as

Hill numbers, effective number of species, ‘true’ diversity; cf. Jost 2007).

See tsallis for calculation details.

Note

Values for ¢* found by Mendes et al. (2008) ranged from 0.56 and 1.12 presenting low variability,
so an interval between 0 and 5 should safely encompass the possibly expected ¢* values in practice,
but profiling the evenness and changing the value of the gmax argument is advised if output values
near the range limits are found.

Author(s)

Eduardo Ribeiro Cunha <edurcunha@gmail. com>and Heloisa Beatriz Antoniazi Evangelista <helobeatriz@gmail.com>,
with technical input of Péter S6lymos.

References

Mendes, R.S., Evangelista, L.R., Thomaz, S.M., Agostinho, A.A. and Gomes, L.C. (2008) A unified
index to measure ecological diversity and species rarity. Ecography 31, 450—456.

Jost, L. (2007) Partitioning diversity into independent alpha and beta components. Ecology 88,
2427-2439.

Tsallis, C. (1988) Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phis. 52, 479-487.

See Also

Tsallis entropy: tsallis

Examples

data(BCI)

(x <- eventstar(BCI[1:5,1))

## profiling

y <- as.numeric(BCI[10,])

(z <- eventstar(y))

g <- seq(@, 2, 0.05)

Eprof <- tsallis(y, scales=q, norm=TRUE)
Hprof <- tsallis(y, scales=q)

Dprof <- tsallis(y, scales=q, hill=TRUE)
opar <- par(mfrow=c(3,1))

plot(q, Eprof, type="1", main="Evenness")
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abline(v=z$qgstar, h=tsallis(y, scales=z$gstar, norm=TRUE), col=2)
plot(q, Hprof, type="1", main="Diversity")

abline(v=z$qstar, h=tsallis(y, scales=z$qgstar), col=2)

plot(q, Dprof, type="1", main="Effective number of species")
abline(v=z$qgstar, h=tsallis(y, scales=z$qgstar, hill=TRUE), col=2)

par(opar)
fisherfit Fit Fisher’s Logseries and Preston’s Lognormal Model to Abundance
Data
Description

Function fisherfit fits Fisher’s logseries to abundance data. Function prestonfit groups species
frequencies into doubling octave classes and fits Preston’s lognormal model, and function prestondistr
fits the truncated lognormal model without pooling the data into octaves.

Usage
fisherfit(x, ...)
prestonfit(x, tiesplit = TRUE, ...)
prestondistr(x, truncate = -1, ...)

## S3 method for class 'prestonfit'
plot(x, xlab = "Frequency”, ylab = "Species”, bar.col = "skyblue",

line.col = "red”, 1lwd =2, ...)
## S3 method for class 'prestonfit'
lines(x, line.col = "red”, 1lwd = 2, ...)
veiledspec(x, ...)
as.fisher(x, ...)

## S3 method for class 'fisher'
plot(x, xlab = "Frequency”, ylab = "Species”, bar.col = "skyblue",

kind = c("bar”, "hiplot"”, "points”, "lines"”), add = FALSE, ...)
as.preston(x, tiesplit = TRUE, ...)
## S3 method for class 'preston'
plot(x, xlab = "Frequency”, ylab = "Species”, bar.col = "skyblue", ...)
## S3 method for class 'preston'
lines(x, xadjust = 0.5, ...)
Arguments
X Community data vector for fitting functions or their result object for plot func-
tions.
tiesplit Split frequencies 1, 2, 4, 8 etc between adjacent octaves.
truncate Truncation point for log-Normal model, in log2 units. Default value —1 cor-

responds to the left border of zero Octave. The choice strongly influences the
fitting results.

xlab, ylab Labels for x and y axes.
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bar.col Colour of data bars.

line.col Colour of fitted line.

lwd Width of fitted line.

kind Kind of plot to drawn: "bar" is similar bar plotasin plot.fisherfit, "hiplot”
draws vertical lines as with plot(. .., type="h"), and "points"” and "lines”
are obvious.

add Add to an existing plot.

xadjust Adjustment of horizontal positions in octaves.

Other parameters passed to functions. Ignored in prestonfit and tiesplit
passed to as.preston in prestondistr.

Details

In Fisher’s logarithmic series the expected number of species f with n observed individuals is
fn = az™/n (Fisher et al. 1943). The estimation is possible only for genuine counts of individu-
als. The parameter « is used as a diversity index which can be estimated with a separate function
fisher.alpha. The parameter x is taken as a nuisance parameter which is not estimated separately
but taken to be n/(n + «). Helper function as. fisher transforms abundance data into Fisher fre-
quency table. Diversity will be given as NA for communities with one (or zero) species: there is no
reliable way of estimating their diversity, even if the equations will return a bogus numeric value in
some cases.

Preston (1948) was not satisfied with Fisher’s model which seemed to imply infinite species rich-
ness, and postulated that rare species is a diminishing class and most species are in the middle of
frequency scale. This was achieved by collapsing higher frequency classes into wider and wider
“octaves” of doubling class limits: 1, 2, 3—4, 5-8, 9—16 etc. occurrences. It seems that Preston
regarded frequencies 1, 2, 4, efc.. as “tied” between octaves (Williamson & Gaston 2005). This
means that only half of the species with frequency 1 are shown in the lowest octave, and the rest
are transferred to the second octave. Half of the species from the second octave are transferred to
the higher one as well, but this is usually not as large a number of species. This practise makes data
look more lognormal by reducing the usually high lowest octaves. This can be achieved by setting
argument tiesplit = TRUE. With tiesplit = FALSE the frequencies are not split, but all ones are
in the lowest octave, all twos in the second, etc. Williamson & Gaston (2005) discuss alternative
definitions in detail, and they should be consulted for a critical review of log-Normal model.

Any logseries data will look like lognormal when plotted in Preston’s way. The expected frequency
f at abundance octave o is defined by f, = Sp exp(—(log,(0) — p)?/2/c?), where i is the location
of the mode and o the width, both in log, scale, and Sy is the expected number of species at mode.
The lognormal model is usually truncated on the left so that some rare species are not observed.
Function prestonfit fits the truncated lognormal model as a second degree log-polynomial to the
octave pooled data using Poisson (when tiesplit = FALSE) or quasi-Poisson (when tiesplit =
TRUE) error. Function prestondistr fits left-truncated Normal distribution to log, transformed
non-pooled observations with direct maximization of log-likelihood. Function prestondistr is
modelled after function fitdistr which can be used for alternative distribution models.

The functions have common print, plot and 1ines methods. The 1ines function adds the fitted
curve to the octave range with line segments showing the location of the mode and the width (sd)
of the response. Function as.preston transforms abundance data to octaves. Argument tiesplit
will not influence the fit in prestondistr, but it will influence the barplot of the octaves.
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The total extrapolated richness from a fitted Preston model can be found with function veiledspec.
The function accepts results both from prestonfit and from prestondistr. If veiledspec is
called with a species count vector, it will internally use prestonfit. Function specpool provides
alternative ways of estimating the number of unseen species. In fact, Preston’s lognormal model
seems to be truncated at both ends, and this may be the main reason why its result differ from
lognormal models fitted in Rank—Abundance diagrams with functions rad. lognormal.

Value

The function prestonfit returns an object with fitted coefficients, and with observed (freq)
and fitted (fitted) frequencies, and a string describing the fitting method. Function prestondistr
omits the entry fitted. The function fisherfit returns the result of nlm, where item estimate
is a. The result object is amended with the nuisance parameter and item fisher for the observed
data from as. fisher

Author(s)
Bob O’Hara and Jari Oksanen.

References

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species
and the number of individuals in a random sample of animal population. Journal of Animal Ecology
12: 42-58.

Preston, EW. (1948) The commonness and rarity of species. Ecology 29, 254-283.

Williamson, M. & Gaston, K.J. (2005). The lognormal distribution is not an appropriate null hy-
pothesis for the species—abundance distribution. Journal of Animal Ecology T4, 409-422.

See Also

diversity, fisher.alpha, radfit, specpool. Function fitdistr of MASS package was used
as the model for prestondistr. Function density can be used for smoothed non-parametric
estimation of responses, and qgplot is an alternative, traditional and more effective way of studying
concordance of observed abundances to any distribution model.

Examples

data(BCI)

mod <- fisherfit(BCI[5,])

mod

# prestonfit seems to need large samples
mod.oct <- prestonfit(colSums(BCI))

mod.1ll <- prestondistr(colSums(BCI))
mod.oct

mod. 11

plot(mod.oct)

lines(mod.1l, line.col="blue3") # Different
## Smoothed density

den <- density(log2(colSums(BCI)))
lines(den$x, ncol(BCI)*den$y, lwd=2) # Fairly similar to mod.oct
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## Extrapolated richness
veiledspec(mod.oct)
veiledspec(mod.11)

goodness.cca

Diagnostic Tools for [ Constrained] Ordination (CCA, RDA, DCA, CA,
PCA)

Description

Functions goodness and inertcomp can be used to assess the goodness of fit for individual sites
or species. Function vif.cca and alias.cca can be used to analyse linear dependencies among
constraints and conditions. In addition, there are some other diagnostic tools (see ’Details’).

Usage
## S3 method for class 'cca'
goodness(object, choices, display = c("species”, "sites"),
model = c("CCA", "CA"), summarize = FALSE, addprevious = FALSE, ...)
inertcomp(object, display = c("species”, "sites"),
unity = FALSE, proportional = FALSE)
spenvcor (object)
intersetcor(object)

vif.cca(object)

## S3 method for class 'cca'

alias(object, names.only = FALSE, ...)
Arguments

object A result object from cca, rda, dbrda or capscale.

display Display "species” or "sites”. Species are not available in dbrda and capscale.

choices Axes shown. Default is to show all axes of the "model”.

model Show constrained ("CCA") or unconstrained ("CA") results.

summarize Show only the accumulated total.

addprevious Add the variation explained by previous components when statistic="explained".
For model = "CCA" add conditioned (partialled out) variation, and for model =
"CA" add both conditioned and constrained variation. This will give cumulative
explanation with previous components.

unity Scale inertia components to unit sum (sum of all items is 1).

proportional Give the inertia components as proportional for the corresponding total of the
item (sum of each row is 1). This option takes precedence over unity.

names.only Return only names of aliased variable(s) instead of defining equations.

Other parameters to the functions.
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Details

Function goodness gives cumulative proportion of inertia accounted by species up to chosen axes.
The proportions can be assessed either by species or by sites depending on the argument display,
but species are not available in distance-based dbrda. The function is not implemented for capscale.

Function inertcomp decomposes the inertia into partial, constrained and unconstrained compo-
nents for each site or species. Legendre & De Céceres (2012) called these inertia components as
local contributions to beta-diversity (LCBD) and species contributions to beta-diversity (SCBD),
and they give these as relative contributions summing up to unity (argument unity = TRUE). For
this interpretation, appropriate dissimilarity measures should be used in dbrda or appropriate stan-
dardization in rda (Legendre & De Caceres 2012). The function is not implemented for capscale.

Function spenvcor finds the so-called “species — environment correlation” or (weighted) correla-
tion of weighted average scores and linear combination scores. This is a bad measure of goodness
of ordination, because it is sensitive to extreme scores (like correlations are), and very sensitive to
overfitting or using too many constraints. Better models often have poorer correlations. Function
ordispider can show the same graphically.

Function intersetcor finds the so-called “interset correlation” or (weighted) correlation of weighted
averages scores and constraints. The defined contrasts are used for factor variables. This is a bad
measure since it is a correlation. Further, it focuses on correlations between single contrasts and sin-
gle axes instead of looking at the multivariate relationship. Fitted vectors (envfit) provide a better
alternative. Biplot scores (see scores. cca) are a multivariate alternative for (weighted) correlation
between linear combination scores and constraints.

Function vif.cca gives the variance inflation factors for each constraint or contrast in factor con-
straints. In partial ordination, conditioning variables are analysed together with constraints. Vari-
ance inflation is a diagnostic tool to identify useless constraints. A common rule is that values over
10 indicate redundant constraints. If later constraints are complete linear combinations of condi-
tions or previous constraints, they will be completely removed from the estimation, and no biplot
scores or centroids are calculated for these aliased constraints. A note will be printed with default
output if there are aliased constraints. Function alias will give the linear coefficients defining the
aliased constraints, or only their names with argument names.only = TRUE.

Value

The functions return matrices or vectors as is appropriate.

Author(s)

Jari Oksanen. The vif.cca relies heavily on the code by W. N. Venables. alias.ccais a simplified
version of alias.1lm.

References

Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press,
London.
Gross, J. (2003). Variance inflation factors. R News 3(1), 13-15.

Legendre, P. & De Caceres, M. (2012). Beta diversity as the variance of community data: dissimi-
larity coefficients and partitioning. Ecology Letters 16, 951-963. doi:10.1111/ele.12141
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See Also

cca, rda, dbrda, capscale.

Examples

data(dune)

data(dune.env)

mod <- cca(dune ~ A1 + Management + Condition(Moisture), data=dune.env)
goodness(mod, addprevious = TRUE)
goodness(mod, addprevious = TRUE, summ = TRUE)
# Inertia components

inertcomp(mod, prop = TRUE)

inertcomp(mod)

# vif.cca

vif.cca(mod)

# Aliased constraints

mod <- cca(dune ~ ., dune.env)

mod

vif.cca(mod)

alias(mod)

with(dune.env, table(Management, Manure))

# The standard correlations (not recommended)
## IGNORE_RDIFF_BEGIN

spenvcor (mod)

intersetcor(mod)

## IGNORE_RDIFF_END

goodness.metaMDS Goodness of Fit and Shepard Plot for Nonmetric Multidimensional
Scaling

Description

Function goodness . metaMDS find goodness of fit measure for points in nonmetric multidimensional
scaling, and function stressplot makes a Shepard diagram.

Usage

## S3 method for class 'metaMDS'

goodness(object, dis, ...)

## Default S3 method:

stressplot(object, dis, pch, p.col = "blue”, 1l.col = "red”,

Iwd = 2, ...)
Arguments
object A result object from metaMDS, monoMDS or isoMDS.
dis Dissimilarities. This should not be used with metaMDS or monoMDS, but must be

used with isoMDS.
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pch Plotting character for points. Default is dependent on the number of points.
p.col, 1l.col Point and line colours.
1wd Line width. For monoMDS the default is 1wd = 1 if more than two lines are drawn,

and 1wd = 2 otherwise.

Other parameters to functions, e.g. graphical parameters.

Details

Function goodness.metaMDS finds a goodness of fit statistic for observations (points). This is
defined so that sum of squared values is equal to squared stress. Large values indicate poor fit. The
absolute values of the goodness statistic depend on the definition of the stress: isoMDS expresses
stress in percents, and therefore its goodness values are 100 times higher than those of monoMDS
which expresses the stress as a proportion.

Function stressplot draws a Shepard diagram which is a plot of ordination distances and mono-
tone or linear fit line against original dissimilarities. In addition, it displays two correlation-like
statistics on the goodness of fit in the graph. The nonmetric fit is based on stress S and defined
as R?> = 1 — S2. The “linear fit” is the squared correlation between fitted values and ordination
distances. For monoMDS, the “linear fit” and R? from “stress type 2" are equal.

Both functions can be used with metaMDS, monoMDS and isoMDS. The original dissimilarities should
not be given for monoMDS or metaMDS results (the latter tries to reconstruct the dissimilarities using
metaMDSredist if isoMDS was used as its engine). With 1soMDS the dissimilarities must be given.
In either case, the functions inspect that dissimilarities are consistent with current ordination, and
refuse to analyse inconsistent dissimilarities. Function goodness.metaMDS is generic in vegan, but
you must spell its name completely with isoMDS which has no class.

Value

Function goodness returns a vector of values. Function stressplot returns invisibly an object
with items for original dissimilarities, ordination distances and fitted values.

Author(s)

Jari Oksanen.

See Also

metaMDS, monoMDS, isoMDS, Shepard. Similar diagrams for eigenvector ordinations can be drawn
with stressplot.wcmdscale, stressplot.cca.

Examples

data(varespec)

mod <- metaMDS(varespec)

stressplot(mod)

gof <- goodness(mod)

gof

plot(mod, display = "sites”, type = "n")

points(mod, display = "sites"”, cex = 2*gof/mean(gof))
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indpower Indicator Power of Species

Description
Indicator power calculation of Halme et al. (2009) or the congruence between indicator and target
species.

Usage

indpower(x, type = 0)

Arguments

X Community data frame or matrix.

type The type of statistic to be returned. See Details for explanation.
Details

Halme et al. (2009) described an index of indicator power defined as I P = v/a x b, where a =
S/Orandb =1— (O — S)/(N — Oy). N is the number of sites, S is the number of shared
occurrences of the indicator () and the target (T') species. O; and Op are number of occurrences
of the indicator and target species. The type argument in the function call enables to choose which
statistic to return. type = 0 returns [P, type =1 returns a, type = 2 returns b. Total indicator
power (TIP) of an indicator species is the column mean (without its own value, see examples).
Halme et al. (2009) explain how to calculate confidence intervals for these statistics, see Examples.

Value
A matrix with indicator species as rows and target species as columns (this is indicated by the first
letters of the row/column names).

Author(s)

Peter Solymos

References

Halme, P., Monkkonen, M., Kotiaho, J. S, Ylisirnio, A-L. 2009. Quantifying the indicator power of
an indicator species. Conservation Biology 23: 1008-1016.

Examples

data(dune)

## IP values

ip <- indpower(dune)
## and TIP values
diag(ip) <- NA
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(TIP <- rowMeans(ip, na.rm=TRUE))

## p value calculation for a species

## from Halme et al. 2009

## i is ID for the species

i<-1

fun <- function(x, i) indpower(x)[i,-i]

## 'c@' randomizes species occurrences

os <- oecosimu(dune, fun, "c@", i=i, nsimul=99)

## get z values from oecosimu output

z <- os$oecosimu$z

## p-value

(p <= sum(z) / sqrt(length(z)))

## 'heterogeneity' measure

(chi2 <- sum((z - mean(z))"2))

pchisq(chi2, df=length(z)-1)

## Halme et al.'s suggested output

out <- c(TIP=TIP[il],
significance=p,
heterogeneity=chi2,
minIP=min(fun(dune, i=i)),
varIP=sd(fun(dune, i=i)*2))

out

influence.cca Linear Model Diagnostics for Constrained Ordination

Description

This set of function extracts influence statistics and some other linear model statistics directly from
a constrained ordination result object from cca, rda, capscale or dbrda. The constraints are
linear model functions and these support functions return identical results as the corresponding
linear models (1m), and you can use their documentation. The main functions for normal usage
are leverage values (hatvalues), standardized residuals (rstandard), studentized or leave-one-
out residuals (rstudent), and Cook’s distance (cooks.distance). In addition, vcov returns the
variance-covariance matrix of coefficients, and its diagonal values the variances of coefficients.
Other functions are mainly support functions for these, but they can be used directly.

Usage
## S3 method for class 'cca'
hatvalues(model, ...)
## S3 method for class 'cca'
rstandard(model, type = c("response”, "canoco"), ...)
## S3 method for class 'cca'
rstudent(model, type = c("response”, "canoco"), ...)

## S3 method for class 'cca'
cooks.distance(model, type = c("response”, "canoco"), ...)
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## S3 method for class 'cca'

sigma(object, type = c("response”, "canoco"), ...)
## S3 method for class 'cca'

vcov(object, type = "canoco", ...)

## S3 method for class 'cca'

SSD(object, type = "canoco”, ...)

## S3 method for class 'cca'
gr(x, ...)

## S3 method for class 'cca
df.residual(object, ...)

Arguments

model, object, x A constrained ordination result object.

type Type of statistics used for extracting raw residuals and residual standard devia-
tion (sigma). Either "response” for species data or difference of WA and LC
scores for "canoco”.

Other arguments to functions (ignored).

Details

The vegan algorithm for constrained ordination uses linear model (or weighted linear model in cca)
to find the fitted values of dependent community data, and constrained ordination is based on this
fitted response (Legendre & Legendre 2012). The hatvalues give the leverage values of these con-
straints, and the leverage is independent on the response data. Other influence statistics (rstandard,
rstudent, cooks.distance) are based on leverage, and on the raw residuals and residual standard
deviation (sigma). With type = "response” the raw residuals are given by the unconstrained com-
ponent of the constrained ordination, and influence statistics are a matrix with dimensions no. of
observations times no. of species. For cca the statistics are the same as obtained from the 1m model
using Chi-square standardized species data (see decostand) as dependent variable, and row sums
of community data as weights, and for rda the 1m model uses non-modified community data and no
weights.

The algorithm in the CANOCO software constraints the results during iteration by performing a
linear regression of weighted averages (WA) scores on constraints and taking the fitted values of
this regression as linear combination (LC) scores (ter Braak 1984). The WA scores are directly
found from species scores, but LC scores are linear combinations of constraints in the regression.
With type = "canoco” the raw residuals are the differences of WA and LC scores, and the residual
standard deviation (sigma) is taken to be the axis sum of squared WA scores minus one. These
quantities have no relationship to residual component of ordination, but they rather are method-
ological artefacts of an algorithm that is not used in vegan. The result is a matrix with dimensions
no. of observations times no. of constrained axes.

Function vcov returns the matrix of variances and covariances of regression coefficients. The diag-
onal values of this matrix are the variances, and their square roots give the standard errors of regres-
sion coefficients. The function is based on SSD that extracts the sum of squares and crossproducts
of residuals. The residuals are defined similarly as in influence measures and with each type they
have similar properties and limitations, and define the dimensions of the result matrix.
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Note

Function as.mlm casts an ordination object to a multiple linear model of class "mlm” (see 1m), and
similar statistics can be derived from that modified object as with this set of functions. However,
there are some problems in the R implementation of the further analysis of multiple linear model
objects. When the results differ, the current set of functions is more probable to be correct. The use
of as.mlm objects should be avoided.

Author(s)

Jari Oksanen

References

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English ed. Elsevier.

ter Braak, C.J.F. (1984-): CANOCO - a FORTRAN program for canonical community ordination
by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and re-
dundancy analysis. TNO Inst. of Applied Computer Sci., Stat. Dept. Wageningen, The Netherlands.

Examples

data(varespec, varechem)

mod <- cca(varespec ~ Al + P + K, varechem)

## leverage

hatvalues(mod)

plot(hatvalues(mod), type = "h")

## ordination plot with leverages: points with high leverage have
## similar LC and WA scores

plot(mod, type = "n")

ordispider(mod) # segment from LC to WA scores

points(mod, dis="si", cex=5*hatvalues(mod), pch=21, bg=2) # WA scores
text(mod, dis="bp", col=4)

## deviation and influence
head(rstandard(mod))
head(cooks.distance(mod))

## Influence measures from 1lm

y <- decostand(varespec, "chi.square") # needed in cca

y1 <- with(y, Cladstel) # take one species for 1m

Imod1 <- 1m(yl ~ Al + P + K, varechem, weights = rowSums(varespec))

## numerically identical within 2e-15

all(abs(cooks.distance(lmod1) - cooks.distance(mod)[, "Cladstel”]) < 1e-8)

## t-values of regression coefficients based on type = "canoco”
## residuals

coef (mod)

coef (mod)/sqrt(diag(vcov(mod, type = "canoco")))
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isomap Isometric Feature Mapping Ordination

Description

The function performs isometric feature mapping which consists of three simple steps: (1) retain
only some of the shortest dissimilarities among objects, (2) estimate all dissimilarities as shortest
path distances, and (3) perform metric scaling (Tenenbaum et al. 2000).

Usage
isomap(dist, ndim=10, ...)
isomapdist(dist, epsilon, k, path = "shortest”, fragmentedOK =FALSE, ...)
## S3 method for class 'isomap'
summary (object, ...)
## S3 method for class 'isomap'
plot(x, net = TRUE, n.col = "gray”, type = "points”, ...)
Arguments
dist Dissimilarities.
ndim Number of axes in metric scaling (argument k in cmdscale).
epsilon Shortest dissimilarity retained.
k Number of shortest dissimilarities retained for a point. If both epsilon and k
are given, epsilon will be used.
path Method used in stepacross to estimate the shortest path, with alternatives

"shortest” and "extended".

fragmentedOK  What to do if dissimilarity matrix is fragmented. If TRUE, analyse the largest
connected group, otherwise stop with error.

X, object An isomap result object.
net Draw the net of retained dissimilarities.
n.col Colour of drawn net segments. This can also be a vector that is recycled for

points, and the colour of the net segment is a mixture of joined points.

type Plot observations either as "points”, "text" or use "none"” to plot no obser-
vations. The "text"” will use ordilabel if net = TRUE and ordiplot if net =
FALSE, and pass extra arguments to these functions.

Other parameters passed to functions.

Details

The function isomap first calls function isomapdist for dissimilarity transformation, and then per-
forms metric scaling for the result. All arguments to isomap are passed to isomapdist. The func-
tions are separate so that the isompadist transformation could be easily used with other functions
than simple linear mapping of cmdscale.
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Function isomapdist retains either dissimilarities equal or shorter to epsilon, or if epsilon is
not given, at least k shortest dissimilarities for a point. Then a complete dissimilarity matrix is
reconstructed using stepacross using either flexible shortest paths or extended dissimilarities (for
details, see stepacross).

De’ath (1999) actually published essentially the same method before Tenenbaum et al. (2000), and
De’ath’s function is available in function xdiss in non-CRAN package mvpart. The differences
are that isomap introduced the k criterion, whereas De’ath only used epsilon criterion. In practice,
De’ath also retains higher proportion of dissimilarities than typical isomap.

The plot function uses internally ordiplot, except that it adds text over net using ordilabel. The
plot function passes extra arguments to these functions. In addition, vegan3d package has function
rgl.isomap to make dynamic 3D plots that can be rotated on the screen.

Value

Function isomapdist returns a dissimilarity object similar to dist. Function isomap returns an
object of class isomap with plot and summary methods. The plot function returns invisibly an
object of class ordiplot. Function scores can extract the ordination scores.

Note

Tenenbaum et al. (2000) justify isomap as a tool of unfolding a manifold (e.g. a ’Swiss Roll’).
Even with a manifold structure, the sampling must be even and dense so that dissimilarities along a
manifold are shorter than across the folds. If data do not have such a manifold structure, the results
are very sensitive to parameter values.

Author(s)

Jari Oksanen

References

De’ath, G. (1999) Extended dissimilarity: a method of robust estimation of ecological distances
from high beta diversity data. Plant Ecology 144, 191-199

Tenenbaum, J.B., de Silva, V. & Langford, J.C. (2000) A global network framework for nonlinear
dimensionality reduction. Science 290, 2319-2323.

See Also

The underlying functions that do the proper work are stepacross, distconnected and cmdscale.
Function metaMDS may trigger stepacross transformation, but usually only for longest dissimi-
larities. The plot method of vegan minimum spanning tree function (spantree) has even more
extreme way of isomapping things.

Examples

## The following examples also overlay minimum spanning tree to
## the graphics in red.

op <- par(mar=c(4,4,1,1)+0.2, mfrow=c(2,2))

data(BCI)
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dis <- vegdist(BCI)

tr <- spantree(dis)

pl <- ordiplot(cmdscale(dis), main="cmdscale")

lines(tr, pl, col="red")

ord <- isomap(dis, k=3)

ord

pl <- plot(ord, main="isomap k=3")

lines(tr, pl, col="red")

pl <- plot(isomap(dis, k=5), main="isomap k=5")

lines(tr, pl, col="red")

pl <- plot(isomap(dis, epsilon=0.45), main="isomap epsilon=0.45")
lines(tr, pl, col="red")

par(op)

## colour points and web by the dominant species

dom <- apply(BCI, 1, which.max)

## need nine colours, but default palette has only eight
op <- palette(c(palette("default”), "sienna"))

plot(ord, pch = 16, col = dom, n.col = dom)

palette(op)

kendall.global Kendall coefficient of concordance

Description
Function kendall.global computes and tests the coefficient of concordance among several judges
(variables, species) through a permutation test.

Function kendall. post carries out a posteriori tests of the contributions of individual judges (vari-
ables, species) to the overall concordance of their group through permutation tests.

If several groups of judges are identified in the data table, coefficients of concordance (kendall. global)
or a posteriori tests (kendall.post) will be computed for each group separately. Use in ecology:
to identify significant species associations.

Usage

kendall.global(Y, group, nperm = 999, mult = "holm")
kendall.post(Y, group, nperm = 999, mult = "holm")

Arguments
Y Data file (data frame or matrix) containing quantitative or semiquantitative data.
Rows are objects and columns are judges (variables). In community ecology,
that table is often a site-by-species table.
group A vector defining how judges should be divided into groups. See example below.

If groups are not explicitly defined, all judges in the data file will be considered
as forming a single group.

nperm Number of permutations to be performed. Default is 999.
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mult Correct P-values for multiple testing using the alternatives described in p.adjust
and in addition "sidak” (see Details). The Bonferroni correction is overly con-
servative; it is not recommended. It is included to allow comparisons with the
other methods.

Details

Y must contain quantitative data. They will be transformed to ranks within each column before
computation of the coefficient of concordance.

The search for species associations described in Legendre (2005) proceeds in 3 steps:

(1) Correlation analysis of the species. A possible method is to compute Ward’s agglomerative clus-
tering of a matrix of correlations among the species. In detail: (1.1) compute a Pearson or Spearman
correlation matrix (correl.matrix) among the species; (1.2) turn it into a distance matrix: mat.D
=as.dist(1-correl.matrix); (1.3) carry out Ward’s hierarchical clustering of that matrix using
hclust: clust.ward = hclust(mat.D, "ward"); (1.4) plot the dendrogram: plot(clust.ward,
hang=-1); (1.5) cut the dendrogram in two groups, retrieve the vector of species membership:
group.2 = cutree(clust.ward, k=2). (1.6) After steps 2 and 3 below, you may have to come
back and try divisions of the species into k = 3,4, 5, ... groups.

(2) Compute global tests of significance of the 2 (or more) groups using the function kendall.global
and the vector defining the groups. Groups that are not globally significant must be refined or aban-
doned.

(3) Compute a posteriori tests of the contribution of individual species to the concordance of their
group using the function kendall.post and the vector defining the groups. If some species have
negative values for "Spearman.mean", this means that these species clearly do not belong to the
group, hence that group is too inclusive. Go back to (1.5) and cut the dendrogram more finely. The
left and right groups can be cut separately, independently of the levels along the dendrogram; write
your own vector of group membership if cutree does not produce the desired groups.

The corrections used for multiple testing are applied to the list of P-values (P); they take into ac-
count the number of tests (k) carried out simultaneously (number of groups in kendall.global, or
number of species in kendall.post). The corrections are performed using function p.adjust; see
that function for the description of the correction methods. In addition, there is Sidak correction
which defined as Py, = 1 — (1 — P).

Value

A table containing the following information in rows. The columns correspond to the groups of
"judges" defined in vector "group". When function Kendall.post is used, there are as many tables
as the number of predefined groups.

W Kendall’s coefficient of concordance, W.
F F statistic. F = W*(m-1)/(1-W) where m is the number of judges.
Prob.F Probability associated with the F statistic, computed from the F distribution with

nul =n-1-(2/m) and nu2 = nul*(m-1); n is the number of objects.

Corrected prob.F
Probabilities associated with F, corrected using the method selected in parameter
mult. Shown only if there are more than one group.
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Chi2 Friedman’s chi-square statistic (Friedman 1937) used in the permutation test of
W.
Prob.perm Permutational probabilities, uncorrected.

Corrected prob.perm

Permutational probabilities corrected using the method selected in parameter
mult. Shown only if there are more than one group.

Spearman.mean Mean of the Spearman correlations between the judge under test and all the other
judges in the same group.

W.per.species Contribution of the judge under test to the overall concordance statistic for that
group.

Author(s)

F. Guillaume Blanchet, University of Alberta, and Pierre Legendre, Université de Montréal

References

Friedman, M. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. Journal of the American Statistical Association 32: 675-701.

Kendall, M. G. and B. Babington Smith. 1939. The problem of m rankings. Annals of Mathematical
Statistics 10: 275-287.

Legendre, P. 2005. Species associations: the Kendall coefficient of concordance revisited. Journal
of Agricultural, Biological, and Environmental Statistics 10: 226-245.

Legendre, P. 2009. Coefficient of concordance. In: Encyclopedia of Research Design. SAGE
Publications (in press).

Siegel, S. and N. J. Castellan, Jr. 1988. Nonparametric statistics for the behavioral sciences. 2nd
edition. McGraw-Hill, New York.

See Also

cor, friedman. test, hclust, cutree, kmeans, cascadekM.

Examples

data(mite)
mite.hel <- decostand(mite, "hel”)

# Reproduce the results shown in Table 2 of Legendre (2005), a single group
mite.small <- mite.hel[c(4,9,14,22,31,34,45,53,61,69),c(13:15,23)]
kendall.global(mite.small, nperm=49)

kendall.post(mite.small, mult="holm"”, nperm=49)

# Reproduce the results shown in Tables 3 and 4 of Legendre (2005), 2 groups
group <-c(1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,1,1,1,1,1,2,2,2,2,2)
kendall.global(mite.hel, group=group, nperm=49)

kendall.post(mite.hel, group=group, mult="holm", nperm=49)

# NOTE: 'nperm' argument usually needs to be larger than 49.
# It was set to this low value for demonstration purposes.
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linestack Plots One-dimensional Diagrams without Overwriting Labels

Description

Function linestack plots vertical one-dimensional plots for numeric vectors. The plots are always
labelled, but the labels are moved vertically to avoid overwriting.

Usage
linestack(x, labels, cex = 0.8, side = "right", hoff = 2, air = 1.1,
at = 0, add = FALSE, axis = FALSE, ...)
Arguments
X Numeric vector to be plotted.
labels Labels used instead of default (names of x). May be expressions to be drawn
with plotmath.
cex Size of the labels.
side Put labels to the "right"” or "left"” of the axis.
hoff Distance from the vertical axis to the label in units of the width of letter “m”.
air Multiplier to string height to leave empty space between labels.
at Position of plot in horizontal axis.
add Add to an existing plot.
axis Add axis to the plot.
Other graphical parameters to labels.
Value

The function returns invisibly the shifted positions of labels in user coordinates.

Note

The function always draws labelled diagrams. If you want to have unlabelled diagrams, you can
use, e.g., plot, stripchart or rug.

Author(s)

Jari Oksanen with modifications by Gavin L. Simpson
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Examples

## First DCA axis

data(dune)

ord <- decorana(dune)

linestack(scores(ord, choices=1, display="sp"))

linestack(scores(ord, choices=1, display="si"), side="left"”, add=TRUE)
title(main="DCA axis 1")

## Expressions as labels

N <- 10 # Number of sites

df <- data.frame(Ca = rlnorm(N, 2), NO3 = rlnorm(N, 4),

S04 = rlnorm(N, 10), K = rlnorm(N, 3))

ord <- rda(df, scale = TRUE)

### vector of expressions for labels

labs <- expression(Ca*{2+phantom()},
NO[3]*{-phantom()},
S0[4]1*{2-phantom()},
K*{+phantom()})

scl <- "sites”

linestack(scores(ord, choices = 1, display = "species"”, scaling = scl),
labels = labs, air = 2)

linestack(scores(ord, choices = 1, display
side = "left”, add = TRUE)

title(main = "PCA axis 1")

"site", scaling = scl),

make.cepnames Abbreviates a Two-Part Botanical or Zoological Latin Name into
Character String

Description

Function is based on abbreviate, and will take given number of characters from the first (genus)
and last (epithet) component of botanical or zoological Latin name and combine these into one
shorter character string. The names will be unique and more characters will be used if needed. The
default usage makes names with 4+4 characters popularized in Cornell Ecology Programs (CEP)
and often known as CEP names. Abbreviated names are useful in ordination plots and other graphics
to reduce clutter.

Usage

make.cepnames(names, minlengths = c(4,4), seconditem = FALSE,
uniggenera = FALSE, named = FALSE, method)

Arguments
names The names to be abbreviated into a vector abbreviated names.
minlengths The minimum lengths of first and second part of the abbreviation. If abbrevia-

tions are not unique, the parts can be longer.
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seconditem Take always the second part of the original name to the abbreviated name instead
of the last part.

uniggenera Should the first part of the abbreviation (genus) also be unique. Unique genus
can take space from the second part (epithet).

method The abbreviate argument in last attempt to abbreviate the abbreviation. The
default method tries to drop character from the end, but "both.sides” can re-
move characters from any position, including the genus part, and same genus
can be abbreviated differently.

named Should the result vector be named by original names.

Details

Cornell Ecology Programs (CEP) used eight-letter abbreviations for species and site names. In
species, the names were formed by taking four first letters of the generic name and four first letters
of the specific or subspecific epithet. The current function produces CEP names as default, but it can
also use other lengths. The function is based on abbreviate and can produce longer names if basic
names are not unique. If generic name is shorter than specified minimun length, more characters
can be used by the epithet. If uniggenera = TRUE genus can use more characters, and these reduce
the number of characters available for the epithet. The function drops characters from the end, but
with method = "both.sides” the function tries to drop characters from other positions, starting
with lower-case wovels, in the final attempt to abbreviate abbreviations.

Value

Function returns a vector of abbreviated names.

Note

The function does not handle Author names except strictly two-part names with seconditem =
TRUE. It is often useful to edit abbreviations manually.

Author(s)

Jari Oksanen

See Also
abbreviate.
Examples
names <- c("Aa maderoi”, "Capsella bursa-pastoris”, "Taraxacum”,
"Cladina rangiferina”, "Cladonia rangiformis”, "Cladonia cornuta”,
"Cladonia cornuta var. groenlandica”, "Rumex acetosa”,

"Rumex acetosella")
make . cepnames (names)
make. cepnames (names, uniggenera = TRUE)
make . cepnames(names, method = "both.sides")
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Mantel and Partial Mantel Tests for Dissimilarity Matrices

Description

Function mantel finds the Mantel statistic as a matrix correlation between two dissimilarity matri-
ces, and function mantel.partial finds the partial Mantel statistic as the partial matrix correlation
between three dissimilarity matrices. The significance of the statistic is evaluated by permuting
rows and columns of the first dissimilarity matrix. Test is one-sided and only tests that distances are
positively correlated.

Usage

mantel(xdis, ydis, method="pearson”, permutations=999, strata = NULL,

na.rm =

FALSE, parallel = getOption("mc.cores"))

mantel.partial(xdis, ydis, zdis, method = "pearson”, permutations = 999,
strata = NULL, na.rm = FALSE, parallel = getOption("mc.cores"))
## S3 method for class 'mantel’

summary(object,

Arguments

)

xdis, ydis, zdis Distance object of class "dist" or symmetric square matrices of distances. Only

method

permutations

strata

na.rm

parallel

object

the lower triangle of square matrices is used. The first object xdis will be per-
muted in permutation tests.

non

Correlation method, as accepted by cor: "pearson”, "spearman” or "kendall”.

a list of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

Remove missing values in calculation of Mantel correlation. Use this option
with care: Permutation tests can be biased, in particular if two matrices had
missing values in matching positions.

Number of parallel processes or a predefined socket cluster. With parallel =
1 uses ordinary, non-parallel processing. The parallel processing is done with
parallel package.

Result object.

Arguments passed to summary.permustats These include alternative to se-
lect the sidedness of the test.
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Details

Mantel statistic is simply a correlation between entries of two dissimilarity matrices (some use cross
products, but these are linearly related). However, the significance cannot be directly assessed,
because there are N(N — 1)/2 entries for just N observations. Mantel developed asymptotic test,
but here we use permutations of /N rows and columns of dissimilarity matrix. Only the first matrix
(xdist) will be permuted, and the second is kept constant. See permutations for additional details
on permutation tests in Vegan.

Partial Mantel statistic uses partial correlation conditioned on the third matrix. Only the first matrix
is permuted so that the correlation structure between second and first matrices is kept constant.
Although mantel.partial silently accepts other methods than "pearson”, partial correlations will
probably be wrong with other methods.

Borcard & Legendre (2012) warn against using partial Mantel test and recommend instead Mantel
correlogram (mantel.correlog).

The function uses cor, which should accept alternatives pearson for product moment correlations
and spearman or kendall for rank correlations.

Value

The function returns a list of class mantel with following components:

Call Function call.

method Correlation method used, as returned by cor. test.

statistic The Mantel statistic.

signif Empirical significance level from permutations.

perm A vector of permuted values. The distribution of permuted values can be in-

spected with permustats function.
permutations  Number of permutations.

control A list of control values for the permutations as returned by the function how.

Author(s)

Jari Oksanen

References

Borcard, D. & Legendre, P. (2012) Is the Mantel correlogram powerful enough to be useful in
ecological analysis? A simulation study. Ecology 93: 1473-148]1.

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English Edition. Elsevier.

See Also

mantel.correlog.
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Examples

mantel.correlog

## Is vegetation related to environment?

data(varespec)
data(varechem)

veg.dist <- vegdist(varespec) # Bray-Curtis
env.dist <- vegdist(scale(varechem), "euclid")
mantel(veg.dist, env.dist)

mantel(veg.dist, env.dist, method

—_n

spear")

mantel.correlog

Mantel Correlogram

Description

Function mantel . correlog computes a multivariate Mantel correlogram. Proposed by Sokal (1986)
and Oden and Sokal (1986), the method is also described in Legendre and Legendre (2012, pp. 819—
821) and tested and compared in Borcard and Legendere (2012).

Usage

mantel.correlog(D.eco, D.geo=NULL, XY=NULL, n.class=0, break.pts=NULL,
cutof f=TRUE, r.type="pearson”, nperm=999, mult="holm", progressive=TRUE)
## S3 method for class 'mantel.correlog'

plot(x, alpha=0.05, ...)
Arguments

D.eco An ecological distance matrix, with class either dist or matrix.

D.geo A geographic distance matrix, with class either dist or matrix. Provide either
D.geo or XY. Default: D.geo=NULL.

XY A file of Cartesian geographic coordinates of the points. Default: XY=NULL.

n.class Number of classes. If n. class=0, the Sturges equation will be used unless break
points are provided.

break.pts Vector containing the break points of the distance distribution. Provide (n.class+1)
breakpoints, that is, a list with a beginning and an ending point. Default: break. pts=NULL.

cutoff For the second half of the distance classes, cutoff = TRUE limits the correl-
ogram to the distance classes that include all points. If cutoff = FALSE, the
correlogram includes all distance classes.

r.type Type of correlation in calculation of the Mantel statistic. Default: r. type="pearson".
Other choices are r. type="spearman” and r. type="kendall", as in functions
cor and mantel.

nperm Number of permutations for the tests of significance. Default: nperm=999. For

large data files, permutation tests are rather slow.
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mult Correct P-values for multiple testing. The correction methods are "holm” (de-
fault), "hochberg”, "sidak"”, and other methods available in the p.adjust
function: "bonferroni” (best known, but not recommended because it is overly
conservative), "hommel”, "BH", "BY", "fdr", and "none".

progressive Default: progressive=TRUE for progressive correction of multiple-testing, as
described in Legendre and Legendre (1998, p. 721). Test of the first distance
class: no correction; second distance class: correct for 2 simultaneous tests;
distance class k: correct for k simultaneous tests. progressive=FALSE: correct
all tests for n.class simultaneous tests.

X Output of mantel.correlog.

alpha Significance level for the points drawn with black symbols in the correlogram.
Default: alpha=0.05.

Other parameters passed from other functions.

Details

A correlogram is a graph in which spatial correlation values are plotted, on the ordinate, as a func-
tion of the geographic distance classes among the study sites along the abscissa. In a Mantel correl-
ogram, a Mantel correlation (Mantel 1967) is computed between a multivariate (e.g. multi-species)
distance matrix of the user’s choice and a design matrix representing each of the geographic dis-
tance classes in turn. The Mantel statistic is tested through a permutational Mantel test performed
by vegan’s mantel function.

Borcard and Legendre (2012) show that the testing method in the Mantel correlogram has correct
type I error and power, contrary to the simple and partial Mantel tests so often used by ecologists
and geneticists in spatial analysis (see mantel.partial). They also show that the test in Mantel
correlograms is the same test as used by Wagner (2004) in multiscale ordination (mso), and that it
is closely related to the Geary’s c test in univariate correlograms.

When a correction for multiple testing is applied, more permutations are necessary than in the no-
correction case, to obtain significant p-values in the higher correlogram classes.

The print.mantel. correlog function prints out the correlogram. See examples.

Value

mantel.res A table with the distance classes as rows and the class indices, number of dis-
tances per class, Mantel statistics (computed using Pearson’s r, Spearman’s r, or
Kendall’s tau), and p-values as columns. A positive Mantel statistic indicates
positive spatial correlation. An additional column with p-values corrected for
multiple testing is added unless mult="none".

n.class The n umber of distance classes.

break.pts The break points provided by the user or computed by the program.

mult The name of the correction for multiple testing. No correction: mult="none".

progressive A logical (TRUE, FALSE) value indicating whether or not a progressive correction
for multiple testing was requested.

n.tests The number of distance classes for which Mantel tests have been computed and

tested for significance.
call The function call.
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Author(s)

Pierre Legendre, Université de Montréal

References

Borcard, D. & P. Legendre. 2012. Is the Mantel correlogram powerful enough to be useful in
ecological analysis? A simulation study. Ecology 93: 1473-1481.

Legendre, P. and L. Legendre. 2012. Numerical ecology, 3rd English edition. Elsevier Science BV,
Amsterdam.

Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer
Res. 27: 209-220.

Oden, N. L. and R. R. Sokal. 1986. Directional autocorrelation: an extension of spatial correlo-
grams to two dimensions. Syst. Zool. 35: 608-617.

Sokal, R. R. 1986. Spatial data analysis and historical processes. 29-43 in: E. Diday et al. [eds.]
Data analysis and informatics, IV. North-Holland, Amsterdam.

Sturges, H. A. 1926. The choice of a class interval. Journal of the American Statistical Association
21: 65-66.

Wagner, H.H. 2004. Direct multi-scale ordination with canonical correspondence analysis. Ecology
85: 342-351.

Examples

# Mite data available in "vegan”
data(mite)

data(mite.xy)

mite.hel <- decostand(mite, "hellinger")

# Detrend the species data by regression on the site coordinates
mite.hel.resid <- resid(lm(as.matrix(mite.hel) ~ ., data=mite.xy))

# Compute the detrended species distance matrix
mite.hel.D <- dist(mite.hel.resid)

# Compute Mantel correlogram with cutoff, Pearson statistic
mite.correlog <- mantel.correlog(mite.hel.D, XY=mite.xy, nperm=49)
summary(mite.correlog)

mite.correlog

# or: print(mite.correlog)

# or: print.mantel.correlog(mite.correlog)

plot(mite.correlog)

# Compute Mantel correlogram without cutoff, Spearman statistic

mite.correlog2 <- mantel.correlog(mite.hel.D, XY=mite.xy, cutoff=FALSE,
r.type="spearman”, nperm=49)

summary(mite.correlog?)

mite.correlog2

plot(mite.correlog2)

# NOTE: 'nperm' argument usually needs to be larger than 49.
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# It was set to this low value for demonstration purposes.

MDSaddpoints Add New Points to NMDS ordination

Description

Add new points to an existing metaMDS or monoMDS ordination.

Usage
MDSaddpoints(nmds, dis, neighbours = 5, maxit = 200)

dist2xy(dist, pick, type = c("xy", "xx"), invert = FALSE)

Arguments
nmds Result object from metaMDS or monoMDS. The configuration of points is fixed,
but new points are added.
dis Rectangular non-symmetric dissimilarity matrix among new points (rows) and
old fixed points (columns). Such matrix can be extracted from complete dissimi-
larities of both old and new points with dist2xy, or calculated with designdist2.
neighbours Number of nearest points used to get the starting locations for new points.
maxit Maximum number of iterations.
dist Input dissimilarities.
pick Indices (integers) of selected observations or a logical vector that is TRUE for
picked items. The output will be in the original order and will not be reordered
by this argument.
type "xy" returns rectangular data of picked against not picked observations, and
"xx" a subset of symmetric dissimilarities.
invert Invert pick: drop elements listed.
Details

Function provides an interface to monoMDS Fortran code to add new points to an existing ordination
that will be regarded as fixed. The function has a similar role as predict functions with newdata
in Euclidean ordination (e.g. predict.cca). Input data must be a rectangular matrix of distances
among new added points (rows) and all fixed old points (columns). Such matrices can be extracted
from complete dissimilarities with helper function dist2xy. Function designdist2 can directly
calculate such rectangular dissimilarity matrices between sampling units (rows) in two matries.
In addition, analogue has distance function that can calculate dissimilarities among two matrices,
including functions that cannot be specified in designdist2.

Great care is needed in preparing the dissimilarities for the input. The dissimilarity index must be
exactly the same as in the fixed ordination, and columns must match old fixed points, and rows
added new points.
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Value

Function return a list of class "nmds” (there are no other objects of that type in vegan) with follow-
ing elements

points Coordinates of added new points

seeds Starting coordinates for new points.

deltastress Change of stress with added points.

iters Number of iterations.

cause Cause of termination of iterations. Integer for convergence criteria in monoMDS.
Examples

## Cross-validation: remove a point when performing NMDS and add as
## a new points

data(dune)

d <- vegdist(dune)

## remove point 3 from ordination

mod3 <- metaMDS(dist2xy(d, 3, "xx", invert = TRUE), trace=0)
## add point 3 to the result

MDSaddpoints(mod3, dist2xy(d, 3))

## Use designdist2

d15 <- designdist(dune[1:15,])

m15 <- metaMDS(d15, trace=0)

MDSaddpoints(m15, designdist2(dune[1:15,], dune[16:20,1))

MDSrotate Rotate First MDS Dimension Parallel to an External Variable

Description

Function rotates a multidimensional scaling result so that its first dimension is parallel to an external
(environmental variable). The function can handle the results from metaMDS or monoMDS functions.

Usage
MDSrotate(object, vec, na.rm = FALSE, ...)
Arguments
object A result object from metaMDS or monoMDS.
vec An environmental variable or a matrix of such variables. The number of vari-
ables must be lower than the number of dimensions, and the solution is rotated
to these variables in the order they appear in the matrix. Alternatively vec can
be a factor, and the solution is rotated to optimal separation of factor levels using
lda.
na.rm Remove missing values from the continuous variable vec.

Other arguments (ignored).
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Details

The orientation and rotation are undefined in multidimensional scaling. Functions metaMDS and
metaMDS can rotate their solutions to principal components so that the dispersion of the points is
highest on the first dimension. Sometimes a different rotation is more intuitive, and MDSrotate
allows rotation of the result so that the first axis is parallel to a given external variable or two first
variables are completely in a two-dimensional plane etc. If several external variables are supplied,
they are applied in the order they are in the matrix. First axis is rotated to the first supplied variable,
and the second axis to the second variable. Because variables are usually correlated, the second
variable is not usually aligned with the second axis, but it is uncorrelated to later dimensions. There
must be at least one free dimension: the number of external variables must be lower than the number
of dimensions, and all used environmental variables are uncorrelated with that free dimension.

Alternatively the method can rotate to discriminate the levels of a factor using linear discriminant
analysis (1da). This is hardly meaningful for two-dimensional solutions, since all rotations in two
dimensions have the same separation of cluster levels. However, the function can be useful in find-
ing a two-dimensional projection of clusters from more than two dimensions. The last dimension
will always show the residual variation, and for k£ dimensions, only k£ — 1 discrimination vectors are
used.

Value

Function returns the original ordination result, but with rotated scores (both site and species if
available), and the pc attribute of scores set to FALSE.

Note

Rotation to a factor variable is an experimental feature and may be removed. The discriminant
analysis weights dimensions by their discriminating power, but MDSrotate performs a rigid rota-
tion. Therefore the solution may not be optimal.

Author(s)

Jari Oksanen

See Also

metaMDS, monoMDS.

Examples

data(varespec)

data(varechem)

mod <- monoMDS(vegdist(varespec))

mod <- with(varechem, MDSrotate(mod, pH))

plot(mod)

ef <- envfit(mod ~ pH, varechem, permutations = 0)
plot(ef)

ordisurf(mod ~ pH, varechem, knots = 1, add = TRUE)
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metaMDS Nonmetric Multidimensional Scaling with Stable Solution from Ran-
dom Starts, Axis Scaling and Species Scores

Description

Function metaMDS performs Nonmetric Multidimensional Scaling (NMDS), and tries to find a stable
solution using several random starts. In addition, it standardizes the scaling in the result, so that the
configurations are easier to interpret, and adds species scores to the site ordination. The metaMDS
function does not provide actual NMDS, but it calls another function for the purpose. Currently
monoMDS is the default choice, and it is also possible to call the isoMDS (MASS package).

Usage

metaMDS(comm, distance = "bray”, k = 2, try = 20, trymax = 20,
engine = c("monoMDS", "isoMDS"), autotransform =TRUE,
noshare = (engine == "isoMDS"), wascores = TRUE, expand = TRUE,
trace = 1, plot = FALSE, previous.best, ...)

## S3 method for class 'metaMDS'

plot(x, display = c("sites", "species"), choices = c(1, 2),
type = "p”, shrink = FALSE, cex = 0.7, ...)

## S3 method for class 'metaMDS'

points(x, display = c("sites"”, "species"),
choices = ¢(1,2), shrink = FALSE, select, cex = 0.7, ...)

## S3 method for class 'metaMDS'

text(x, display = c("sites"”, "species"), labels,
choices = c(1,2), shrink = FALSE, select, cex = 0.7, ...)

## S3 method for class 'metaMDS'

scores(x, display = c("sites”, "species”), shrink = FALSE,
choices, tidy = FALSE, ...)

metaMDSdist(comm, distance = "bray", autotransform = TRUE,
noshare = TRUE, trace = 1, commname, zerodist = "ignore",
distfun = vegdist, ...)

metaMDSiter(dist, k = 2, try = 20, trymax = 20, trace = 1, plot = FALSE,
previous.best, engine = "monoMDS", maxit = 200,
parallel = getOption("mc.cores”), ...)

initMDS(x, k=2)
postMDS(X, dist, pc=TRUE, center=TRUE, halfchange, threshold=0.8,

nthreshold=10, plot=FALSE, ...)
metaMDSredist (object, ...)
Arguments
comm Community data. Alternatively, dissimilarities either as a dist structure or as a

symmetric square matrix. In the latter case all other stages are skipped except
random starts and centring and pc rotation of axes.

distance Dissimilarity index used in vegdist.
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try, trymax

engine

autotransform

noshare

wascores
expand
trace

plot

previous.best

X
choices
type
display
shrink
cex

tidy

labels

select

X

commname
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Number of dimensions. NB., the number of points n should be n > 2k + 1, and
preferably higher in global non-metric MDS, and still higher in local NMDS.

Minimum and maximum numbers of random starts in search of stable solution.
After try has been reached, the iteration will stop when similar solutions were
repeated or trymax was reached.

The function used for MDS. The default is to use the monoMDS function in vegan,
but for backward compatibility it is also possible to use isoMDS of MASS.

Use simple heuristics for possible data transformation of typical community
data (see below). If you do not have community data, you should probably
set autotransform = FALSE.

Triggering of calculation step-across or extended dissimilarities with function
stepacross. The argument can be logical or a numerical value greater than
zero and less than one. If TRUE, extended dissimilarities are used always when
there are no shared species between some sites, if FALSE, they are never used.
If noshare is a numerical value, stepacross is used when the proportion of
site pairs with no shared species exceeds noshare. The number of pairs with no
shared species is found with no. shared function, and noshare has no effect if
input data were dissimilarities instead of community data.

Calculate species scores using function wascores.
Expand weighted averages of species in wascores.
Trace the function; trace = 2 or higher will be more voluminous.

Graphical tracing: plot interim results. You may want to set par (ask = TRUE)
with this option.

Start searches from a previous solution. This can also be a monoMDS solution or
a matrix of coordinates.

metaMDS result (or a dissimilarity structure for initMDS).
Axes shown.

Plot type: "p" for points, "t" for text, and "n" for axes only.
Display "sites"” or "species”.

Shrink back species scores if they were expanded originally.
Character expansion for plotting symbols.

Return scores that are compatible with ggplot2: all scores are in a single data. frame,
score type is identified by factor variable code ("sites” or "species”), the
names by variable label. These scores are incompatible with conventional plot
functions, but they can be used in ggplot2.

Optional test to be used instead of row names. If select is used, labels are given
only to selected items in the order they occur in the scores.

Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

Configuration from multidimensional scaling.

The name of comm: should not be given if the function is called directly.


https://CRAN.R-project.org/package=ggplot2
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zerodist Handling of zero dissimilarities: either "fail” or "add” a small positive value,
or "ignore"”. monoMDS accepts zero dissimilarities and the default is zerodist
= "ignore", but with isoMDS you may need to set zerodist = "add".

distfun Dissimilarity function. Any function returning a dist object and accepting argu-
ment method can be used (but some extra arguments may cause name conflicts).

maxit Maximum number of iterations in the single NMDS run; passed to the engine
function monoMDS or isoMDS.

parallel Number of parallel processes or a predefined socket cluster. If you use pre-
defined socket clusters (say, clus), you mustissue clusterEvalQ(clus, library(vegan))
to make available internal vegan functions. With parallel =1 uses ordinary,
non-parallel processing. The parallel processing is done with parallel package.

dist Dissimilarity matrix used in multidimensional scaling.

pc Rotate to principal components.

center Centre the configuration.

halfchange Scale axes to half-change units. This defaults TRUE when dissimilarities are

known to have a theoretical maximum value (ceiling). Function vegdist will
have that information in attribute maxdist, and for other distfun this is in-
terpreted in a simple test (that can fail), and the information may not available
when input data are distances. If FALSE, the ordination dissimilarities are scaled
to the same range as the input dissimilarities.

threshold Largest dissimilarity used in half-change scaling. If dissimilarities have a known
(or inferred) ceiling, threshold is relative to that ceiling (see halfchange).

nthreshold Minimum number of points in half-change scaling.
object A result object from metaMDS.

Other parameters passed to functions. Function metaMDS passes all arguments to
its component functions metaMDSdist, metaMDSiter, postMDS, and to distfun
and engine.

Details

Non-metric Multidimensional Scaling (NMDS) is commonly regarded as the most robust uncon-
strained ordination method in community ecology (Minchin 1987). Function metaMDS is a wrapper
function that calls several other functions to combine Minchin’s (1987) recommendations into one
command. The complete steps in metaMDS are:

1. Transformation: If the data values are larger than common abundance class scales, the function
performs a Wisconsin double standardization (wisconsin). If the values look very large, the
function also performs sqrt transformation. Both of these standardizations are generally
found to improve the results. However, the limits are completely arbitrary (at present, data
maximum 50 triggers sqrt and > 9 triggers wisconsin). If you want to have a full control
of the analysis, you should set autotransform = FALSE and standardize and transform data
independently. The autotransform is intended for community data, and for other data types,
you should set autotransform = FALSE. This step is perfomed using metaMDSdist, and the
step is skipped if input were dissimilarities.
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2. Choice of dissimilarity: For a good result, you should use dissimilarity indices that have a
good rank order relation to ordering sites along gradients (Faith et al. 1987). The default is
Bray-Curtis dissimilarity, because it often is the test winner. However, any other dissimilarity
index in vegdist can be used. Function rankindex can be used for finding the test winner for
you data and gradients. The default choice may be bad if you analyse other than community
data, and you should probably select an appropriate index using argument distance. This
step is performed using metaMDSdist, and the step is skipped if input were dissimilarities.

3. Step-across dissimilarities: Ordination may be very difficult if a large proportion of sites have
no shared species. In this case, the results may be improved with stepacross dissimilarities,
or flexible shortest paths among all sites. The default NMDS engine is monoMDS which is able
to break tied values at the maximum dissimilarity, and this often is sufficient to handle cases
with no shared species, and therefore the default is not to use stepacross with monoMDS.
Function isoMDS does not handle tied values adequately, and therefore the default is to use
stepacross always when there are sites with no shared species with engine = "isoMDS".
The stepacross is triggered by option noshare. If you do not like manipulation of original
distances, you should set noshare = FALSE. This step is skipped if input data were dissimilar-
ities instead of community data. This step is performed using metaMDSdist, and the step is
skipped always when input were dissimilarities.

4. NMDS with random starts: NMDS easily gets trapped into local optima, and you must start
NMDS several times from random starts to be confident that you have found the global
solution. The strategy in metaMDS is to first run NMDS starting with the metric scaling
(cmdscale which usually finds a good solution but often close to a local optimum), or use
the previous.best solution if supplied, and take its solution as the standard (Run @). Then
metaMDS starts NMDS from several random starts (minimum number is given by try and
maximum number by trymax). These random starts are generated by initMDS. If a solution
is better (has a lower stress) than the previous standard, it is taken as the new standard. If
the solution is better or close to a standard, metaMDS compares two solutions using Procrustes
analysis (function procrustes with option symmetric = TRUE). If the solutions are very simi-
lar in their Procrustes rmse and the largest residual is very small, the solutions are regarded as
repeated and the better one is taken as the new standard. The conditions are stringent, and you
may have found good and relatively similar solutions although the function is not yet satisfied.
Setting trace = TRUE will monitor the final stresses, and plot = TRUE will display Procrustes
overlay plots from each comparison. This step is performed using metaMDSiter. This is the
first step performed if input data (comm) were dissimilarities. Random starts can be run with
parallel processing (argument parallel).

5. Scaling of the results: metaMDS will run postMDS for the final result. Function postMDS pro-
vides the following ways of “fixing” the indeterminacy of scaling and orientation of axes in
NMDS: Centring moves the origin to the average of the axes; Principal components rotate the
configuration so that the variance of points is maximized on first dimension (with function
MDSrotate you can alternatively rotate the configuration so that the first axis is parallel to an
environmental variable); Half-change scaling scales the configuration so that one unit means
halving of community similarity from replicate similarity. Half-change scaling is based on
closer dissimilarities where the relation between ordination distance and community dissim-
ilarity is rather linear (the limit is set by argument threshold). If there are enough points
below this threshold (controlled by the parameter nthreshold), dissimilarities are regressed
on distances. The intercept of this regression is taken as the replicate dissimilarity, and half-
change is the distance where similarity halves according to linear regression. Obviously the
method is applicable only for dissimilarity indices scaled to 0. . . 1, such as Kulczynski, Bray-
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Curtis and Canberra indices. If half-change scaling is not used, the ordination is scaled to the
same range as the original dissimilarities. Half-change scaling is skipped by default if input
were dissimilarities, but can be turned on with argument halfchange = TRUE. NB., The PC ro-
tation only changes the directions of reference axes, and it does not influence the configuration
or solution in general.

6. Species scores: Function adds the species scores to the final solution as weighted averages
using function wascores with given value of parameter expand. The expansion of weighted
averages can be undone with shrink = TRUE in plot or scores functions, and the calculation
of species scores can be suppressed with wascores = FALSE. This step is skipped if input
were dissimilarities and community data were unavailable. However, the species scores can
be added or replaced with sppscores.

Value

Function metaMDS returns an object of class metaMDS. The final site ordination is stored in the item
points, and species ordination in the item species, and the stress in item stress (NB, the scaling
of the stress depends on the engine: isoMDS uses percents, and monoMDS proportions in the range
0...1). The other items store the information on the steps taken and the items returned by the
engine function. The object has print, plot, points and text methods. Functions metaMDSdist
and metaMDSredist return vegdist objects. Function initMDS returns a random configuration
which is intended to be used within isoMDS only. Functions metaMDSiter and postMDS returns the
result of NMDS with updated configuration.

Results Could Not Be Repeated

Non-linear optimization is a hard task, and the best possible solution (“global optimum’) may not
be found from a random starting configuration. Most software solve this by starting from the result
of metric scaling (cmdscale). This will probably give a good result, but not necessarily the “global
optimum”. Vegan does the same, but metaMDS tries to verify or improve this first solution (“try 0)
using several random starts and seeing if the result can be repeated or improved and the improved
solution repeated. If this does not succeed, you get a message that the result could not be repeated.
However, the result will be at least as good as the usual standard strategy of starting from metric
scaling or it may be improved. You may not need to do anything after such a message, but you can
be satisfied with the result. If you want to be sure that you probably have a “global optimum” you
may try the following instructions.

With default engine = "monoMDS" the function will tabulate the stopping criteria used, so that you
can see which criterion should be made more stringent. The criteria can be given as arguments to
metaMDS and their current values are described in monoMDS. In particular, if you reach the maximum
number of iterations, you should increase the value of maxit. You may ask for a larger number of
random starts without losing the old ones giving the previous solution in argument previous.best.

In addition to slack convergence criteria and too low number of random starts, wrong number of
dimensions (argument k) is the most common reason for not being able to repeat similar solutions.
NMDS is usually run with a low number dimensions (k=2 or k=3), and for complex data increasing
k by one may help. If you run NMDS with much higher number of dimensions (say, k=10 or more),
you should reconsider what you are doing and drastically reduce k. For very heterogeneous data
sets with partial disjunctions, it may help to set stepacross, but for most data sets the default
weakties = TRUE is sufficient.
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Please note that you can give all arguments of other metaMDS# functions and NMDS engine (default
monoMDS) in your metaMDS command,and you should check documentation of these functions for
details.

Common Wrong Claims

NMDS is often misunderstood and wrong claims of its properties are common on the Web and
even in publications. It is often claimed that the NMDS configuration is non-metric which means
that you cannot fit environmental variables or species onto that space. This is a false statement.
In fact, the result configuration of NMDS is metric, and it can be used like any other ordination
result. In NMDS the rank orders of Euclidean distances among points in ordination have a non-
metric monotone relationship to any observed dissimilarities. The transfer function from observed
dissimilarities to ordination distances is non-metric (Kruskal 1964a, 1964b), but the ordination
result configuration is metric and observed dissimilarities can be of any kind (metric or non-metric).

The ordination configuration is usually rotated to principal components in metaMDS. The rotation
is performed after finding the result, and it only changes the direction of the reference axes. The
only important feature in the NMDS solution are the ordination distances, and these do not change
in rotation. Similarly, the rank order of distances does not change in uniform scaling or centring of
configuration of points. You can also rotate the NMDS solution to external environmental variables
with MDSrotate. This rotation will also only change the orientation of axes, but will not change the
configuration of points or distances between points in ordination space.

Function stressplot displays the method graphically: it plots the observed dissimilarities against
distances in ordination space, and also shows the non-metric monotone regression.

Warning

metaMDS uses monoMDS as its NMDS engine from vegan version 2.0-0, when it replaced the isoMDS
function. You can set argument engine to select the old engine.

Note

Function metaMDS is a simple wrapper for an NMDS engine (either monoMDS or isoMDS) and some
support functions (metaMDSdist, stepacross, metaMDSiter, initMDS, postMDS, wascores). You
can call these support functions separately for better control of results. Data transformation, dissim-
ilarities and possible stepacross are made in function metaMDSdist which returns a dissimilarity
result. Iterative search (with starting values from initMDS with monoMDS) is made in metaMDSiter.
Processing of result configuration is done in postMDS, and species scores added by wascores. If
you want to be more certain of reaching a global solution, you can compare results from several
independent runs. You can also continue analysis from previous results or from your own configura-
tion. Function may not save the used dissimilarity matrix (monoMDS does), but metaMDSredist tries
to reconstruct the used dissimilarities with original data transformation and possible stepacross.

The metaMDS function was designed to be used with community data. If you have other type of
data, you should probably set some arguments to non-default values: probably at least wascores,
autotransform and noshare should be FALSE. If you have negative data entries, metaMDS will set
the previous to FALSE with a warning.

Author(s)

Jari Oksanen
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References

Faith, D. P, Minchin, P. R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure
of ecological distance. Vegetatio 69, 57-68.

Kruskal, J.B. (1964a). Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hy-
pothesis. Psychometrika 29, 1-28.

Kruskal, J.B. (1964b). Nonmetric multidimensional scaling: a numerical method. Psychometrika
29, 115-129.

Minchin, PR. (1987). An evaluation of relative robustness of techniques for ecological ordinations.
Vegetatio 69, 89-107.

See Also

monoMDS (and isoMDS), decostand, wisconsin, vegdist, rankindex, stepacross, procrustes,
wascores, sppscores, MDSrotate, ordiplot, stressplot.

Examples

## The recommended way of running NMDS (Minchin 1987)
#H#

data(dune)

## IGNORE_RDIFF_BEGIN

## Global NMDS using monoMDS

sol <- metaMDS(dune)

sol

plot(sol, type="t")

## Start from previous best solution

sol <- metaMDS(dune, previous.best = sol)

## Local NMDS and stress 2 of monoMDS

so0l2 <- metaMDS(dune, model = "local"”, stress=2)

sol?2

## Use Arrhenius exponent 'z' as a binary dissimilarity measure
sol <- metaMDS(dune, distfun = betadiver, distance = "z")

sol

## IGNORE_RDIFF_END

mite Oribatid Mite Data with Explanatory Variables

Description

Oribatid mite data. 70 soil cores collected by Daniel Borcard in 1989. See Borcard et al. (1992,
1994) for details.

Usage

data(mite)
data(mite.env)
data(mite.pcnm)
data(mite.xy)
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Format

There are three linked data sets: mite that contains the data on 35 species of Oribatid mites,
mite.env that contains environmental data in the same sampling sites, mite.xy that contains ge-
ographic coordinates, and mite.pcnm that contains 22 PCNM base functions (columns) computed
from the geographic coordinates of the 70 sampling sites (Borcard & Legendre 2002). The whole
sampling area was 2.5 m x 10 m in size.

The fields in the environmental data are:

SubsDens Substrate density (g/L)
WatrCont Water content of the substrate (g/L)

Substrate Substrate type, factor with levels Sphagn1, Sphagn2 Sphagn3 Sphagn Litter Barepeat
Interface

Shrub Shrub density, an ordered factor with levels 1 <2 < 3

Topo Microtopography, a factor with levels Blanket and Hummock

Source

Pierre Legendre

References

Borcard, D., P. Legendre and P. Drapeau. 1992. Partialling out the spatial component of ecological
variation. Ecology 73: 1045-1055.

Borcard, D. and P. Legendre. 1994. Environmental control and spatial structure in ecological
communities: an example using Oribatid mites (Acari, Oribatei). Environmental and Ecological
Statistics 1: 37-61.

Borcard, D. and P. Legendre. 2002. All-scale spatial analysis of ecological data by means of
principal coordinates of neighbour matrices. Ecological Modelling 153: 51-68.

Examples
data(mite)
monoMDS Global and Local Non-metric Multidimensional Scaling and Linear
and Hybrid Scaling
Description

Function implements Kruskal’s (1964a,b) non-metric multidimensional scaling (NMDS) using mono-
tone regression and primary (‘“weak’) treatment of ties. In addition to traditional global NMDS, the
function implements local NMDS, linear and hybrid multidimensional scaling.
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Usage

monoMDS(dist, y, k = 2, model = c("global”, "local”, "linear"”, "hybrid"),
threshold = 0.8, maxit = 200, weakties = TRUE, stress =1,
scaling = TRUE, pc = TRUE, smin = le-4, sfgrmin = le-7,

sratmax=0.999999, ...)
## S3 method for class 'monoMDS'
scores(x, display = "sites"”, shrink = FALSE, choices,
tidy = FALSE, ...)
## S3 method for class 'monoMDS'
plot(x, display = "sites"”, choices = c(1,2), type = "t", ...)
## S3 method for class 'monoMDS'
points(x, display = "sites"”, choices = c(1,2), select, ...)

## S3 method for class 'monoMDS'
text(x, display = "sites"”, labels, choices = c(1,2),

select, ...)
Arguments
dist Input dissimilarities.
y Starting configuration. A random configuration will be generated if this is miss-
ing.
k Number of dimensions. NB., the number of points n should be n > 2k + 1, and

preferably higher in non-metric MDS.

model MDS model: "global” is normal non-metric MDS with a monotone regression,
"local” is non-metric MDS with separate regressions for each point, "linear”
uses linear regression, and "hybrid"” uses linear regression for dissimilarities
below a threshold in addition to monotone regression. See Details.

threshold Dissimilarity below which linear regression is used alternately with monotone
regression.

maxit Maximum number of iterations.

weakties Use primary or weak tie treatment, where equal observed dissimilarities are al-

lowed to have different fitted values. if FALSE, then secondary (strong) tie treat-
ment is used, and tied values are not broken.

stress Use stress type 1 or 2 (see Details).
scaling Scale final scores to unit root mean squares.
pc Rotate final scores to principal components.

smin, sfgrmin, sratmax
Convergence criteria: iterations stop when stress drops below smin, scale factor
of the gradient drops below sfgrmin, or stress ratio between two iterations goes
over sratmax (but is still < 1).

X A monoMDS result.

display Kind of scores. Normally there are only scores for "sites”, but "species”
scores can be added with sppscores.

shrink Shrink back species scores if they were expanded in wascores.
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tidy Return scores that are compatible with ggplot2: all scores are in a single data. frame,
score type is identified by factor variable code ("sites” or "species”), the
names by variable label. These scores are incompatible with conventional plot
functions, but they can be used in ggplot2.

choices Dimensions returned or plotted. The default NA returns all dimensions.
type The type of the plot: "t" for text, "p" for points, and "n" for none.
select Items to be displayed. This can either be a logical vector which is TRUE for

displayed items or a vector of indices of displayed items.

labels Labels to be use used instead of row names. If select is used, labels are given
only the selected items in the order they occur in the scores.

Other parameters to the functions (ignored in monoMDS, passed to graphical func-
tions in plot.).

Details

There are several versions of non-metric multidimensional scaling in R, but monoMDS offers the
following unique combination of features:

e “Weak” treatment of ties (Kruskal 1964a,b), where tied dissimilarities can be broken in mono-
tone regression. This is especially important for cases where compared sites share no species
and dissimilarities are tied to their maximum value of one. Breaking ties allows these points to
be at different distances and can help in recovering very long coenoclines (gradients). Func-
tions in the smacof package also hav adequate tie treatment.

* Handles missing values in a meaningful way.
» Offers “local” and “hybrid” scaling in addition to usual “global” NMDS (see below).
* Uses fast compiled code (isoMDS of the MASS package also uses compiled code).

Function monoMDS uses Kruskal’s (1964b) original monotone regression to minimize the stress.
There are two alternatives of stress: Kruskal’s (1964a,b) original or “stress 1” and an alternative
version or “stress 2” (Sibson 1972). Both of these stresses can be expressed with a general formula

o X—dp
>(d— do)?

where d are distances among points in ordination configuration, d are the fitted ordination distances,
and d are the ordination distances under null model. For “stress 1" dy = 0, and for “stress 2” dy =
d or mean distances. “Stress 2” can be expressed as s2 =1 — R?, whereR? is squared correlation
between fitted values and ordination distances, and so related to the “linear fit” of stressplot.

Function monoMDS can fit several alternative NMDS variants that can be selected with argument
model. The default model = "global” fits global NMDS, or Kruskal’s (1964a,b) original NMDS
similar to isoMDS (MASS). Alternative model = "local” fits local NMDS where independent mono-
tone regression is used for each point (Sibson 1972). Alternative model = "linear” fits a linear
MDS. This fits a linear regression instead of monotone, and is not identical to metric scaling or
principal coordinates analysis (cmdscale) that performs an eigenvector decomposition of dissimi-
larities (Gower 1966). Alternative model = "hybrid"” implements hybrid MDS that uses monotone


https://CRAN.R-project.org/package=ggplot2
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regression for all points and linear regression for dissimilarities below or at a threshold dissimi-
larity in alternating steps (Faith et al. 1987). Function stressplot can be used to display the kind
of regression in each model.

Scaling, orientation and direction of the axes is arbitrary. However, the function always centres the
axes, and the default scaling is to scale the configuration of unit root mean square and to rotate the
axes (argument pc) to principal components so that the first dimension shows the major variation.
It is possible to rotate the solution so that the first axis is parallel to a given environmental variable
using function MDSrotate.

Value

Returns an object of class "monoMDS"”. The final scores are returned in item points (function
scores extracts these results), and the stress in item stress. In addition, there is a large number
of other items (but these may change without notice in the future releases). There are no species
scores, but these can be added with sppscores function.

Convergence Criteria

NMDS is iterative, and the function stops when any of its convergence criteria is met. There is
actually no criterion of assured convergence, and any solution can be a local optimum. You should
compare several random starts (or use monoMDS via metaMDS) to assess if the solutions is likely a
global optimum.

The stopping criteria are:
maxit: Maximum number of iterations. Reaching this criterion means that solutions was almost
certainly not found, and maxit should be increased.

smin: Minimum stress. If stress is nearly zero, the fit is almost perfect. Usually this means that
data set is too small for the requested analysis, and there may be several different solutions that
are almost as perfect. You should reduce the number of dimensions (k), get more data (more
observations) or use some other method, such as metric scaling (cmdscale, wemdscale).

sratmax: Change in stress. Values close to one mean almost unchanged stress. This may mean a
solution, but it can also signal stranding on suboptimal solution with flat stress surface.

sfgrmin: Minimum scale factor. Values close to zero mean almost unchanged configuration. This
may mean a solution, but will also happen in local optima.
Note
This is the default NMDS function used in metaMDS. Function metaMDS adds support functions so
that NMDS can be run like recommended by Minchin (1987).
Author(s)

Peter R. Michin (Fortran core) and Jari Oksanen (R interface).

References

Faith, D.P., Minchin, PR and Belbin, L. 1987. Compositional dissimilarity as a robust measure of
ecological distance. Vegeratio 69, 57-68.
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Gower, J.C. (1966). Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika 53, 325-328.

Kruskal, J.B. 1964a. Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hy-
pothesis. Psychometrika 29, 1-28.

Kruskal, J.B. 1964b. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29,
115-129.

Minchin, P.R. 1987. An evaluation of relative robustness of techniques for ecological ordinations.
Vegetatio 69, 89-107.

Sibson, R. 1972. Order invariant methods for data analysis. Journal of the Royal Statistical Society
B 34, 311-349.

See Also

metaMDS for the vegan way of running NMDS, and isoMDS and smacof for some alternative imple-
mentations of NMDS.

Examples

data(dune)

dis <- vegdist(dune)

m <- monoMDS(dis, model = "loc")
m

plot(m)

MOStest Mitchell-Olds and Shaw Test for the Location of Quadratic Extreme

Description

Mitchell-Olds & Shaw test concerns the location of the highest (hump) or lowest (pit) value of a
quadratic curve at given points. Typically, it is used to study whether the quadratic hump or pit
is located within a studied interval. The current test is generalized so that it applies generalized
linear models (glm) with link function instead of simple quadratic curve. The test was popularized
in ecology for the analysis of humped species richness patterns (Mittelbach et al. 2001), but it is
more general. With logarithmic link function, the quadratic response defines the Gaussian response
model of ecological gradients (ter Braak & Looman 1986), and the test can be used for inspecting
the location of Gaussian optimum within a given range of the gradient. It can also be used to replace
Tokeshi’s test of “bimodal” species frequency distribution.

Usage
MOStest(x, y, interval, ...)
## S3 method for class 'MOStest'
plot(x, which = c¢(1,2,3,6), ...)

fieller.MOStest(object, level = @.95)
## S3 method for class 'MOStest’
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profile(fitted, alpha = 0.01, maxsteps = 10, del = zmax/5, ...)
## S3 method for class 'MOStest'’
confint(object, parm = 1, level = 0.95, ...)
Arguments
X The independent variable or plotting object in plot.
y The dependent variable.
interval The two points at which the test statistic is evaluated. If missing, the extremes

of x are used.

which Subset of plots produced. Values which=1 and 2 define plots specific to MOStest
(see Details), and larger values select graphs of plot.1m (minus 2).

object, fitted A result object from MOStest.

level The confidence level required.

alpha Maximum significance level allowed.

maxsteps Maximum number of steps in the profile.

del A step length parameter for the profile (see code).
parm Ignored.

Other variables passed to functions. Function MOStest passes these to glm so
that these can include family. The other functions pass these to underlying
graphical functions.

Details

The function fits a quadratic curve u = by + by + box? with given family and link function. If
by < 0, this defines a unimodal curve with highest point at w = —b; /(2b3) (ter Braak & Looman
1986). If by > 0, the parabola has a minimum at « and the response is sometimes called “bimodal”.
The null hypothesis is that the extreme point u is located within the interval given by points p;
and po. If the extreme point u is exactly at p;, then by = 0 on shifted axis x — p;. In the test,
origin of x is shifted to the values p; and p,, and the test statistic is based on the differences of
deviances between the original model and model where the origin is forced to the given location
using the standard anova. glm function (Oksanen et al. 2001). Mitchell-Olds & Shaw (1987) used
the first degree coefficient with its significance as estimated by the summary.glm function. This
give identical results with Normal error, but for other error distributions it is preferable to use the
test based on differences in deviances in fitted models.

The test is often presented as a general test for the location of the hump, but it really is dependent
on the quadratic fitted curve. If the hump is of different form than quadratic, the test may be
insignificant.

Because of strong assumptions in the test, you should use the support functions to inspect the fit.
Function plot(. .., which=1) displays the data points, fitted quadratic model, and its approximate
95% confidence intervals (2 times SE). Function plot with which =2 displays the approximate
confidence interval of the polynomial coefficients, together with two lines indicating the combina-
tions of the coefficients that produce the evaluated points of x. Moreover, the cross-hair shows the
approximate confidence intervals for the polynomial coefficients ignoring their correlations. Higher
values of which produce corresponding graphs from plot.1lm. That is, you must add 2 to the value
of which in plot.1m.
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Function fieller .MOStest approximates the confidence limits of the location of the extreme point
(hump or pit) using Fieller’s theorem following ter Braak & Looman (1986). The test is based
on quasideviance except if the family is poisson or binomial. Function profile evaluates the
profile deviance of the fitted model, and confint finds the profile based confidence limits following
Oksanen et al. (2001).

The test is typically used in assessing the significance of diversity hump against productivity gradi-
ent (Mittelbach et al. 2001). It also can be used for the location of the pit (deepest points) instead
of the Tokeshi test. Further, it can be used to test the location of the the Gaussian optimum in
ecological gradient analysis (ter Braak & Looman 1986, Oksanen et al. 2001).

Value

The function is based on glm, and it returns the result of object of glm amended with the result of
the test. The new items in the MOStest are:

isHump TRUE if the response is a hump.

isBracketed TRUE if the hump or the pit is bracketed by the evaluated points.

hump Sorted vector of location of the hump or the pit and the points where the test was
evaluated.

coefficients Table of test statistics and their significances.

Note

Function fieller.MOStest is based on package optgrad in the Ecological Archives (https://
figshare.com/articles/dataset/Full_Archive/3521975) accompanying Oksanen et al. (2001).
The Ecological Archive package optgrad also contains profile deviance method for the location of
the hump or pit, but the current implementation of profile and confint rather follow the example
of profile.glmand confint.glmin the MASS package.

Author(s)

Jari Oksanen

References
Mitchell-Olds, T. & Shaw, R.G. 1987. Regression analysis of natural selection: statistical inference
and biological interpretation. Evolution 41, 1149-1161.

Mittelbach, G.C. Steiner, C.F., Scheiner, S.M., Gross, K.L., Reynolds, H.L., Waide, R.B., Willig,
R.M., Dodson, S.I. & Gough, L. 2001. What is the observed relationship between species richness
and productivity? Ecology 82, 2381-2396.

Oksanen, J., Lidri, E., Tolonen, K. & Warner, B.G. 2001. Confidence intervals for the optimum in
the Gaussian response function. Ecology 82, 1191-1197.

ter Braak, C.J.F & Looman, C.W.N 1986. Weighted averaging, logistic regression and the Gaussian
response model. Vegetatio 65, 3—11.

See Also

The no-interaction model can be fitted with humpfit.
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Examples

## The Al-Mufti data analysed in humpfit():

mass <- c(140,230,310,310,400,510,610,670,860,900,1050,1160,1900,2480)
spno <- c(1, 4, 3, 9, 18, 30, 20, 14, 3, 2, 3, 2, 5, 2)

mod <- MOStest(mass, spno)

## Insignificant

mod

## ... but inadequate shape of the curve
op <- par(mfrow=c(2,2), mar=c(4,4,1,1)+.1)
plot(mod)

## Looks rather like log-link with Poisson error and logarithmic biomass
mod <- MOStest(log(mass), spno, family=quasipoisson)

mod

plot(mod)

par(op)

## Confidence Limits

fieller.MOStest(mod)

confint(mod)
plot(profile(mod))
mrpp Multi Response Permutation Procedure and Mean Dissimilarity Ma-
trix
Description

Multiple Response Permutation Procedure (MRPP) provides a test of whether there is a significant
difference between two or more groups of sampling units. Function meandist finds the mean within
and between block dissimilarities.

Usage
mrpp(dat, grouping, permutations = 999, distance = "euclidean”,
weight.type = 1, strata = NULL, parallel = getOption("mc.cores"))
meandist(dist, grouping, ...)
## S3 method for class 'mrpp'
summary (object, ...)
## S3 method for class 'meandist'’
summary(object, ...)
## S3 method for class 'meandist'’
plot(x, kind = c("dendrogram”, "histogram"), cluster = "average",
ylim, axes = TRUE, ...)
Arguments
dat data matrix or data frame in which rows are samples and columns are response

variable(s), or a dissimilarity object or a symmetric square matrix of dissimilar-
ities.
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grouping Factor or numeric index for grouping observations.

permutations  alist of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices. These are used to assess the significance of the
MRPP statistic, delta.

distance Choice of distance metric that measures the dissimilarity between two observa-
tions . See vegdist for options. This will be used if dat was not a dissimilarity
structure of a symmetric square matrix.

weight. type choice of group weights. See Details below for options.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

parallel Number of parallel processes or a predefined socket cluster. With parallel =
1 uses ordinary, non-parallel processing. The parallel processing is done with
parallel package.

dist A dist object of dissimilarities, such as produced by functions dist, vegdist

or designdist.

object, x A mrpp or meandist result object.

kind Draw a dendrogram or a histogram; see Details.

cluster A clustering method for the hclust function for kind = "dendrogram”. Any
hclust method can be used, but perhaps only "average"” and "single"” make
sense.

ylim Limits for vertical axes (optional).

axes Draw scale for the vertical axis.

Further arguments passed to functions.

Details

Multiple Response Permutation Procedure (MRPP) provides a test of whether there is a significant
difference between two or more groups of sampling units. This difference may be one of location
(differences in mean) or one of spread (differences in within-group distance; cf. Warton et al.
2012). Function mrpp operates on a data. frame matrix where rows are observations and responses
data matrix. The response(s) may be uni- or multivariate. The method is philosophically and
mathematically allied with analysis of variance, in that it compares dissimilarities within and among
groups. If two groups of sampling units are really different (e.g. in their species composition), then
average of the within-group compositional dissimilarities ought to be less than the average of the
dissimilarities between two random collection of sampling units drawn from the entire population.

The mrpp statistic J is the overall weighted mean of within-group means of the pairwise dissimilar-
ities among sampling units. The choice of group weights is currently not clear. The mrpp function
offers three choices: (1) group size (n), (2) a degrees-of-freedom analogue (n — 1), and (3) a weight
that is the number of unique distances calculated among n sampling units (n(n — 1)/2).

The mrpp algorithm first calculates all pairwise distances in the entire dataset, then calculates §. It
then permutes the sampling units and their associated pairwise distances, and recalculates ¢ based
on the permuted data. It repeats the permutation step permutations times. The significance test is
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the fraction of permuted deltas that are less than the observed delta, with a small sample correction.
The function also calculates the change-corrected within-group agreement A = 1 —§/FE(¢), where
E(9) is the expected 0 assessed as the average of dissimilarities. The summary method is based on
summary.permustats.

If the first argument dat can be interpreted as dissimilarities, they will be used directly. In other
cases the function treats dat as observations, and uses vegdist to find the dissimilarities. The
default distance is Euclidean as in the traditional use of the method, but other dissimilarities in
vegdist also are available.

Function meandist calculates a matrix of mean within-cluster dissimilarities (diagonal) and between-
cluster dissimilarities (off-diagonal elements), and an attribute n of grouping counts. Function
summary finds the within-class, between-class and overall means of these dissimilarities, and the
MREPP statistics with all weight.type options and the Classification Strength, CS (Van Sickle and
Hughes, 2000). CS is defined for dissimilarities as B — W, where B is the mean between cluster
dissimilarity and W is the mean within cluster dissimilarity with weight.type = 1. The function
does not perform significance tests for these statistics, but you must use mrpp with appropriate
weight. type. There is currently no significance test for CS, but mrpp with weight. type = 1 gives
the correct test for W and a good approximation for CS. Function plot draws a dendrogram or a
histogram of the result matrix based on the within-group and between group dissimilarities. The
dendrogram is found with the method given in the cluster argument using function hclust. The
terminal segments hang to within-cluster dissimilarity. If some of the clusters are more hetero-
geneous than the combined class, the leaf segment are reversed. The histograms are based on
dissimilarities, but ore otherwise similar to those of Van Sickle and Hughes (2000): horizontal line
is drawn at the level of mean between-cluster dissimilarity and vertical lines connect within-cluster
dissimilarities to this line.

Value

The function returns a list of class mrpp with following items:

call Function call.

delta The overall weighted mean of group mean distances.

E.delta expected delta, under the null hypothesis of no group structure. This is the mean
of original dissimilarities.

CS Classification strength (Van Sickle and Hughes, 2000). Currently not imple-
mented and always NA.

n Number of observations in each class.

classdelta Mean dissimilarities within classes. The overall ¢ is the weighted average of

these values with given weight. type

Pvalue Significance of the test.

A A chance-corrected estimate of the proportion of the distances explained by
group identity; a value analogous to a coefficient of determination in a linear
model.

distance Choice of distance metric used; the "method" entry of the dist object.

weight. type The choice of group weights used.



mrpp 141

boot.deltas The vector of "permuted deltas," the deltas calculated from each of the permuted
datasets. The distribution of this item can be inspected with permustats func-
tion.

permutations The number of permutations used.

control A list of control values for the permutations as returned by the function how.

Note

This difference may be one of location (differences in mean) or one of spread (differences in within-
group distance). That is, it may find a significant difference between two groups simply because
one of those groups has a greater dissimilarities among its sampling units. Most mrpp models can
be analysed with adonis2 which seems not suffer from the same problems as mrpp and is a more
robust alternative.

Author(s)

M. Henry H. Stevens <HStevens@muohio.edu> and Jari Oksanen.

References

B. McCune and J. B. Grace. 2002. Analysis of Ecological Communities. MjM Software Design,
Gleneden Beach, Oregon, USA.

P. W. Mielke and K. J. Berry. 2001. Permutation Methods: A Distance Function Approach. Springer
Series in Statistics. Springer.

J. Van Sickle and R. M. Hughes 2000. Classification strengths of ecoregions, catchments, and
geographic clusters of aquatic vertebrates in Oregon. J. N. Am. Benthol. Soc. 19:370-384.

Warton, D.I., Wright, T.W., Wang, Y. 2012. Distance-based multivariate analyses confound location
and dispersion effects. Methods in Ecology and Evolution, 3, 89-101

See Also

anosim for a similar test based on ranks, and mantel for comparing dissimilarities against contin-
uous variables, and vegdist for obtaining dissimilarities, adonis2 is a more robust alternative in
most cases.

Examples

data(dune)

data(dune.env)

dune.mrpp <- with(dune.env, mrpp(dune, Management))
dune.mrpp

# Save and change plotting parameters
def.par <- par(no.readonly = TRUE)
layout(matrix(1:2,nr=1))

plot(dune.ord <- metaMDS(dune, trace=0), type="text"”, display="sites"” )
with(dune.env, ordihull(dune.ord, Management))
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with(dune.mrpp, {
fig.dist <- hist(boot.deltas, xlim=range(c(delta,boot.deltas)),
main="Test of Differences Among Groups")
abline(v=delta);
text(delta, 2*mean(fig.dist$counts), adj = -0.5,
expression(bold(delta)), cex=1.5) 1}
)
par (def.par)
## meandist
dune.md <- with(dune.env, meandist(vegdist(dune), Management))
dune.md
summary (dune.md)
plot(dune.md)
plot(dune.md, kind="histogram")

mso Functions for performing and displaying a spatial partitioning of cca
or rda results

Description

The function mso adds an attribute vario to an object of class "cca” that describes the spatial
partitioning of the cca object and performs an optional permutation test for the spatial independence
of residuals. The function plot.mso creates a diagnostic plot of the spatial partitioning of the "cca”

object.
Usage
mso(object.cca, object.xy, grain = 1, round.up = FALSE, permutations = @)
msoplot(x, alpha = .05, explained = FALSE, ylim = NULL, legend = "topleft”, ...)
Arguments
object.cca An object of class cca, created by the cca or rda function.
object.xy A vector, matrix or data frame with the spatial coordinates of the data repre-

sented by object.cca. The number of rows must match the number of obser-
vations (as given by nobs) in cca.object. Alternatively, interpoint distances
can be supplied as a dist object.

grain Interval size for distance classes.

round. up Determines the choice of breaks. If false, distances are rounded to the nearest
multiple of grain. If true, distances are rounded to the upper multiple of grain.

permutations a list of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

X A result object of mso.
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alpha Significance level for the two-sided permutation test of the Mantel statistic for
spatial independence of residual inertia and for the point-wise envelope of the
variogram of the total variance. A Bonferroni-type correction can be achieved
by dividing the overall significance value (e.g. 0.05) by the number of distance

classes.
explained If false, suppresses the plotting of the variogram of explained variance.
ylim Limits for y-axis.
legend The x and y co-ordinates to be used to position the legend. They can be specified

by keyword or in any way which is accepted by legend.

Other arguments passed to functions.

Details

The Mantel test is an adaptation of the function mantel to the parallel testing of several distance
classes and similar to multivariate mantel. correlog. It compares the mean inertia in each distance
class to the pooled mean inertia of all other distance classes.

If there are explanatory variables (RDA, CCA, pRDA, pCCA) and a significance test for residual
autocorrelation was performed when running the function mso, the function plot.mso will print an
estimate of how much the autocorrelation (based on significant distance classes) causes the global
error variance of the regression analysis to be underestimated

Value

The function mso returns an amended cca or rda object with the additional attributes grain, H,
H.test and vario.

grain The grain attribute defines the interval size of the distance classes .

H H is an object of class ’dist’ and contains the geographic distances between
observations.

H.test H.test contains a set of dummy variables that describe which pairs of observa-

tions (rows = elements of object$H) fall in which distance class (columns).

vario The vario attribute is a data frame that contains some or all of the following

components for the rda case (cca case in brackets):

H Distance class as multiples of grain.

Dist Average distance of pairs of observations in distance class H.

n Number of unique pairs of observations in distance class H.

All Empirical (chi-square) variogram of total variance (inertia).

Sum Sum of empirical (chi-square) variograms of explained and residual vari-
ance (inertia).

CA Empirical (chi-square) variogram of residual variance (inertia).

CCA Empirical (chi-square) variogram of explained variance (inertia).

pCCA Empirical (chi-square) variogram of conditioned variance (inertia).

se Standard error of the empirical (chi-square) variogram of total variance (in-
ertia).

CA.signif P-value of permutation test for spatial independence of residual
variance (inertia).
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Note

The function is based on the code published in the Ecological Archives E085-006 (doi:10.1890/
020738).

Author(s)

The responsible author was Helene Wagner.

References

Wagner, H.H. 2004. Direct multi-scale ordination with canonical correspondence analysis. Ecology
85: 342-351.

See Also

mantel.correlog.

Examples

## Reconstruct worked example of Wagner (submitted):
X <= matrix(c(1, 2, 3, 2, 1, @), 3, 2)

Y <- ¢(3, -1, -2)

tmat <- c(1:3)

## Canonical correspondence analysis (cca):
Example.cca <- cca(X, Y)

Example.cca <- mso(Example.cca, tmat)
msoplot(Example.cca)

Example.cca$vario

## Correspondence analysis (ca):
Example.ca <- mso(cca(X), tmat)
msoplot(Example.ca)

## Unconstrained ordination with test for autocorrelation
## using oribatid mite data set as in Wagner (2004)
data(mite)

data(mite.env)

data(mite.xy)

mite.cca <- cca(log(mite + 1))

mite.cca <- mso(mite.cca, mite.xy, grain = 1, permutations = 99)
msoplot(mite.cca)
mite.cca

## Constrained ordination with test for residual autocorrelation

## and scale-invariance of species-environment relationships

mite.cca <- cca(log(mite + 1) ~ SubsDens + WatrCont + Substrate + Shrub + Topo, mite.env)
mite.cca <- mso(mite.cca, mite.xy, permutations = 99)

msoplot(mite.cca)

mite.cca


https://doi.org/10.1890/02-0738
https://doi.org/10.1890/02-0738
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multipart Multiplicative Diversity Partitioning

Description

In multiplicative diversity partitioning, mean values of alpha diversity at lower levels of a sampling
hierarchy are compared to the total diversity in the entire data set or the pooled samples (gamma
diversity).

Usage

multipart(...)
## Default S3 method:

multipart(y, x, index=c("renyi”, "tsallis"), scales = 1,
global = FALSE, relative = FALSE, nsimul=99, method = "r2dtable”, ...)
## S3 method for class 'formula'
multipart(formula, data, index=c("renyi”, "tsallis"), scales =1,
global = FALSE, relative = FALSE, nsimul=99, method = "r2dtable”, ...)
Arguments
y A community matrix.
X A matrix with same number of rows as in y, columns coding the levels of sam-

pling hierarchy. The number of groups within the hierarchy must decrease from
left to right. If x is missing, two levels are assumed: each row is a group in the
first level, and all rows are in the same group in the second level.

formula A two sided model formula in the form y ~ x, where y is the community data
matrix with samples as rows and species as column. Right hand side (x) must be
grouping variable(s) referring to levels of sampling hierarchy, terms from right
to left will be treated as nested (first column is the lowest, last is the highest
level). The formula will add a unique indentifier to rows and constant for the
rows to always produce estimates of row-level alpha and overall gamma diver-
sities. You must use non-formula interface to avoid this behaviour. Interaction
terms are not allowed.

data A data frame where to look for variables defined in the right hand side of
formula. If missing, variables are looked in the global environment.

index Character, the entropy index to be calculated (see Details).

relative Logical, if TRUE then beta diversity is standardized by its maximum (see De-
tails).

scales Numeric, of length 1, the order of the generalized diversity index to be used.

global Logical, indicates the calculation of beta diversity values, see Details.

nsimul Number of permutations to use. If nsimul = @, only the FUN argument is evalu-

ated. It is thus possible to reuse the statistic values without a null model.
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method Null model method: either a name (character string) of a method defined in
make . commsim or a commsim function. The default "r2dtable” keeps row sums
and column sums fixed. See oecosimu for Details and Examples.

Other arguments passed to oecosimu, i.e. method, thin or burnin.

Details

Multiplicative diversity partitioning is based on Whittaker’s (1972) ideas, that has recently been
generalised to one parametric diversity families (i.e. Rényi and Tsallis) by Jost (2006, 2007). Jost
recommends to use the numbers equivalents (Hill numbers), instead of pure diversities, and proofs,
that this satisfies the multiplicative partitioning requirements.

The current implementation of multipart calculates Hill numbers based on the functions renyi
and tsallis (provided as index argument). If values for more than one scales are desired, it
should be done in separate runs, because it adds extra dimensionality to the implementation, which
has not been resolved efficiently.

Alpha diversities are then the averages of these Hill numbers for each hierarchy levels, the global
gamma diversity is the alpha value calculated for the highest hierarchy level. When global = TRUE,
beta is calculated relative to the global gamma value:

Bi =/
when global = FALSE, beta is calculated relative to local gamma values (local gamma means the
diversity calculated for a particular cluster based on the pooled abundance vector):
Bij = ity /mean(a;)

where j is a particular cluster at hierarchy level i. Then beta diversity value for level ¢ is the mean
of the beta values of the clusters at that level, 3; = mean(8;;).

If relative = TRUE, the respective beta diversity values are standardized by their maximum possi-
ble values (mean(5;;)/Bmaz,i;) given as Braz,i; = n; (the number of lower level units in a given
cluster j).

The expected diversity components are calculated nsimul times by individual based randomization
of the community data matrix. This is done by the "r2dtable” method in oecosimu by default.

Value

An object of class "multipart” with same structure as "oecosimu” objects.

Author(s)

Péter S6lymos, <solymos@ualberta.ca>

References

Jost, L. (2006). Entropy and diversity. Oikos, 113, 363-375.

Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88,
2427-2439,

Whittaker, R. (1972). Evolution and measurement of species diversity. Taxon, 21, 213-251.
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See Also

See adipart for additive diversity partitioning, hiersimu for hierarchical null model testing and
oecosimu for permutation settings and calculating p-values.

Examples

## NOTE: 'nsimul' argument usually needs to be >= 99
## here much lower value is used for demonstration

data(mite)
data(mite.xy)
data(mite.env)
## Function to get equal area partitions of the mite data
cutter <- function (x, cut = seq(@, 10, by = 2.5)) {
out <- rep(1, length(x))
for (i in 2:(length(cut) - 1))
out[which(x > cut[i] & x <= cut[(i + 1)1)] <- i
return(out)}
## The hierarchy of sample aggregation
levsm <- with(mite.xy, data.frame(
12=cutter(y, cut = seq(@, 10, by = 2.5)),
13=cutter(y, cut = seq(@, 10, by = 5))))
## Multiplicative diversity partitioning
multipart(mite, levsm, index="renyi", scales=1, nsimul=19)
multipart(mite ~ 12 + 13, levsm, index="renyi”, scales=1, nsimul=19)

multipart(mite ~ ., levsm, index="renyi”, scales=1, nsimul=19, relative=TRUE)
multipart(mite ~ ., levsm, index="renyi”, scales=1, nsimul=19, global=TRUE)
nestedtemp Nestedness Indices for Communities of Islands or Patches
Description

Patches or local communities are regarded as nested if they all could be subsets of the same com-
munity. In general, species poor communities should be subsets of species rich communities, and
rare species should only occur in species rich communities.

Usage
nestedchecker (comm)
nestedn@(comm)
nesteddisc(comm, niter = 200)
nestedtemp(comm, ...)
nestednodf(comm, order = TRUE, weighted = FALSE, wbinary = FALSE)
nestedbetasor (comm)
nestedbetajac(comm)

## S3 method for class 'nestedtemp'
plot(x, kind = c("temperature”, "incidence"),
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col=rev(heat.colors(100)), names = FALSE, ...)
## S3 method for class 'nestednodf’
plot(x, col = "red”, names = FALSE, ...)
Arguments
comm Community data.
niter Number of iterations to reorder tied columns.
X Result object for a plot.
col Colour scheme for matrix temperatures.
kind The kind of plot produced.
names Label columns and rows in the plot using names in comm. If it is a logical vector
of length 2, row and column labels are returned accordingly.
order Order rows and columns by frequencies.
weighted Use species abundances as weights of interactions.
wbinary Modify original method so that binary data give the same result in weighted and

and unweighted analysis.

Other arguments to functions.

Details

The nestedness functions evaluate alternative indices of nestedness. The functions are intended to
be used together with Null model communities and used as an argument in oecosimu to analyse the
non-randomness of results.

Function nestedchecker gives the number of checkerboard units, or 2x2 submatrices where both
species occur once but on different sites (Stone & Roberts 1990).

Function nestedn® implements nestedness measure NO which is the number of absences from the
sites which are richer than the most pauperate site species occurs (Patterson & Atmar 1986).

Function nesteddisc implements discrepancy index which is the number of ones that should be
shifted to fill a row with ones in a table arranged by species frequencies (Brualdi & Sanderson
1999). The original definition arranges species (columns) by their frequencies, but did not have
any method of handling tied frequencies. The nesteddisc function tries to order tied columns to
minimize the discrepancy statistic but this is rather slow, and with a large number of tied columns
there is no guarantee that the best ordering was found (argument niter gives the maximum number
of tried orders). In that case a warning of tied columns will be issued.

Function nestedtemp finds the matrix temperature which is defined as the sum of “surprises” in
arranged matrix. In arranged unsurprising matrix all species within proportion given by matrix
fill are in the upper left corner of the matrix, and the surprise of the absence or presences is the
diagonal distance from the fill line (Atmar & Patterson 1993). Function tries to pack species and
sites to a low temperature (Rodriguez-Gironés & Santamaria 2006), but this is an iterative proce-
dure, and the temperatures usually vary among runs. Function nestedtemp also has a plot method
which can display either incidences or temperatures of the surprises. Matrix temperature was rather
vaguely described (Atmar & Patterson 1993), but Rodriguez-Gironés & Santamaria (2006) are more
explicit and their description is used here. However, the results probably differ from other imple-
mentations, and users should be cautious in interpreting the results. The details of calculations
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are explained in the vignette Design decisions and implementation that you can read using func-
tions browseVignettes. Function nestedness in the bipartite package is a direct port of the
BINMATNEST programme of Rodriguez-Gironés & Santamaria (2006).

Function nestednodf implements a nestedness metric based on overlap and decreasing fill (Almeida-
Neto et al., 2008). Two basic properties are required for a matrix to have the maximum degree of
nestedness according to this metric: (1) complete overlap of 1’s from right to left columns and from
down to up rows, and (2) decreasing marginal totals between all pairs of columns and all pairs of
rows. The nestedness statistic is evaluated separately for columns (N columns) for rows (N rows)
and combined for the whole matrix (NODF). If you set order = FALSE, the statistic is evaluated with
the current matrix ordering allowing tests of other meaningful hypothesis of matrix structure than
default ordering by row and column totals (breaking ties by total abundances when weighted =
TRUE) (see Almeida-Neto et al. 2008). With weighted = TRUE, the function finds the weighted
version of the index (Almeida-Neto & Ulrich, 2011). However, this requires quantitative null mod-
els for adequate testing. Almeida-Neto & Ulrich (2011) say that you have positive nestedness if
values in the first row/column are higher than in the second. With this condition, weighted anal-
ysis of binary data will always give zero nestedness. With argument wbinary = TRUE, equality of
rows/columns also indicates nestedness, and binary data will give identical results in weighted and
unweighted analysis. However, this can also influence the results of weighted analysis so that the
results may differ from Almeida-Neto & Ulrich (2011).

Functions nestedbetasor and nestedbetajac find multiple-site dissimilarities and decompose
these into components of turnover and nestedness following Baselga (2012); the pairwise dissimi-
larities can be found with designdist. This can be seen as a decomposition of beta diversity (see
betadiver). Function nestedbetasor uses Sgrensen dissimilarity and the turnover component is
Simpson dissimilarity (Baselga 2012), and nestedbetajac uses analogous methods with the Jac-
card index. The functions return a vector of three items: turnover, nestedness and their sum which
is the multiple Sgrensen or Jaccard dissimilarity. The last one is the total beta diversity (Baselga
2012). The functions will treat data as presence/absence (binary) and they can be used with bi-
nary nullmodel. The overall dissimilarity is constant in all nullmodels that fix species (column)
frequencies ("c@"), and all components are constant if row columns are also fixed (e.g., model
"quasiswap"), and the functions are not meaningful with these null models.

Value

The result returned by a nestedness function contains an item called statistic, but the other
components differ among functions. The functions are constructed so that they can be handled by
oecosimu.

Author(s)

Jari Oksanen and Gustavo Carvalho (nestednodf).

References

Almeida-Neto, M., Guimaraes, P., Guimaraes, P.R., Loyola, R.D. & Ulrich, W. (2008). A consistent
metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos
117, 1227-12309.

Almeida-Neto, M. & Ulrich, W. (2011). A straightforward computational approach for measuring
nestedness using quantitative matrices. Env. Mod. Software 26, 173-178.
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Atmar, W. & Patterson, B.D. (1993). The measurement of order and disorder in the distribution of
species in fragmented habitat. Oecologia 96, 373-382.

Baselga, A. (2012). The relationship between species replacement, dissimilarity derived from nest-
edness, and nestedness. Global Ecol. Biogeogr. 21, 1223—-1232.

Brualdi, R.A. & Sanderson, J.G. (1999). Nested species subsets, gaps, and discrepancy. Oecologia
119, 256-264.

Patterson, B.D. & Atmar, W. (1986). Nested subsets and the structure of insular mammalian faunas
and archipelagos. Biol. J. Linnean Soc. 28, 65-82.

Rodriguez-Gironés, M.A. & Santamaria, L. (2006). A new algorithm to calculate the nestedness
temperature of presence-absence matrices. J. Biogeogr. 33, 924-935.

Stone, L. & Roberts, A. (1990). The checkerboard score and species distributions. Oecologia 85,
74-79.

Wright, D.H., Patterson, B.D., Mikkelson, G.M., Cutler, A. & Atmar, W. (1998). A comparative
analysis of nested subset patterns of species composition. Oecologia 113, 1-20.

See Also

In general, the functions should be used with oecosimu which generates Null model communities
to assess the non-randomness of nestedness patterns.

Examples

data(sipoo)

## Matrix temperature

out <- nestedtemp(sipoo)

out

plot(out)

plot(out, kind="incid")

## Use oecosimu to assess the non-randomness of checker board units
nestedchecker(sipoo)

oecosimu(sipoo, nestedchecker, "quasiswap")

## Another Null model and standardized checkerboard score

oecosimu(sipoo, nestedchecker, "r@@", statistic = "C.score”)
nobs.cca Extract the Number of Observations from a vegan Fit.
Description

Extract the number of ‘observations’ from a vegan model fit.

Usage

## S3 method for class 'cca'
nobs(object, ...)



nullmodel 151

Arguments
object A fitted model object.
Further arguments to be passed to methods.
Details

Function nobs is generic in R, and vegan provides methods for objects from betadisper, cca and
other related methods, CCorA, decorana, isomap, metaMDS, pcnm, procrustes, radfit, varpart
and wemdscale.

Value

A single number, normally an integer, giving the number of observations.

Author(s)

Jari Oksanen

nullmodel Null Model and Simulation

Description

The nullmodel function creates an object which can serve as a basis for Null Model simulation
via the simulate method. The update method updates the nullmodel object without sampling
(effective for sequential algorithms). smbind binds together multiple simmat objects.

Usage

nullmodel (x, method)

## S3 method for class 'nullmodel'’
print(x, ...)

## S3 method for class 'nullmodel'’
simulate(object, nsim = 1, seed = NULL,

burnin = @, thin =1, ...)
## S3 method for class 'nullmodel’
update(object, nsim = 1, seed = NULL, ...)
## S3 method for class 'simmat'
print(x, ...)
smbind(object, ..., MARGIN, strict = TRUE)
Arguments
X A community matrix. For the print method, it is an object to be printed.
method Character, specifying one of the null model algorithms listed on the help page

of commsim. It can be a user supplied object of class commsim.
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object An object of class nullmodel returned by the function nullmodel. In case of
smbind itis a simmat object as returned by the update or simulate methods.

nsim Positive integer, the number of simulated matrices to return. For the update
method, it is the number of burnin steps made for sequential algorithms to update
the status of the input model object.

seed An object specifying if and how the random number generator should be initial-
ized ("seeded"). Either NULL or an integer that will be used in a call to set. seed
before simulating the matrices. If set, the value is saved as the "seed" attribute
of the returned value. The default, NULL will not change the random generator
state, and return .Random. seed as the "seed” attribute, see Value.

burnin Nonnegative integer, specifying the number of steps discarded before starting
simulation. Active only for sequential null model algorithms. Ignored for non-
sequential null model algorithms.

thin Positive integer, number of simulation steps made between each returned matrix.
Active only for sequential null model algorithms. Ignored for non-sequential
null model algorithms.

MARGIN Integer, indicating the dimension over which multiple simmat objects are to be
bound together by smbind. 1: matrices are stacked (row bound), 2: matrices are
column bound, 3: iterations are combined. Needs to be of length 1. The other
dimensions are expected to match across the objects.

strict Logical, if consistency of the time series attributes ("start”, "end”, "thin",
and number of simulated matrices) of simmat objects are strictly enforced when
binding multiple objects together using smbind. Applies only to input objects
based on sequential null model algorithms.

Additional arguments supplied to algorithms. In case of smbind it can contain
multiple simmat objects.

Details

The purpose of the nullmodel function is to create an object, where all necessary statistics of the
input matrix are calculated only once. This information is reused, but not recalculated in each step
of the simulation process done by the simulate method.

The simulate method carries out the simulation, the simulated matrices are stored in an array. For
sequential algorithms, the method updates the state of the input nullmodel object. Therefore, it is
possible to do diagnostic tests on the returned simmat object, and make further simulations, or use
increased thinning value if desired.

The update method makes burnin steps in case of sequential algorithms to update the status of the
input model without any attempt to return matrices. For non-sequential algorithms the method does
nothing.

update is the preferred way of making burnin iterations without sampling. Alternatively, burnin
can be done via the simulate method. For convergence diagnostics, it is recommended to use the
simulate method without burnin. The input nullmodel object is updated, so further samples can be
simulated if desired without having to start the process all over again. See Examples.

The smbind function can be used to combine multiple simmat objects. This comes handy when
null model simulations are stratified by sites (MARGIN = 1) or by species (MARGIN = 2), or in the case
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when multiple objects are returned by identical/consistent settings e.g. during parallel computations
(MARGIN = 3). Sanity checks are made to ensure that combining multiple objects is sensible, but it is
the user’s responsibility to check independence of the simulated matrices and the null distribution
has converged in case of sequential null model algorithms. The strict = FALSE setting can relax
checks regarding start, end, and thinning values for sequential null models.

Value

The function nullmodel returns an object of class nullmodel. Itis a set of objects sharing the same

environment:

data: original matrix in integer mode.

nrow: number of rows.

ncol: number of columns.

rowsSums: TOW sums.

colSums: column sums.

rowFreq: row frequencies (number of nonzero cells).

colFreq: column frequencies (number of nonzero cells).

totalSum: total sum.

fill: number of nonzero cells in the matrix.

commsim: the commsim object as a result of the method argument.

state: current state of the permutations, a matrix similar to the original. It is NULL for
non-sequential algorithms.

iter: current number of iterations for sequential algorithms. It is NULL for non-sequential

algorithms.

The simulate method returns an object of class simmat. It is an array of simulated matrices (third
dimension corresponding to nsim argument).

The update method returns the current state (last updated matrix) invisibly, and update the input
object for sequential algorithms. For non sequential algorithms, it returns NULL.

The smbind function returns an object of class simmat.

Note

Care must be taken when the input matrix only contains a single row or column. Such input is invalid

for swapping and several other methods. This also applies to cases when the input is stratified into

subsets. In particular, subsetting can generate small or degenerate matrices that cannot be analysed

with the selected (or any) null model. These cases are usually detected in commsim and give an

error. If you want to handle smoothly error cases, you should wrap simulate in try or tryCatch.
Author(s)

Jari Oksanen and Peter Solymos

See Also

commsim, make.commsim, permatfull, permatswap
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Examples

data(mite)
X <- as.matrix(mite)[1:12, 21:30]

## non-sequential nullmodel
(nm <- nullmodel(x, "ree"))
(sm <- simulate(nm, nsim=10))

## sequential nullmodel

(nm <- nullmodel(x, "swap"))

(sm1 <- simulate(nm, nsim=10, thin=5))
(sm2 <- simulate(nm, nsim=10, thin=5))

## sequential nullmodel with burnin and extra updating
(nm <- nullmodel(x, "swap"))

(sm1 <- simulate(nm, burnin=10, nsim=10, thin=5))

(sm2 <- simulate(nm, nsim=10, thin=5))

## sequential nullmodel with separate initial burnin
(nm <- nullmodel(x, "swap"”))

nm <- update(nm, nsim=10)

(sm2 <- simulate(nm, nsim=10, thin=5))

## combining multiple simmat objects

## stratification

nm1 <- nullmodel(x[1:6,1, "ree")
sml <- simulate(nml, nsim=10)

nm2 <- nullmodel(x[7:12,], "ree")
sm2 <- simulate(nm2, nsim=10)
smbind(sm1, sm2, MARGIN=1)

## binding subsequent samples from sequential algorithms
## start, end, thin retained

nm <- nullmodel(x, "swap")

nm <- update(nm, nsim=10)

sml <- simulate(nm, nsim=10, thin=5)

sm2 <- simulate(nm, nsim=20, thin=5)

sm3 <- simulate(nm, nsim=10, thin=5)

smbind(sm3, sm2, sml, MARGIN=3)

## 'replicate' based usage which is similar to the output
## of 'parLapply' or 'mclapply' in the 'parallel' package
## start, end, thin are set, also noting number of chains
smfun <- function(x, burnin, nsim, thin) {
nm <- nullmodel(x, "swap")
nm <- update(nm, nsim=burnin)
simulate(nm, nsim=nsim, thin=thin)
3
smlist <- replicate(3, smfun(x, burnin=50, nsim=10, thin=5), simplify=FALSE)
smbind(smlist, MARGIN=3) # Number of permuted matrices = 30
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## Not run:

## parallel null model calculations
library(parallel)

if (.Platform$0S.type == "unix") {

## forking on Unix systems

smlist <- mclapply(1:3, function(i) smfun(x, burnin=50, nsim=1@, thin=5))
smbind(smlist, MARGIN=3)

3

## socket type cluster, works on all platforms
cl <- makeCluster(3)
clusterEvalQ(cl, library(vegan))

clusterExport(cl, c("smfun”, "x"))
smlist <- parLapply(cl, 1:3, function(i) smfun(x, burnin=50, nsim=10, thin=5))
stopCluster(cl)

smbind(smlist, MARGIN=3)

## End(Not run)

oecosimu Evaluate Statistics with Null Models of Biological Communities

Description

Function evaluates a statistic or a vector of statistics in community and evaluates its significance in a
series of simulated random communities. The approach has been used traditionally for the analysis
of nestedness, but the function is more general and can be used with any statistics evaluated with
simulated communities. Function oecosimu collects and evaluates the statistics. The Null model
communities are described in make.commsim and permatfull/ permatswap, the definition of Null
models in nullmodel, and nestedness statistics in nestednodf (which describes several alternative
statistics, including nestedness temperature, /N0, checker board units, nestedness discrepancy and
NODF).

Usage

oecosimu(comm, nestfun, method, nsimul = 99, burnin = @, thin =1,
statistic = "statistic”, alternative = c("two.sided”, "less”, "greater"),
batchsize = NA, parallel = getOption("mc.cores”"), ...)

## S3 method for class 'oecosimu'

summary (object, ...)

## S3 method for class 'oecosimu'

as.ts(x, ...)

## S3 method for class 'oecosimu'
toCoda(x)
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Arguments

comm Community data, or a Null model object generated by nullmodel or an object of
class simmat (array of permuted matrices from simulate.nullmodel). If comm
is a community data, null model simulation method must be specified. If comm is
a nullmodel, the simulation method is ignored, and if comm is a simmat object,
all other arguments are ignored except nestfun, statistic and alternative.

nestfun Function analysed. Some nestedness functions are provided in vegan (see nestedtemp),
but any function can be used if it accepts the community as the first argument,
and returns either a plain number or a vector or the result in list item with the
name defined in argument statistic. See Examples for defining your own
functions.

method Null model method: either a name (character string) of a method defined in
make.commsim or a commsim function. This argument is ignored if comm is a
nullmodel or a simmat object. See Details and Examples.

nsimul Number of simulated null communities (ignored if comm is a simmat object).

burnin Number of null communities discarded before proper analysis in sequential
methods (such as "tswap") (ignored with non-sequential methods or when comm
is a simmat object).

thin Number of discarded null communities between two evaluations of nestedness
statistic in sequential methods (ignored with non-sequential methods or when
comm is a simmat object).

statistic The name of the statistic returned by nestfun.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided”
(default), "greater” or "less”. Please note that the p-value of two-sided
test is approximately two times higher than in the corresponding one-sided test
("greater” or "less"” depending on the sign of the difference).

batchsize Size in Megabytes of largest simulation object. If a larger structure would be
produced, the analysis is broken internally into batches. With default NA the
analysis is not broken into batches. See Details.

parallel Number of parallel processes or a predefined socket cluster. With parallel =1
uses ordinary, non-parallel processing. The parallel processing is done with par-
allel package. If you define a nestfun in Windows that needs other R packages
than vegan or permute, you must set up a socket cluster before the call.

X, object An oecosimu result object.

Other arguments to functions.

Details

Function oecosimu is a wrapper that evaluates a statistic using function given by nestfun, and
then simulates a series of null models based on nullmodel, and evaluates the statistic on these
null models. The vegan packages contains some nestedness functions that are described separately
(nestedchecker, nesteddisc, nestedn@, nestedtemp, nestednodf), but many other functions
can be used as long as they are meaningful with simulated communities. An applicable function
must return either the statistic as a plain number or a vector, or as a list element "statistic” (like
chisq. test), or in an item whose name is given in the argument statistic. The statistic can be a
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single number (like typical for a nestedness index), or it can be a vector. The vector indices can be
used to analyse site (row) or species (column) properties, see treedive for an example. Raup-Crick
index (raupcrick) gives an example of using a dissimilarities.

The Null model type can be given as a name (quoted character string) that is used to define a
Null model in make.commsim. These include all binary models described by Wright et al. (1998),
Jonsson (2001), Gotelli & Entsminger (2003), Miklés & Podani (2004), and some others. There
are several quantitative Null models, such those discussed by Hardy (2008), and several that are
unpublished (see make.commsim, permatfull, permatswap for discussion). The user can also
define her own commsim function (see Examples).

Function works by first defining a nullmodel with given commsim, and then generating a series of
simulated communities with simulate.nullmodel. A shortcut can be used for any of these stages
and the input can be

1. Community data (comm), Null model function (nestfun) and the number of simulations (nsimul).
2. A nullmodel object and the number of simulations, and argument method is ignored.

3. A three-dimensional array of simulated communities generated with simulate.nullmodel,
and arguments method and nsimul are ignored.

The last case allows analysing several statistics with the same simulations.

The function first generates simulations with given nullmodel and then analyses these using the
nestfun. With large data sets and/or large number of simulations, the generated objects can be
very large, and if the memory is exhausted, the analysis can become very slow and the system can
become unresponsive. The simulation will be broken into several smaller batches if the simulated
nullmodel objective will be above the set batchsize to avoid memory problems (see object.size
for estimating the size of the current data set). The parallel processing still increases the memory
needs. The parallel processing is only used for evaluating nestfun. The main load may be in
simulation of the nullmodel, and parallel argument does not help there. Function summary is
based on summary.permustats and returns information on permutations.

Function as. ts transforms the simulated results of sequential methods into a time series or a ts
object. This allows using analytic tools for time series in studying the sequences (see examples).
Function toCoda transforms the simulated results of sequential methods into an "mcmc” object of
the coda package. The coda package provides functions for the analysis of stationarity, adequacy of
sample size, autocorrelation, need of burn-in and much more for sequential methods, and summary
of the results. Please consult the documentation of the coda package.

Function permustats provides support to the standard density, densityplot, ggnormand qgmath
functions for the simulated values.

Value

Function oecosimu returns an object of class "oecosimu”. The result object has items statistic
and oecosimu. The statistic contains the complete object returned by nestfun for the original
data. The oecosimu component contains the following items:

statistic Observed values of the statistic.

simulated Simulated values of the statistic.

means Mean values of the statistic from simulations.


https://CRAN.R-project.org/package=coda

158 oecosimu

z Standardized effect sizes (SES, a.k.a. the z-values) of the observed statistic
based on simulations.
pval The P-values of the statistic based on simulations.
alternative The type of testing as given in argument alternative.
method The method used in nullmodel.
isSeq TRUE if method was sequential.
Note

If you wonder about the name of oecosimu, look at journal names in the References (and more in
nestedtemp).

The internal structure of the function was radically changed in vegan 2.2-0 with introduction of
commsim and nullmodel and deprecation of commsimulator.

Author(s)

Jari Oksanen and Peter Solymos

References

Hardy, O. J. (2008) Testing the spatial phylogenetic structure of local communities: statistical per-
formances of different null models and test statistics on a locally neutral community. Journal of
Ecology 96, 914-926.

Gotelli, N.J. & Entsminger, N.J. (2003). Swap algorithms in null model analysis. Ecology 84,
532-535.

Jonsson, B.G. (2001) A null model for randomization tests of nestedness in species assemblages.
Oecologia 127, 309-313.

Miklés, I. & Podani, J. (2004). Randomization of presence-absence matrices: comments and new
algorithms. Ecology 85, 86-92.

Wright, D.H., Patterson, B.D., Mikkelson, G.M., Cutler, A. & Atmar, W. (1998). A comparative
analysis of nested subset patterns of species composition. Oecologia 113, 1-20.

See Also

Function oecosimu currently defines null models with commsim and generates the simulated null
model communities with nullmodel and simulate.nullmodel. For other applications of oecosimu,
see treedive and raupcrick.

See also nestedtemp (that also discusses other nestedness functions) and treedive for another
application.

Examples

## Use the first eigenvalue of correspondence analysis as an index
## of structure: a model for making your own functions.

data(sipoo)

## Traditional nestedness statistics (number of checkerboard units)
oecosimu(sipoo, nestedchecker, "ro")
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## sequential model, one-sided test, a vector statistic

out <- oecosimu(sipoo, decorana, "swap", burnin=100, thin=10,
statistic="evals”, alt = "greater”)

out

## Inspect the swap sequence as a time series object

plot(as.ts(out))

lag.plot(as.ts(out))

acf(as.ts(out))

## Density plot in lattice graphics

permulattice(permustats(out), "densityplot”, as.table = TRUE, layout = c(1,4))

## Use quantitative null models to compare

## mean Bray-Curtis dissimilarities

data(dune)

meandist <- function(x) mean(vegdist(x, "bray"))

mbcl <- oecosimu(dune, meandist, "r2dtable”)

mbc1

## Define your own null model as a 'commsim' function: shuffle cells
## in each row
foo <- function(x, n, nr, nc, ...) {
out <- array(@, c(nr, nc, n))
for (k in seq_len(n))
outl,,k] <- apply(x, 2, function(z) sample(z, length(z)))
out
}
cf <- commsim("myshuffle”, foo, isSeq = FALSE, binary = FALSE,
mode = "double”)
oecosimu(dune, meandist, cf)

## Use pre-built null model
nm <- simulate(nullmodel(sipoo, "curveball”), 99)
oecosimu(nm, nestedchecker)
## Several chains of a sequential model -- this can be generalized
## for parallel processing (see ?smbind)
nm <- replicate(5, simulate(nullmodel(sipoo, "swap"), 99,
thin=10, burnin=100), simplify = FALSE)
## nm is now a list of nullmodels: use smbind to combine these into one
## nullmodel with several chains
## IGNORE_RDIFF_BEGIN
nm <- smbind(nm, MARGIN = 3)
nm
oecosimu(nm, nestedchecker)
## IGNORE_RDIFF_END
## After this you can use toCoda() and tools in the coda package to
## analyse the chains (these will show that thin, burnin and nsimul are
## all too low for real analysis).

optspace optspace: algorithm for matrix reconstruction from a partially re-
vealed set
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Description

This function was adapted from the original source code in the Roptspace R package (version
0.2.3; MIT License) by Raghunandan H. Keshavan, Andrea Montanari, Sewoong Oh (2010). See
ROptSpace: : OptSpace for more information. Let’s assume an ideal matrix M with (m X n) entries
with rank r and we are given a partially observed matrix M/ _FE which contains many missing entries.
Matrix reconstruction - or completion - is the task of filling in such entries. optspace is an efficient
algorithm that reconstructs M from |E| = O(rn) observed elements with relative root mean square

error (RMSE)
RMSE < C(a)y/nr/|E|

Usage

optspace(x, ropt = 3, niter = 5, tol = 1e-5, verbose = FALSE)

Arguments
X An (n X m) matrix whose missing entries should be flagged as NA.
ropt FALSE to guess the rank, or a positive integer as a pre-defined rank (default: 3).
niter Maximum number of iterations allowed.
tol Stopping criterion for reconstruction in Frobenius norm.
verbose a logical value; TRUE to show progress, FALSE otherwise.
Details

This implementation removes the trimming step of the original Roptspace: :OptSpace code in
order to leave feature filtering to the user. Some of the defaults have been adjusted to better reflect
ecological data. The implementation has been adjusted for ecological applications as in Martino et
al. (2019). The imputed matrix (M) in the optspace output includes matrix reconstruction (XSY’),
with subsequent centering for the columns and rows.

Value

Returns a named list containing:

X an (n X r) matrix as left singular vectors.

S an (r X r) matrix as singular values.

Y an (m x r) matrix as right singular vectors.

dist a vector containing reconstruction errors at each successive iteration.

M an (n x m) imputed matrix, with columns and rows centered to zero.
Author(s)

Leo Lahti and Cameron Martino, with adaptations of the method implemented in Roptspace: : OptSpace
by Keshavan et al. (2010).
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References

Keshavan, R. H., Montanari, A., Oh, S. (2010). Matrix Completion From a Few Entries. IEEE
Transactions on Information Theory 56(6):2980-2998.

Martino, C., Morton, J.T., Marotz, C.A., Thompson, L.R., Tripathi, A., Knight, R. & Zengler, K.
(2019) A novel sparse compositional technique reveals microbial perturbations. mSystems 4, 1.

Examples
data(varespec)
# rclr transformation with no matrix completion for the @/NA entries
x <- decostand(varespec, method = "rclr”, impute = FALSE)

# Add matrix completion
xc <- optspace(x, ropt = 3, niter = 5, tol = 1e-5, verbose = FALSE)$M

ordiarrows Add Arrows and Line Segments to Ordination Diagrams

Description

Functions to add arrows, line segments, regular grids of points. The ordination diagrams can be
produced by vegan plot.cca, plot.decorana or ordiplot.

Usage
ordiarrows(ord, groups, levels, replicates, order.by, display = "sites”,
col = 1, show.groups, startmark, label = FALSE, length = 0.1, ...)
ordisegments(ord, groups, levels, replicates, order.by, display = "sites”,
col = 1, show.groups, label = FALSE, ...)

ordigrid(ord, levels, replicates, display = "sites”, 1ty = c(1,1),
col = c(1,1), 1wd = c(1,1), ...)

Arguments
ord An ordination object or an ordiplot object.
groups Factor giving the groups for which the graphical item is drawn.

levels, replicates
Alternatively, regular groups can be defined with arguments levels and replicates,
where levels gives the number of groups, and replicates the number of suc-
cessive items at the same group.

order.by Order points by increasing order of this variable within groups. Reverse sign of
the variable for decreasing ordering.

display Item to displayed.

show. groups Show only given groups. This can be a vector, or TRUE if you want to show items

for which condition is TRUE. This argument makes it possible to use different
colours and line types for groups. The default is to show all groups.
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label Label the groups by their names. In ordiellipse, ordihull and ordispider
the the group name is in the centroid of the object, in ordiarrows in the start of
the arrow, and in ordisegments at both ends. ordiellipse and ordihull use
standard text, and others use ordilabel.

startmark plotting character used to mark the first item. The default is to use no mark, and
for instance, startmark = 1 will draw a circle. For other plotting characters, see
pch in points.

col Colour of lines, 1label borders and startmark in ordiarrows and ordisegments.
This can be a vector recycled for groups. In ordigrid it can be a vector of
length 2 used for levels and replicates.

length Length of edges of the arrow head (in inches).
1ty, 1wd Line type, line width used for levels and replicates in ordigrid.

Parameters passed to graphical functions such as lines, segments, arrows, or
to scores to select axes and scaling etc.

Details

Function ordiarrows draws arrows and ordisegments draws line segments between successive
items in the groups. Function ordigrid draws line segments both within the groups and for the
corresponding items among the groups.

Note

These functions add graphical items to ordination graph: You must draw a graph first.

Author(s)

Jari Oksanen

See Also

The functions pass parameters to basic graphical functions, and you may wish to change the default
values in arrows, lines and segments. You can pass parameters to scores as well.

Examples

example(pyrifos)
mod <- rda(pyrifos)
plot(mod, type = "n")
## Annual succession by ditches, colour by dose
ordiarrows(mod, ditch, label = TRUE, col = as.numeric(dose))
legend("topright”, levels(dose), lty=1, col=1:5, title="Dose")
## Show only control and highest Pyrifos treatment
plot(mod, type = "n")
ordiarrows(mod, ditch, label = TRUE,
show.groups = c("2", "3", "5", "11"))
ordiarrows(mod, ditch, label = TRUE, show = c("6", "9"),
col = 2)
legend("topright”, c("Control”, "Pyrifos 44"), 1ty =1, col = c(1,2))
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ordiArrowTextXY Support Functions for Drawing Vectors

Description

Support functions to assist with drawing of vectors (arrows) on ordination plots. ordiArrowMul
finds the multiplier for the coordinates of the head of the vector such that they occupy fill propor-
tion of the plot region. ordiArrowTextXY finds coordinates for the locations of 1abels to be drawn
just beyond the head of the vector.

Usage
ordiArrowTextXY(x, labels, display, choices = c(1,2),
rescale = TRUE, fill = 0.75, at = c(0,0), cex = NULL, ...)
ordiArrowMul(x, at = c(0,0), fill = 0.75, display, choices = c(1,2), ...)
Arguments
X An R object, from which scores can determine suitable ordination scores or an

object created by envfit, or a two-column matrix of coordinates of arrow heads
on the two plot axes.

labels Change plotting labels. A character vector of labels for which label coordinates
are sought. If not supplied, these will be determined from the row names of x,
or scores(x, ...) if required. If either of these are not defined, suitable labels
will be generated.

display a character string known to scores or one of its methods which indicates the
type of scores to extract. In fitting functions these are ordinary site scores or
linear combination scores ("1c") in constrained ordination (cca, rda, dbrda).
If x was created by envfit then display can not be set by the user and takes
the value "vectors”. Ignored if x is a matrix.

choices Axes to be plotted.

rescale logical; should the coordinates in or extracted from x be rescaled to fill fill
proportion of the plot region? The default is to always rescale the coordinates
as this is usually desired for objects x from which coordinates are retrieved. If
supplying x a 2-column matrix that has already been rescaled, then set this to

FALSE.
fill numeric; the proportion of the plot to fill by the span of the arrows.
at The origin of fitted arrows in the plot. If you plot arrows in other places than

origin, you probably have to specify arrrow.mul.
cex Character expansion for text.

Parameters passed to scores, and strwidth and strheight.
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Details

ordiArrowMul finds a multiplier to scale a bunch of arrows to fill an ordination plot, and ordiArrowTextXY
finds the coordinates for labels of these arrows. NB., ordiArrowTextXY does not draw labels; it
simply returns coordinates at which the labels should be drawn for use with another function, such

as text.

Value

For ordiArrowTextXY, a 2-column matrix of coordinates for the label centres in the coordinate
system of the currently active plotting device.

For ordiArrowMul, a length-1 vector containing the scaling factor.

Author(s)

Jari Oksanen, with modifications by Gavin L. Simpson

Examples

## Scale arrows by hand to fill 80% of the plot
## Biplot arrows by hand

data(varespec, varechem)

ord <- cca(varespec ~ Al + P + K, varechem)
plot(ord, display = c("species"”,"sites"))

## biplot scores
bip <- scores(ord, choices = 1:2, display = "bp")

## scaling factor for arrows to fill 80% of plot

(mul <- ordiArrowMul(bip, fill = 0.8))

bip.scl <- bip * mul # Scale the biplot scores
labs <- rownames(bip) # Arrow labels

## calculate coordinate of labels for arrows
(bip.lab <- ordiArrowTextXY(bip.scl, rescale = FALSE, labels = labs))

## arrows will touch the bounding box of the text
arrows(@, @, bip.scl[,1], bip.scl[,2], length = 0.1)
ordilabel(bip.lab, labels = labs)

## Handling of ordination objects directly
mul2 <- ordiArrowMul(ord, display = "bp”, fill = 0.8)
stopifnot(all.equal(mul, mul2))

ordihull Display Groups or Factor Levels in Ordination Diagrams

Description

Functions to add convex hulls, “spider” graphs, ellipses or cluster dendrogram to ordination dia-
grams. The ordination diagrams can be produced by vegan plot.cca, plot.decoranaorordiplot.
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Usage
ordihull(ord, groups, display = "sites"”, draw = c("lines"”,"polygon”, "none"),
col = NULL, alpha = 127, show.groups, label = FALSE,
border = NULL, 1ty = NULL, lwd = NULL, ...)
ordiellipse(ord, groups, display="sites”, kind = c("sd","se", "ehull"),
conf, draw = c("lines”,"polygon”, "none"),
w, col = NULL, alpha = 127, show.groups, label = FALSE,
border = NULL, 1ty = NULL, lwd=NULL, ...)
ordibar(ord, groups, display = "sites”, kind = c("sd"”, "se"), conf,
w, col = 1, show.groups, label = FALSE, 1wd = NULL, length =0, ...)
ordispider(ord, groups, display="sites"”, w, spiders = c("centroid”, "median”),
show.groups, label = FALSE, col = NULL, 1ty = NULL, 1lwd = NULL, ...)
ordicluster(ord, cluster, prune = @, display = "sites",
w, col = 1, draw = c("segments”, "none"), ...)
## S3 method for class 'ordihull'
summary (object, ...)
## S3 method for class 'ordiellipse'
summary (object, ...)
ordiareatest(ord, groups, area = c("hull”, "ellipse”), kind = "sd",
permutations = 999, parallel = getOption("mc.cores”), ...)
## S3 method for class 'ordiareatest'
summary (object, ...)
Arguments
ord An ordination object or an ordiplot object.
groups Factor giving the groups for which the graphical item is drawn.
display Item to displayed.
draw character; how should objects be represented on the plot? For ordihull and
ordiellipse use either lines or polygon to draw the lines. For ordicluster,
line segments are drawn using segments. To suppress plotting, use "none”.
Graphical parameters are passed to both. The main difference is that polygons
may be filled and non-transparent. With none nothing is drawn, but the function
returns the invisible plotting.
col Colour of hull or ellipse lines (if draw = "1ines") or their fills (if draw = "polygon")
in ordihull and ordiellipse. When draw = "polygon”, the colour of border-
ing lines can be set with argument border of the polygon function. For other
functions the effect depends on the underlining functions this argument is passed
to. When multiple values of col are specified these are used for each element of
names(table(groups)) (in that order), shorter vectors are recycled. Function
ordicluster has no groups, and there the argument will be recycled for points,
and the colour of connecting lines is a mixture of point s in the cluster.
alpha Transparency of the fill colour with draw = "polygon” in ordihull and ordiellipse.

The argument takes precedence over possible transparency definitions of the
colour. The value must be in range 0...255, and low values are more transparent.
Transparency is not available in all graphics devices or file formats.
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show. groups

label

kind

conf

spiders

cluster

prune

object

area

permutations

parallel

1ty, 1wd, border

length

Details

ordihull

Show only given groups. This can be a vector, or TRUE if you want to show items
for which condition is TRUE. This argument makes it possible to use different
colours and line types for groups. The default is to show all groups.

Label the groups by their names in the centroid of the object. ordiellipse and
ordihull use standard text, and others use ordilabel.

Weights used to find the average within group. Weights are used automatically
for cca and decorana results, unless undone by the user. w=NULL sets equal
weights to all points.

Draw standard deviations of points (sd), standard errors (se) or ellipsoid hulls
that enclose all points in the group (ehull).

Confidence limit for ellipses, e.g. 0.95. If given, the corresponding sd or se is
multiplied with the corresponding value found from the Chi-squared distribution
with 2df.

Are centres or spider bodies calculated either as centroids (averages) or spatial
medians.

Result of hierarchic cluster analysis, such as hclust or agnes.
Number of upper level hierarchies removed from the dendrogram. If prune > 0,
dendrogram will be disconnected.

A result object from ordihull, ordiellipse or ordiareatest. The result is
invisible, but it can be saved, and used for summaries (areas etc. of hulls and
ellipses).

Evaluate the area of convex hulls of ordihull, or of ellipses of ordiellipse.
a list of control values for the permutations as returned by the function how, or

the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

Number of parallel processes or a predefined socket cluster. With parallel =
1 uses ordinary, non-parallel processing. The parallel processing is done with
parallel package.

Vectors of these parameters can be supplied and will be applied (if appropriate)
for each element of names (table(groups)) (in that order). Shorter vectors will
be recycled.

Width (in inches) of the small (“caps”) at the ends of the bar segment (passed to
arrows).

Parameters passed to other functions.

Function ordihull draws lines or polygons for the convex hulls found by function chull encir-
cling the items in the groups.

Function ordiellipse draws lines or polygons for ellipses by groups. The function can ei-
ther draw standard deviation of points (kind="sd") or standard error of the (weighted) centroids
(kind="se"), and the (weighted) correlation defines the direction of the principal axis of the ellipse.
When kind = "se” is used together with argument conf, the ellipses will show the confidence re-
gions for the locations of group centroids. With kind="ehull"” the function draws an ellipse that
encloses all points of a group using ellipsoidhull (cluster package).
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Function ordibar draws crossed “error bars” using either either standard deviation of point scores
or standard error of the (weighted) average of scores. These are the principal axes of the corre-
sponding ordiellipse, and are found by principal component analysis of the (weighted) covari-
ance matrix.

Functions ordihull and ordiellipse return invisibly an object that has a summary method that
returns the coordinates of centroids and areas of the hulls or ellipses. Function ordiareatest stud-
ies the one-sided hypothesis that these areas are smaller than with randomized groups. Argument
kind can be used to select the kind of ellipse, and has no effect with convex hulls.

Function ordispider draws a ‘spider’ diagram where each point is connected to the group centroid
with segments. Weighted centroids are used in the correspondence analysis methods cca and
decorana or if the user gives the weights in the call. If ordispider is called with cca or rda result
without groups argument, the function connects each “WA’ scores to the corresponding ‘LC’ score.
If the argument is a (invisible) ordihull object, the function will connect the points of the hull
to their centroid.

Function ordicluster overlays a cluster dendrogram onto ordination. It needs the result from a hi-
erarchic clustering such as hclust or agnes, or other with a similar structure. Function ordicluster
connects cluster centroids to each other with line segments. Function uses centroids of all points
in the clusters, and is therefore similar to average linkage methods.

Value

Functions ordihull, ordiellipse and ordispider return the invisible plotting structure.

Function ordispider return the coordinates to which each point is connected (centroids or ‘L.C’
scores).

Function ordihull and ordiellipse return invisibly an object that has a summary method that
returns the coordinates of centroids and areas of the hulls or ellipses. Function ordiareatest
studies the one-sided hypothesis that these areas are smaller than with randomized groups, and its
summary is based on summary.permustats with a summary of permutations.

Note
These functions add graphical items to ordination graph: You must draw a graph first. To draw line
segments, grids or arrows, see ordisegments, ordigrid andordiarrows.

Author(s)

Jari Oksanen

See Also

The functions pass parameters to basic graphical functions, and you may wish to change the default
values in lines, segments and polygon. You can pass parameters to scores as well. Underlying
functions for ordihull is chull. The underlying function for ellipsoid hulls in ordiellipse is
ellipsoidhull.
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Examples

data(dune)

data(dune.env)

mod <- cca(dune ~ Management, dune.env)

plot(mod, type="n", scaling = "symmetric")

## Catch the invisible result of ordihull...

pl <- with(dune.env, ordihull(mod, Management,
scaling = "symmetric"”, label = TRUE))

## ... and find centres and areas of the hulls

summary (pl)

## use more colours and add ellipsoid hulls

plot(mod, type = "n")

pl <- with(dune.env, ordihull(mod, Management,

scaling = "symmetric"”, col = 1:4,
draw="polygon”, label =TRUE))
with(dune.env, ordiellipse(mod, Management, scaling = "symmetric",

kind = "ehull”, col = 1:4, 1lwd=3))

## ordispider to connect WA and LC scores

plot(mod, dis=c("wa","1c"), type="p")

ordispider(mod)

## Other types of plots

plot(mod, type = "p", display="sites")

cl <- hclust(vegdist(dune))

ordicluster(mod, cl, prune=3, col = cutree(cl, 4))

## confidence ellipse: location of the class centroids

plot(mod, type="n", display = "sites")

with(dune.env, text(mod, display="sites”, labels = as.character(Management),

col=as.numeric(Management)))

pl <- with(dune.env, ordiellipse(mod, Management, kind="se", conf=0.95, lwd=2,
draw = "polygon”, col=1:4, border=1:4,
alpha=63))

summary (pl)

## add confidence bars

with(dune.env, ordibar(mod, Management, kind="se", conf=0.95, lwd=2, col=1:4,

label=TRUE))

ordilabel Add Text on Non-transparent Label to an Ordination Plot.

Description

Function ordilabel is similar to text, but the text is on an opaque label. This can help in crowded
ordination plots: you still cannot see all text labels, but at least the uppermost ones are readable.
Argument priority helps to make the most important labels visible. Function can be used in pipe
after ordination plot or ordiplot command.

Usage

ordilabel(x, display, labels, choices = c(1, 2), priority, select,
cex = 0.8, fill = "white"”, border = NULL, col = NULL, xpd = TRUE, ...)
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Arguments
X An ordination object an any object known to scores.
display Kind of scores displayed (passed to scores).
labels Optional text used in plots instead of the default. If select is given, the labels
are given only to selected items in the order they occur in the scores.
choices Axes shown (passed to scores).
priority Vector of the same length as the number of scores or selected items. The items
with high priority will be plotted uppermost.
select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.
cex Character expansion for the text (passed to text).
fill Background colour of the labels (the col argument of polygon).
border The colour and visibility of the border of the label as defined in polygon. The
default is to use text colour col.
col Text colour.
xpd Draw labels also outside the plot region.
Other arguments (passed to text).
Details

The function may be useful with crowded ordination plots, in particular together with argument
priority. You will not see all text labels, but at least some are readable. Function can be used as a
part of a pipe (|>) in place of text after an ordination plot command (see Examples).

Other alternatives for cluttered plots are identify.ordiplot, orditorp, ordipointlabel, and
orditkplot (vegan3d package).

Author(s)

Jari Oksanen

See Also

plot.ccaand text.ordiplot that can use the function with argument bg.

Examples

data(dune)
ord <- cca(dune)
plot(ord, type = "n")
## add text
ordilabel(ord, dis="sites", cex=1.2, font=3, fill="hotpink"”, col="blue")
## You may prefer separate plots, but here species as well
ordilabel(ord, dis="sp", font=2, priority=colSums(dune))
## use in a pipe
plot(ord, type = "n") |>
ordilabel("”spec”, font = 3, priority = colSums(dune)) |>
points("sites”, pch=21, bg = "yellow”, col = "blue")
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ordiplot

Alternative plot and identify Functions for Ordination

Description

Function ordiplot is an alternative plotting function which works with any vegan ordination object
and many non-vegan objects. In addition, plot functions for vegan ordinations return invisibly an
"ordiplot” object, and this allows using ordiplot support functions with this result: identify
can be used to add labels to selected site, species or constraint points, and points and text can add
elements to the plot, and used in a pipe to add scores into plot by layers.

Usage

ordiplot(ord, choices = c(1, 2), type="points"”, display, optimize = FALSE,

arrows

FALSE, length = .05, arr.mul, xlim, ylim, ...)

## S3 method for class 'ordiplot'
points(x, what, select, arrows = FALSE,
length = 0.05, arr.mul, ...)
## S3 method for class 'ordiplot'
text(x, what, labels, select, optimize = FALSE,

arrows = FALSE, length = .05, arr.mul, bg, ...)
## S3 method for class 'ordiplot'
identify(x, what, labels, ...)
Arguments

ord A result from an ordination.

choices Axes shown.

type The type of graph which may be "points”, "text"” or "none” for any ordination
method.

display Display only "sites" or "species". The default for most methods is to display
both, but for cca, rda, dbrda and capscale it is the same as in plot.cca.

x1lim, ylim the x and y limits (min,max) of the plot.
Other graphical parameters.

X A result object from ordiplot.

what Items identified in the ordination plot. The types depend on the kind of plot
used. Most methods know sites and species, functions cca and rda know in
addition constraints (for LC scores), centroids, biplot and regression,
and plot.procrustes ordination plot has heads and points.

labels Optional text used for labels. Row names of scores will be used if this is missing.
If select is used, labels are given only to selected items in the order they occur
in the scores.

optimize Optimize locations of text to reduce overlap and plot point in the actual locations

of the scores. Uses ordipointlabel.
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arrows Draw arrows from the origin. This will always be TRUE for biplot and regression
scores in constrained ordination (cca etc.). Setting this TRUE will draw arrows
for any type of scores. This allows, e.g, using biplot arrows for species. The
arrow head will be at the value of scores, and possible text is moved outwards.

length Length of arrow heads (see arrows).

arr.mul Numeric multiplier to arrow lenghts; this will also set arrows = TRUE. The de-
fault is to automatically adjust arrow lengths with "biplot” and "regression”
scores and else use unmodified scores.

bg Background colour for labels. If bg is set, the labels are displayed with ordilabel
instead of text.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

Details

Function ordiplot draws an ordination diagram with default of black circles for sites and red
crosses for species. It returns invisibly an object of class ordiplot.

The function can handle output from several alternative ordination methods. For cca, rda and
decorana it uses their plot method with option type = "points”. In addition, the plot functions
of these methods return invisibly an ordiplot object which can be used by identify.ordiplot
to label points. For other ordinations it relies on scores to extract the scores.

For full user control of plots, it is best to call ordiplot with type = "none” and save the result, and
then add sites and species using points.ordiplot or text.ordiplot which both pass all their
arguments to the corresponding default graphical functions. Alternatively, points and text can
be used in pipe which allows an intuitive way of building up plots by layers. In addition, function
ordilabel and ordipointlabel can be used in pipe after ordiplot or other vegan ordination
plot commands. See Examples.

Value

Function ordiplot returns invisibly an object of class ordiplot with used scores. In general,
vegan plot functions for ordination results will also return an invisible ordiplot object. If the
plot(..., type ="n") was used originally, the plot is empty, and items can be added with the
invisible object. Functions points and text return their input object without modification, which
allows chaining these commands with pipes. Function identify.ordiplot uses this object to label
the point.

Author(s)

Jari Oksanen

See Also

With argument bg function calls ordilabel to draw text on non-transparent label, and with argu-
ment optimize = TRUE function calls ordipointlabel to optimize the locations of text labels to
minimize over-plotting. Functions ordilabel and ordipointlabel can be used in a pipe together
with ordiplot methods text and points. Function plot.cca uses ordiplot methods text and
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points in configurable plots, and these accept the arguments of the ordiplot methods described
here.

Examples

## Draw a plot for a non-vegan ordination (cmdscale).

data(dune)

dune.dis <- vegdist(wisconsin(dune))

dune.mds <- cmdscale(dune.dis, eig = TRUE)

dune.mds$species <- wascores(dune.mds$points, dune, expand = TRUE)
pl <- ordiplot(dune.mds, type = "none")

points(pl, "sites", pch=21, col="red"”, bg="yellow")

text(pl, "species”, col="blue”, cex=0.9)

## same plot using pipes (]>)

ordiplot(dune.mds, type="n") |>
points(”sites”, pch=21, col="red”, bg="yellow") |>
text("species”, col="blue", cex=0.9)

## Some people think that species should be shown with arrows in PCA.
## Other ordination methods also return an invisible ordiplot object and
## we can use pipes to draw those arrows.
mod <- rda(dune)
plot(mod, type="n") |>
points("sites"”, pch=16, col="red") |>
text("species”, arrows = TRUE, length=0.05, col="blue")

## Default plot of the previous using identify to label selected points
## Not run:

pl <- ordiplot(dune.mds)

identify(pl, "spec")

## End(Not run)

ordipointlabel Ordination Plots with Points and Optimized Locations for Text

Description

Function produces ordination plots with points and text labels to the points. The points are in the
fixed locations given by the ordination, but the locations of the text labels are optimized to minimize
overplotting. The function is useful with moderately crowded ordination plots.

Usage
ordipointlabel(x, display = c("sites”, "species"”), choices = c(1, 2),
col = c(1, 2), pch =c("0", "+"), font = c(1, 1),
cex = c(0.7, 0.7), add = inherits(x, "ordiplot"”), labels, bg, select, ...)

## S3 method for class 'ordipointlabel'
plot(x, ...)
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Arguments

X For ordipointlabel a result object from an ordination function or an ordi-
nation plot (possibly in a pipe). For plot.ordipointlabel an object from
ordipointlabel.

display Scores displayed in the plot. The default is to show "sites” and "species”
that are available to many ordination methods, but there can be only one set or
more than two set of scores to display.

choices Axes shown.

col, pch, font, cex
Colours, point types, font style and character expansion for each kind of scores
displayed in the plot. These should be vectors of the same length as the number
of items in display, or if there is only one display they can be a vector of the
length of number items.

add Add to an existing plot. Default is add = TRUE when the function is used in a
pipe, and FALSE usually.

labels Labels used in graph. Species (variable) and SU (row) names are used if this is
missing. Labels must be given in one vector for all scores of display. Function
labels can extract the current name from a saved ordipointlabel object. If
select is used, labels are given only for the selected items.

bg Background colour for labels. If this is given, texts is drawn over non-transparent
background. Either a single colour or vector of colours for each display, or
with one display, for each label.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items. select is only used
if a single set of scores is being plotted (i.e. length(display) == 1), otherwise
it is ignored and a warning issued. If a logical vector is used, it must have the
same length as the scores plotted.

Other arguments passed to points and text.

Details

The function uses simulated annealing (optim, method = "SANN") to optimize the locations of the
text labels to the points. There are eight possible locations: up, down, two sides and four corners.
There is a weak preference to text away from zero, and a weak avoidance of corners. The locations
and goodness of solution varies between runs, and there is no guarantee of finding the global opti-
mum, or the same text locations twice. The optimization can take a long time in difficult cases with
a high number of potential overlaps. Several sets of scores can be displayed in one plot.

The function can be used in a pipe where the first command is an ordination plot command with
type = "n" or to add points and lablels to save vegan ordination plot object. See examples.

Value

The function returns invisibly an object of class ordipointlabel with items xy for coordinates of
points, labels for coordinates of labels, items pch, cex and font for graphical parameters of each
point or label. In addition, it returns the result of optim as an attribute "optim”. The unit of overlap
is the area of character "m”, and with varying graphical parameters the smallest alternative.
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There is a plot method based on orditkplot but it does not alter or reset the graphical parameters
via par.

The result object from ordipointlabel is similar as the orditkplot object of vegan3d package,
and it may be possible to further edit the result object with orditkplot, but for good results it is
necessary that the points span the whole horizontal axis without empty margins.

Author(s)

Jari Oksanen

See Also

The function is invoked for one set of scores (one display) from text.ordiplot and plot.cca
with argument optimize = TRUE.

Examples

data(dune, dune.env)
ord <- cca(dune)
ordipointlabel (ord)

## Use in a pipe: optimize species, sites & centroids together
ord <- cca(dune ~ Management + Moisture, dune.env)
plot(ord, scaling = "symmetric”, type = "n") |>
ordipointlabel(c("sites"”,"species”,"centroids”), cex=c(0.7,0.7,1),
col = c("black”,"red","blue"), font = c(1,3,1), pch=c(1,3,4), xpd=TRUE) |>
text("biplot”, col = "blue”, bg = "white"”, cex=1)

ordistep Choose a Model by Permutation Tests in Constrained Ordination

Description

Automatic stepwise model building for constrained ordination methods (cca, rda, dbrda, capscale).
The function ordistep is modelled after step and can do forward, backward and stepwise model
selection using permutation tests. Function ordiR2step performs forward model choice solely on
adjusted R? and P-value.

Usage
ordistep(object, scope, direction = c("both”, "backward”, "forward"),
Pin = 0.05, Pout = 0.1, permutations = how(nperm = 199), steps = 50,
trace = TRUE, ...)

ordiR2step(object, scope, Pin = 0.05, R2scope = TRUE,
permutations = how(nperm = 499), trace = TRUE, R2permutations = 1000, ...)


https://CRAN.R-project.org/package=vegan3d

ordistep 175

Arguments

object In ordistep, an ordination object inheriting from cca or rda.

scope Defines the range of models examined in the stepwise search. This can be a list
containing components upper and lower, both formulae. If it is a single item,
it is interpreted the target scope, depending on the direction. If directionis
"forward”, a single item is interpreted as the upper scope and the formula of
the input object as the lower scope. See step for details. In ordiR2step, this
defines the upper scope; it can also be an ordination object from with the model
is extracted.

direction The mode of stepwise search, can be one of "both”, "backward”, or "forward",
with a default of "both”. If the scope argument is missing, the default for
direction is "backward” in ordistep (and ordiR2step does not have this
argument, but only works forward).

Pin, Pout Limits of permutation P-values for adding (Pin) a term to the model, or drop-
ping (Pout) from the model. Term is added if P < Pin, and removed if P >
Pout.

R2scope Use adjusted R? as the stopping criterion: only models with lower adjusted R?
than scope are accepted.

permutations a list of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices. This is passed to anova. cca: see there for details.

steps Maximum number of iteration steps of dropping and adding terms.

trace If positive, information is printed during the model building. Larger values may
give more information.

R2permutations Number of permutations used in the estimation of adjusted R? for cca using
RsquareAdj.

Any additional arguments to add1.cca and drop1.cca.

Details

The basic functions for model choice in constrained ordination are add1.cca and drop1.cca. With
these functions, ordination models can be chosen with standard R function step which bases the
term choice on AIC. AIC-like statistics for ordination are provided by functions deviance.cca and
extractAIC.cca (with similar functions for rda). Actually, constrained ordination methods do not
have AIC, and therefore the step may not be trusted. This function provides an alternative using
permutation P-values.

Function ordistep defines the model, scope of models considered, and direction of the proce-
dure similarly as step. The function alternates with drop and add steps and stops when the model
was not changed during one step. The - and + signs in the summary table indicate which stage is
performed. It is often sensible to have Pout > Pin in stepwise models to avoid cyclic adds and
drops of single terms.

Function ordiR2step builds model forward so that it maximizes adjusted R? (function RsquareAdj)
at every step, and stopping when the adjusted R? starts to decrease, or the adjusted R? of the scope
is exceeded, or the selected permutation P-value is exceeded (Blanchet et al. 2008). The second
criterion is ignored with option R2scope = FALSE, and the third criterion can be ignored setting Pin
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=1 (or higher). The function cannot be used if adjusted R? cannot be calculated. If the number of
predictors is higher than the number of observations, adjusted R? is also unavailable. Such models
can be analysed with R2scope = FALSE, but the variable selection will stop if models become over-
fitted and adjusted R? cannot be calculated, and the adjusted R? will be reported as zero. The R? of
cca is based on simulations (see RsquareAdj) and different runs of ordiR2step can give different
results.

Functions ordistep (based on P values) and ordiR2step (based on adjusted R? and hence on
eigenvalues) can select variables in different order.

Value

Functions return the selected model with one additional component, anova, which contains brief
information of steps taken. You can suppress voluminous output during model building by setting
trace = FALSE, and find the summary of model history in the anova item.

Author(s)

Jari Oksanen

References

Blanchet, F. G., Legendre, P. & Borcard, D. (2008) Forward selection of explanatory variables.
Ecology 89, 2623-2632.

See Also

The function handles constrained ordination methods cca, rda, dbrda and capscale. The under-
lying functions are add1.cca and drop1.cca, and the function is modelled after standard step
(which also can be used directly but uses AIC for model choice, see extractAIC.cca). Function
ordiR2step builds upon RsquareAdj.

Examples

## See addl.cca for another example

### Dune data

data(dune)

data(dune.env)

mod® <- rda(dune ~ 1, dune.env) # Model with intercept only

modl <- rda(dune ~ ., dune.env) # Model with all explanatory variables

## With scope present, the default direction is "both”
mod <- ordistep(mod@, scope = formula(modl))

mod

## summary table of steps

mod$anova

## Example of ordistep, forward
ordistep(mod@, scope = formula(modl), direction="forward")

## Example of ordiR2step (always forward)
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## stops because R2 of 'modl' exceeded
ordiR2step(modd, mod1)

ordisurf

Fit and Plot Smooth Surfaces of Variables on Ordination.

Description

Function ordisurf fits a smooth surface for given variable and plots the result on ordination dia-

gram.

Usage

## Default S3 method:
ordisurf(x, y, choices = c(1, 2), knots = 10,

family = "gaussian”, col = "red"”, isotropic = TRUE,

thinplate = TRUE, bs = "tp"”, fx = FALSE, add = FALSE,

display = "sites”, w, main, nlevels = 10, levels, npoints = 31,
labcex = 0.6, bubble = FALSE, cex = 1, select = TRUE, method = "REML",
gamma = 1, plot = TRUE, 1lwd.cl = par("1lwd"), ...)

## S3 method for class 'formula’
ordisurf(formula, data, ...)

## S3 method for class 'ordisurf'
calibrate(object, newdata, ...)

## S3 method for class 'ordisurf'

non non

plot(x, what = c("contour”,"persp”,"gam"),
add = FALSE, bubble = FALSE, col = "red", cex =1,

nlevels = 10, levels, labcex = 0.6, 1lwd.cl = par("lwd"), ...)
Arguments

X For ordisurf an ordination configuration, either a matrix or a result known
by scores. For plot.ordisurf an object of class "ordisurf” as returned by
ordisurf.

y Variable to be plotted / modelled as a function of the ordination scores.

choices Ordination axes.

knots Number of initial knots in gam (one more than degrees of freedom). If knots
=0 or knots =1 the function will fit a linear trend surface, and if knots =2
the function will fit a quadratic trend surface instead of a smooth surface. A
vector of length 2 is allowed when isotropic = FALSE, with the first and second
elements of knots referring to the first and second of ordination dimensions (as
indicated by choices) respectively.

family Error distribution in gam.
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col

ordisurf

Colour of contours.

isotropic, thinplate

bs

fx

add
display

main

nlevels, levels

npoints

labcex
bubble

cex

select

method

Fit an isotropic smooth surface (i.e. same smoothness in both ordination dimen-
sions) via gam. Use of thinplate is deprecated and will be removed in a future
version of the package.

a two letter character string indicating the smoothing basis to use. (e.g. "tp" for
thin plate regression spline, "cr” for cubic regression spline). One of c("tp",
"ts", "cr", "cs", "ds", "ps”, "ad"). See smooth.terms for an over view
of what these refer to. The default is to use thin plate splines: bs = "tp".

indicates whether the smoothers are fixed degree of freedom regression splines
(fx = FALSE) or penalised regression splines (fx = TRUE). Can be a vector of
length 2 for anisotropic surfaces (isotropic = FALSE). It doesn’t make sense
to use fx = TRUE and select = TRUE and it is an error to do so. A warning is
issued if you specify fx = TRUE and forget to use select = FALSE though fitting
continues using select = FALSE.

Add contours to an existing diagram or draw a new plot?

Type of scores known by scores: typically "sites" for ordinary site scores or
"Ic" for linear combination scores.

Prior weights on the data. Weights of the ordination object will be used if the
object has attribute weights or a weights function. Concerns mainly cca and
decorana results which have nonconstant weights.

The main title for the plot, or as default the name of plotted variable in a new
plot.

Either a vector of levels for which contours are drawn, or suggested number
of contours in nlevels if levels are not supplied.

numeric; the number of locations at which to evaluate the fitted surface. This
represents the number of locations in each dimension.

Label size in contours. Setting this zero will suppress labels.

Use a “bubble plot” for points, or vary the point diameter by the value of the
plotted variable. If bubble is numeric, its value is used for the maximum symbol
size (as in cex), or if bubble = TRUE, the value of cex gives the maximum. The
minimum size will always be cex = @.4. The option only has an effect if add =
FALSE.

Character expansion of plotting symbols.

Logical; specify gam argument "select”. If this is TRUE then gam can add an
extra penalty to each term so that it can be penalized to zero. This means that
the smoothing parameter estimation that is part of fitting can completely remove
terms from the model. If the corresponding smoothing parameter is estimated
as zero then the extra penalty has no effect.

character; the smoothing parameter estimation method. Options allowed are:
"GCV.Cp" uses GCV for models with unknown scale parameter and Mallows’
Cp/UBRE/AIC for models with known scale; "GACV.Cp" as for "GCV.Cp" but
uses GACV (Generalised Approximate CV) instead of GCV; "REML" and "ML"
use restricted maximum likelihood or maximum likelihood estimation for both
known and unknown scale; and "P-REML" and "P-ML" use REML or ML esti-
mation but use a Pearson estimate of the scale.
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gamma Multiplier to inflate model degrees of freedom in GCV or UBRE/AIC score by.
This effectively places an extra penalty on complex models. An oft-used value
is gamma = 1.4.

plot logical; should any plotting be done by ordisurf? Useful if all you want is the
fitted response surface model.

lwd.cl numeric; the 1wd (line width) parameter to use when drawing the contour lines.

formula, data Alternative definition of the fitted model as x ~y, where left-hand side is the
ordination x and right-hand side the single fitted continuous variable y. The
variable y must be in the working environment or in the data frame or environ-
ment given by data. All other arguments of are passed to the default method.

object An ordisurf result object.
newdata Coordinates in two-dimensional ordination for new points.
what character; what type of plot to produce. "contour” produces a contour plot of

the response surface, see contour for details. "persp” produces a perspective
plot of the same, see persp for details. "gam” plots the fitted GAM model, an
object that inherits from class "gam” returned by ordisurf, see plot.gam.

Other parameters passed to scores, or to the graphical functions. See Note
below for exceptions.

Details

Function ordisurf fits a smooth surface using penalised splines (Wood 2003) in gam, and uses
predict.gam to find fitted values in a regular grid. The smooth surface can be fitted with an extra
penalty that allows the entire smoother to be penalized back to 0 degrees of freedom, effectively
removing the term from the model (see Marra & Wood, 2011). The addition of this extra penalty
is invoked by setting argument select to TRUE. An alternative is to use a spline basis that includes
shrinkage (bs = "ts" or bs = "cs").

ordisurf() exposes a large number of options from gam for specifying the basis functions used for
the surface. If you stray from the defaults, do read the Notes section below and relevant documen-
tation in s and smooth. terms.

The function plots the fitted contours with convex hull of data points either over an existing ordina-
tion diagram or draws a new plot. If select = TRUE and the smooth is effectively penalised out of
the model, no contours will be plotted.

gam determines the degree of smoothness for the fitted response surface during model fitting, unless
fx = TRUE. Argument method controls how gam performs this smoothness selection. See gam for
details of the available options. Using "REML" or "ML" yields p-values for smooths with the best
coverage properties if such things matter to you.

The function uses scores to extract ordination scores, and x can be any result object known by that
function.

The user can supply a vector of prior weights w. If the ordination object has weights, these will be
used. In practise this means that the row totals are used as weights with cca or decorana results.
If you do not like this, but want to give equal weights to all sites, you should set w = NULL. The
behaviour is consistent with envfit. For complete accordance with constrained cca, you should
set display = "1c".
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Function calibrate returns the fitted values of the response variable. The newdata must be coor-
dinates of points for which the fitted values are desired. The function is based on predict.gam and
will pass extra arguments to that function.

Value

ordisurf is usually called for its side effect of drawing the contour plot. The function returns a
result object of class "ordisurf” that inherits from gam used internally to fit the surface, but adds
an item grid that contains the data for the grid surface. The item grid has elements x and y which
are vectors of axis coordinates, and element z that is a matrix of fitted values for contour. The
values outside the convex hull of observed points are indicated as NA in z. The gam component of
the result can be used for further analysis like predicting new values (see predict.gam).

Warning

The fitted GAM is a regression model and has the usual assumptions of such models. Of particular
note is the assumption of independence of residuals. If the observations are not independent (e.g.
they are repeat measures on a set of objects, or from an experimental design, infer alia) do not trust
the p-values from the GAM output.

If you need further control (i.e. to add additional fixed effects to the model, or use more complex
smoothers), extract the ordination scores using the scores function and then generate your own gam
call.

Note

The default is to use an isotropic smoother via s employing thin plate regression splines (bs =
"tp"). These make sense in ordination as they have equal smoothing in all directions and are
rotation invariant. However, if different degrees of smoothness along dimensions are required,
an anisotropic smooth surface may be more applicable. This can be achieved through the use of
isotropic = FALSE, wherein the surface is fitted via a tensor product smoother via te (unless bs =
"ad", in which case separate splines for each dimension are fitted using s).

Cubic regression splines and P splines can only be used with isotropic = FALSE.

Adaptive smooths (bs = "ad"), especially in two dimensions, require a large number of observa-
tions; without many hundreds of observations, the default complexities for the smoother will exceed
the number of observations and fitting will fail.

To get the old behaviour of ordisurf use select = FALSE, method = "GCV.Cp", fx = FALSE, and
bs = "tp". The latter two options are the current defaults.

Graphical arguments supplied to plot.ordisurf are passed on to the underlying plotting functions,
contour, persp, and plot.gam. The exception to this is that arguments col and cex can not
currently be passed to plot.gam because of a bug in the way that function evaluates arguments
when arranging the plot.

A work-around is to call plot.gam directly on the result of a call to ordisurf. See the Examples
for an illustration of this.

Author(s)

Dave Roberts, Jari Oksanen and Gavin L. Simpson



ordisurf 181

References

Marra, G.P & Wood, S.N. (2011) Practical variable selection for generalized additive models. Com-
put. Stat. Data Analysis 55, 2372-2387.

Wood, S.N. (2003) Thin plate regression splines. J. R. Statist. Soc. B 65, 95-114.

See Also

For basic routines gam, and scores. Function envfit provides a more traditional and compact
alternative.

Examples

data(varespec)

data(varechem)

vare.dist <- vegdist(varespec)

vare.mds <- monoMDS(vare.dist)

## IGNORE_RDIFF_BEGIN

ordisurf(vare.mds ~ Baresoil, varechem, bubble = 5)

## as above but without the extra penalties on smooth terms,

## and using GCV smoothness selection (old behaviour of ~ordisurf()”):

ordisurf(vare.mds ~ Baresoil, varechem, col = "blue”, add = TRUE,
select = FALSE, method = "GCV.Cp")

## Cover of Cladina arbuscula

fit <- ordisurf(vare.mds ~ Cladarbu, varespec, family=quasipoisson)
## Get fitted values

calibrate(fit)

## Variable selection via additional shrinkage penalties

## This allows non-significant smooths to be selected out

## of the model not just to a linear surface. There are 2

## options available:

## - option 1: “select = TRUE® --- the *defaultx
ordisurf(vare.mds ~ Baresoil, varechem, method = "REML"”, select = TRUE)
## - option 2: use a basis with shrinkage

ordisurf(vare.mds ~ Baresoil, varechem, method
## or bs = "cs" with “isotropic = FALSE"

## IGNORE_RDIFF_END

## Plot method

plot(fit, what = "contour"”)

"REML", bs = "ts")

## Plotting the "gam” object

plot(fit, what = "gam"”) ## 'col' and 'cex' not passed on
## or via plot.gam directly

library(mgcv)

plot.gam(fit, cex = 2, pch = 1, col = "blue")

## 'col' effects all objects drawn...

### controlling the basis functions used
## Use Duchon splines
ordisurf(vare.mds ~ Baresoil, varechem, bs = "ds")
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## A fixed degrees of freedom smooth, must use 'select = FALSE'
ordisurf(vare.mds ~ Baresoil, varechem, knots = 4,

fx = TRUE, select = FALSE)

## An anisotropic smoother with cubic regression spline bases
ordisurf(vare.mds ~ Baresoil, varechem, isotropic = FALSE,

bs = "cr"”, knots = 4)

## An anisotropic smoother with cubic regression spline with
## shrinkage bases & different degrees of freedom in each dimension
ordisurf(vare.mds ~ Baresoil, varechem, isotropic = FALSE,

bs = "cs", knots = c(3,4), fx = TRUE,
select = FALSE)

orditorp

Add Text or Points to Ordination Plots

Description

The function adds text or points to ordination plots. Text will be used if this can be done without
overwriting other text labels, and points will be used otherwise. The function can help in reducing
clutter in ordination graphics, but manual editing may still be necessary.

Usage

orditorp(x, display, labels, choices = c(1, 2), priority,

select, cex

= 0.7, pcex, col = par("col”), pcol,

pch = par("pch”), air =1, ...)
Arguments

X A result object from ordination or an ordiplot result. If the function is used in
ordiplot pipe, this should be missing and first argument be display.

display Items to be displayed in the plot. Only one alternative is allowed. Typically this
is "sites"” or "species”.

labels Optional text used for labels. Row names of scores will be used if this is missing.
If select is used, labels are given only selected items in the order they occur in
the scores.

choices Axes shown.

priority Text will be used for items with higher priority if labels overlap. This should be
vector of the same length as the number of items plotted or number of scores.

select Items to be displayed. This can either be a logical vector which is TRUE for

displayed items or a vector of indices, or labels and if these are missing, row
names of scores. If a logical vector is used, it must have the same length as the
scores plotted.
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cex, pcex Text and point sizes, see plot.default..

col, pcol Text and point colours, see plot.default.

pch Plotting character, see points.

air Amount of empty space between text labels. Values <1 allow overlapping text.

Other arguments to scores (and its various methods), text and points.

Details

Function orditorp will add either text or points to an existing plot. The items with high priority
will be added first and text will be used if this can be done without overwriting previous labels,and
points will be used otherwise. If priority is missing, labels will be added from the outskirts
to the centre. Function orditorp can be used with most ordination results, or plotting results
from ordiplot or ordination plot functions (plot.cca, plot.decorana, plot.metaMDS). Function
can also be used in a pipe (|>) where the first command is a vegan ordination plot command or
ordiplot.

Arguments can be passed to the relevant scores method for the ordination object (x) being drawn.
See the relevant scores help page for arguments that can be used.

Value

The function returns invisibly the The function returns invisibly a logical vector where TRUE means
that item was labelled with text and FALSE means that it was marked with a point. If function is
used in an ordiplot pipe, it will return the input ordiplot object, but amend the plotted scores
with this vector as attribute "orditorp”. The returned vector can be used as the select argument
in ordination text and points functions.

Author(s)

Jari Oksanen

Examples

## A cluttered ordination plot :

data(BCI)

mod <- cca(BCI)

plot(mod, dis="sp", type="t")

# Now with orditorp and abbreviated species names

cnam <- make.cepnames(names(BCI))

plot(mod, dis="sp", type="n")

stems <- colSums(BCI)

orditorp(mod, "sp”, labels = cnam, priority=stems, pch="+", pcol="grey")

## show select in action

set.seed(1)

take <- sample(ncol(BCI), 50)

plot(mod, dis="sp", type="n")

stems <- colSums(BCI)

## only selected items are labelled, and the labels must be in the some
## order as in the scores
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orditorp(mod, "sp", labels = cnam[sort(take)], priority=stems, select = take,

pch="+", pcol="grey")

ordixyplot Trellis (Lattice) Plots for Ordination

Description

Function ordixyplot provides an interface to plot ordination results using Trellis function xyplot
in package lattice.

Usage
ordixyplot(x, data = NULL, formula, display = "sites", choices = 1:3,
panel = "panel.ordi”, aspect = "iso", envfit,
type = c("p", "biplot"), ...)
Arguments
X An ordination result that scores knows: any ordination result in vegan and
many others.
data Optional data to amend ordination results. The ordination results are found from

x, but you may give here data for other variables needed in plots. Typically these
are environmental data.

formula Formula to define the plots. A default formula will be used if this is omitted. The
ordination axes must be called by the same names as in the ordination results
(and these names vary among methods).

display The kind of scores: an argument passed to scores.

choices The axes selected: an argument passed to scores.

panel The name of the panel function.

aspect The aspect of the plot (passed to the lattice function).

envfit Result of envfit function displayed in ordixyplot. Please note that this needs

same choices as ordixyplot.

type The type of plot. This knows the same alternatives as panel.xyplot. In ad-
dition ordixyplot has alternatives "biplot”, "arrows” and "polygon”. The
first displays fitted vectors and factor centroids of envfit, or in constrained or-
dination, the biplot arrows and factor centroids if envfit is not given. The sec-
ond (type = "arrows") is a trellis variant of ordiarrows and draws arrows by
groups. The line parameters are controlled by trellis.par.set for superpose.line,
and the user can set length, angle and ends parameters of panel.arrows. The
last one (type = "polygon") draws a polygon enclosing all points in a panel over
a polygon enclosing all points in the data. The overall polygon is controlled by
Trellis parameters trellis.par.set plot.polygon and superpose.polygon.

Arguments passed to scores methods or lattice functions.
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Details

The function provides an interface to the corresponding lattice function. All graphical parameters
are passed to the lattice function so that these graphs are configurable. See Lattice and xyplot
for details, usage and possibilities.

The argument x must always be an ordination result. The scores are extracted with vegan function
scores so that these functions work with all vegan ordinations and many others.

The formula is used to define the models. Function has a simple default formula which is used if
formula is missing. The formula must use the names of ordination scores and names of data.

The ordination scores are found from x, and data is optional. The data should contain other
variables than ordination scores to be used in plots. Typically, they are environmental variables
(typically factors) to define panels or plot symbols.

The proper work is done by the panel function. The layout can be changed by defining own panel
functions. See panel.xyplot for details and survey of possibilities.

Ordination graphics should always be isometric: same scale should be used in all axes. This is
controlled (and can be changed) with argument aspect in ordixyplot.

Value

The function return Lattice objects of class "trellis”.

Note

vegan releases 2.6-10 and earlier had lattice functions ordicloud and ordisplom which are now
deprecated. However, vegan3d (version 1.4-0 and later) has function ordilattice3d which is
equal to ordicloud.

Author(s)

Jari Oksanen

See Also

Lattice, xyplot.

Examples

data(dune, dune.env)

ord <- cca(dune)

## Scatter plot with polygons

ordixyplot(ord, data=dune.env, form = CA1 ~ CA2 | Management,
groups=Manure, type = c("p","polygon"))

## Choose a different scaling

ordixyplot(ord, scaling = "sites")

## ... Slices of third axis

ordixyplot(ord, form = CA1 ~ CA2 | lattice::equal.count(CA3, 4),

type = c("g","p", "polygon"))
## Display environmental variables
ordixyplot(ord, envfit = envfit(ord ~ Management + A1, dune.env, choices=1:3))
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pcnm Principal Coordinates of Neighbourhood Matrix

Description

This function computed classical PCNM by the principal coordinate analysis of a truncated distance
matrix. These are commonly used to transform (spatial) distances to rectangular data that suitable
for constrained ordination or regression.

Usage

pcnm(dis, threshold, w, dist.ret = FALSE)

Arguments
dis A distance matrix.
threshold A threshold value or truncation distance. If missing, minimum distance giving
connected network will be used. This is found as the longest distance in the
minimum spanning tree of dis.
w Prior weights for rows.
dist.ret Return the distances used to calculate the PCNMs.
Details

Principal Coordinates of Neighbourhood Matrix (PCNM) map distances between rows onto rectan-
gular matrix on rows using a truncation threshold for long distances (Borcard & Legendre 2002). If
original distances were Euclidean distances in two dimensions (like normal spatial distances), they
could be mapped onto two dimensions if there is no truncation of distances. Because of truncation,
there will be a higher number of principal coordinates. The selection of truncation distance has a
huge influence on the PCNM vectors. The default is to use the longest distance to keep data con-
nected. The distances above truncation threshold are given an arbitrary value of 4 times threshold.
For regular data, the first PCNM vectors show a wide scale variation and later PCNM vectors show
smaller scale variation (Borcard & Legendre 2002), but for irregular data the interpretation is not as
clear.

The PCNM functions are used to express distances in rectangular form that is similar to normal
explanatory variables used in, e.g., constrained ordination (rda, cca and dbrda) or univariate re-
gression (1m) together with environmental variables (row weights should be supplied with cca; see
Examples). This is regarded as a more powerful method than forcing rectangular environmental
data into distances and using them in partial mantel analysis (mantel.partial) together with geo-
graphic distances (Legendre et al. 2008, but see Tuomisto & Ruokolainen 2008).

The function is based on pcnm function in Dray’s unreleased spacemakeR package. The differences
are that the current function uses spantree as an internal support function. The current function
also can use prior weights for rows by using weighted metric scaling of wemdscale. The use of row
weights allows finding orthonormal PCNMs also for correspondence analysis (e.g., cca).
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Value
A list of the following elements:

values Eigenvalues obtained by the principal coordinates analysis.

vectors Eigenvectors obtained by the principal coordinates analysis. They are scaled to
unit norm. The vectors can be extracted with scores function. The default is to
return all PCNM vectors, but argument choices selects the given vectors.

threshold Truncation distance.

dist The distance matrix where values above threshold are replaced with arbitrary
value of four times the threshold. String "pcnm” is added to the method attribute,
and new attribute threshold is added to the distances. This is returned only
when dist.ret = TRUE.

Author(s)

Jari Oksanen, based on the code of Stephane Dray.

References

Borcard D. and Legendre P. (2002) All-scale spatial analysis of ecological data by means of princi-
pal coordinates of neighbour matrices. Ecological Modelling 153, 51-68.

Legendre, P., Borcard, D and Peres-Neto, P. (2008) Analyzing or explaining beta diversity? Com-
ment. Ecology 89, 3238-3244.

Tuomisto, H. & Ruokolainen, K. (2008) Analyzing or explaining beta diversity? A reply. Ecology
89, 3244-3256.

See Also

spantree.

Examples

## Example from Borcard & Legendre (2002)

data(mite.xy)

pcnml <- pcnm(dist(mite.xy))

op <- par(mfrow=c(1,3))

## Map of PCNMs in the sample plot

ordisurf(mite.xy, scores(pcnml, choi=1), bubble = 4, main = "PCNM 1")
ordisurf(mite.xy, scores(pcnml, choi=2), bubble = 4, main = "PCNM 2")
ordisurf(mite.xy, scores(pcnml, choi=3), bubble = 4, main = "PCNM 3")
par(op)

## Weighted PCNM for CCA

data(mite)

rs <- rowSums(mite)/sum(mite)

pcnmw <- pcnm(dist(mite.xy), w = rs)

ord <- cca(mite ~ scores(pcnmw))

## Multiscale ordination: residual variance should have no distance
## trend

msoplot(mso(ord, mite.xy))
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permat Matrix Permutation Algorithms for Presence-Absence and Count Data

Description

Individual (for count data) or incidence (for presence-absence data) based null models can be gener-
ated for community level simulations. Options for preserving characteristics of the original matrix
(rows/columns sums, matrix fill) and restricted permutations (based on strata) are discussed in the
Details section.

Usage

permatfull(m, fixedmar = "both”, shuffle = "both", strata = NULL,
mtype = "count”, times = 99, ...)

permatswap(m, method = "quasiswap”, fixedmar="both", shuffle = "both",
strata = NULL, mtype = "count”, times = 99,
burnin = @, thin =1, ...)

## S3 method for class 'permat'

print(x, digits =3, ...)

## S3 method for class 'permat'

summary (object, ...)

## S3 method for class 'summary.permat'

print(x, digits = 2, ...)

## S3 method for class 'permat'
plot(x, type = "bray”, ylab, xlab, col, 1lty,

lowess = TRUE, plot = TRUE, text = TRUE, ...)
## S3 method for class 'permat'
lines(x, type = "bray", ...)
## S3 method for class 'permat'
as.ts(x, type = "bray”, ...)
## S3 method for class 'permat'
toCoda(x)
Arguments
m A community data matrix with plots (samples) as rows and species (taxa) as
columns.
fixedmar character, stating which of the row/column sums should be preserved ("none”,

"rows"”, "columns”, "both").

strata Numeric vector or factor with length same as nrow(m) for grouping rows within
strata for restricted permutations. Unique values or levels are used.

mtype Matrix data type, either "count” for count data, or "prab” for presence-absence
type incidence data.

times Number of permuted matrices.
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non non

method Character for method used for the swap algorithm ("swap”, "tswap”, "quasiswap”,
"backtrack™) as described for function make.commsim. If mtype="count"” the
"quasiswap”, "swap"”, "swsh” and "abuswap” methods are available (see de-

tails).

shuffle Character, indicating whether individuals ("ind"), samples ("samp”) or both
("both™) should be shuffled, see details.

burnin Number of null communities discarded before proper analysis in sequential
("swap", "tswap") methods.

thin Number of discarded permuted matrices between two evaluations in sequential
("swap", "tswap") methods.

X, object Object of class "permat”

digits Number of digits used for rounding.

ylab, x1lab, col, 1ty
graphical parameters for the plot method.

type Character, type of plot to be displayed: "bray"” for Bray-Curtis dissimilarities,
"chisq" for Chi-squared values.

lowess, plot, text
Logical arguments for the plot method, whether a locally weighted regression
curve should be drawn, the plot should be drawn, and statistic values should be
printed on the plot.

Other arguments passed to simulate.nullmodel or methods.

Details

The function permatfull is useful when matrix fill is allowed to vary, and matrix type is count.
The fixedmar argument is used to set constraints for permutation. If none of the margins are
fixed, cells are randomised within the matrix. If rows or columns are fixed, cells within rows or
columns are randomised, respectively. If both margins are fixed, the r2dtable function is used
that is based on Patefield’s (1981) algorithm. For presence absence data, matrix fill should be
necessarily fixed, and permatfull is a wrapper for the function make.commsim. The roe, ro,
€@, quasiswap algorithms of make.commsim are used for "none"”, "rows"”, "columns”, "both"
values of the fixedmar argument, respectively

The shuffle argument only have effect if the mtype = "count” and permatfull function is used
with "none”, "rows", "columns” values of fixedmar. All other cases for count data are individual
based randomisations. The "samp” and "both" options result fixed matrix fill. The "both” option
means that individuals are shuffled among non zero cells ensuring that there are no cell with zeros
as a result, then cell (zero and new valued cells) are shuffled.

The function permatswap is useful when with matrix fill (i.e. the proportion of empty cells) and
row/columns sums should be kept constant. permatswap uses different kinds of swap algorithms,
and row and columns sums are fixed in all cases. For presence-absence data, the swap and tswap
methods of make.commsim can be used. For count data, a special swap algorithm (’swapcount’) is
implemented that results in permuted matrices with fixed marginals and matrix fill at the same time.

The ’quasiswapcount’ algorithm (method="quasiswap” and mtype="count") uses the same trick
as Carsten Dormann’s swap.web function in the package bipartite. First, a random matrix is gen-
erated by the r2dtable function retaining row and column sums. Then the original matrix fill is
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reconstructed by sequential steps to increase or decrease matrix fill in the random matrix. These
steps are based on swapping 2x2 submatrices (see ‘swapcount’ algorithm for details) to maintain
row and column totals. This algorithm generates independent matrices in each step, so burnin and
thin arguments are not considered. This is the default method, because this is not sequential (as
swapcount is) so independence of subsequent matrices does not have to be checked.

—_n

The swapcount algorithm (method="swap” and mtype="count") tries to find 2x2 submatrices
(identified by 2 random row and 2 random column indices), that can be swapped in order to leave
column and row totals and fill unchanged. First, the algorithm finds the largest value in the subma-
trix that can be swapped (d) and whether in diagonal or antidiagonal way. Submatrices that contain
values larger than zero in either diagonal or antidiagonal position can be swapped. Swap means
that the values in diagonal or antidiagonal positions are decreased by d, while remaining cells are
increased by d. A swap is made only if fill doesn’t change. This algorithm is sequential, subsequent
matrices are not independent, because swaps modify little if the matrix is large. In these cases many
burnin steps and thinning is needed to get independent random matrices. Although this algorithm
is implemented in C, large burnin and thin values can slow it down considerably. WARNING: ac-
cording to simulations, this algorithm seems to be biased and non random, thus its use should be
avoided!

The algorithm "swsh” in the function permatswap is a hybrid algorithm. First, it makes binary
quasiswaps to keep row and column incidences constant, then non-zero values are modified ac-
cording to the shuffle argument (only "samp” and "both" are available in this case, because it
is applied only on non-zero values). It also recognizes the fixedmar argument which cannot be
"both” (vegan versions <= 2.0 had this algorithm with fixedmar = "none").

The algorithm "abuswap” produces two kinds of null models (based on fixedmar="columns" or
fixedmar="rows") as described in Hardy (2008; randomization scheme 2x and 3x, respectively).
These preserve column and row occurrences, and column or row sums at the same time. (Note
that similar constraints can be achieved by the non sequential "swsh" algorithm with fixedmar
argument set to "columns” or "rows"”, respectively.)

Constraints on row/column sums, matrix fill, total sum and sums within strata can be checked by
the summary method. plot method is for visually testing the randomness of the permuted matrices,
especially for the sequential swap algorithms. If there are any tendency in the graph, higher burnin
and thin values can help for sequential methods. New lines can be added to existing plot with the
lines method.

Unrestricted and restricted permutations: if strata is NULL, functions perform unrestricted per-
mutations. Otherwise, it is used for restricted permutations. Each strata should contain at least 2
rows in order to perform randomization (in case of low row numbers, swap algorithms can be rather
slow). If the design is not well balanced (i.e. same number of observations within each stratum),
permuted matrices may be biased because same constraints are forced on submatrices of different
dimensions. This often means, that the number of potential permutations will decrease with their
dimensions. So the more constraints we put, the less randomness can be expected.

The plot method is useful for graphically testing for trend and independence of permuted matrices.
This is especially important when using sequential algorithms ("swap"”, "tswap"”, "abuswap").

The as. ts method can be used to extract Bray-Curtis dissimilarities or Chi-squared values as time
series. This can further used in testing independence (see Examples). The method toCoda is useful
for accessing diagnostic tools available in the coda package.


https://CRAN.R-project.org/package=coda
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Value

Functions permatfull and permatswap return an object of class "permat"” containing the the func-
tion call (call), the original data matrix used for permutations (orig) and a list of permuted matri-
ces with length times (perm).

The summary method returns various statistics as a list (including mean Bray-Curtis dissimilarities
calculated pairwise among original and permuted matrices, Chi-square statistics, and check results
of the constraints; see Examples). Note that when strata is used in the original call, summary
calculation may take longer.

The plot creates a plot as a side effect.

The as.ts method returns an object of class "ts".

Author(s)

Péter S6lymos, <solymos@ualberta.ca> and Jari Oksanen

References

Original references for presence-absence algorithms are given on help page of make.commsim.

Hardy, O. J. (2008) Testing the spatial phylogenetic structure of local communities: statistical per-
formances of different null models and test statistics on a locally neutral community. Journal of
Ecology 96, 914-926.

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x ¢ tables with given
row and column totals. Applied Statistics 30, 91-97.

See Also

For other functions to permute matrices: make.commsim, r2dtable, sample.
For the use of these permutation algorithms: oecosimu, adipart, hiersimu.
For time-series diagnostics: Box. test, lag.plot, tsdiag, ar, arima

For underlying low level implementation: commsim and nullmodel.

Examples

## A simple artificial community data matrix.
m <- matrix(c(

1,3,2,0,3,1,
9,2,1,0,2,1,
0,0,1,2,0,3,
0,0,0,1,4,3

» Ty

), 4, 6, byrow=TRUE)
## Using the quasiswap algorithm to create a
## list of permuted matrices, where
## row/columns sums and matrix fill are preserved:
x1 <- permatswap(m, "quasiswap")
summary (x1)
## Unrestricted permutation retaining
## row/columns sums but not matrix fill:
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x2 <- permatfull(m)

summary (x2)

## Unrestricted permutation of presence-absence type
## not retaining row/columns sums:

x3 <- permatfull(m, "none"”, mtype="prab")
x3%orig ## note: original matrix is binarized!
summary (x3)

## Restricted permutation,

## check sums within strata:

x4 <- permatfull(m, strata=c(1,1,2,2))

summary (x4)

## NOTE: 'times' argument usually needs to be >= 99
## here much lower value is used for demonstration

## Not sequential algorithm

data(BCI)

a <- permatswap(BCI, "quasiswap"”, times=19)

## Sequential algorithm

b <- permatswap(BCI, "abuswap”, fixedmar="col”,
burnin=0, thin=100, times=19)

opar <- par(mfrow=c(2,2))

plot(a, main="Not sequential”)

plot(b, main="Sequential”)

plot(a, "chisq")

plot(b, "chisq")

par(opar)

## Extract Bray-Curtis dissimilarities

## as time series

bc <- as.ts(b)

## Lag plot

lag.plot(bc)

## First order autoregressive model

mar <- arima(bc, c(1,0,0))

mar

## Ljung-Box test of residuals

Box.test(residuals(mar))

## Graphical diagnostics

tsdiag(mar)

permustats Extract, Analyse and Display Permutation Results

Description

The permustats function extracts permutation results of vegan functions. Its support functions can
find quantiles and standardized effect sizes, plot densities and Q-Q plots.
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Usage
permustats(x, ...)
## S3 method for class 'permustats'
summary(object, interval = .95, alternative, ...)
permulattice(x, plot = c("densityplot”, "qgmath"), observed = TRUE,

axislab = "Permutations”, ...)
## S3 method for class 'permustats'
densityplot(x, data, observed = TRUE,
xlab = "Permutations”, ...)
## S3 method for class 'permustats'
density(x, observed = TRUE, ...)
## S3 method for class 'permustats'
qggnorm(y, observed = TRUE, ...)
## S3 method for class 'permustats'
ggmath(x, data, observed = TRUE, sd.scale = FALSE,

ylab = "Permutations”, ...)
## S3 method for class 'permustats'
boxplot(x, scale = FALSE, names, ...)
## S3 method for class 'permustats'
pairs(x, ...)
Arguments
object, x, y The object to be handled.
interval numeric; the coverage interval reported.
alternative A character string specifying the limits used for the interval and the direction

of the test when evaluating the p-values. Must be one of "two.sided” (both
upper and lower limit), "greater” (upper limit), "less” (lower limit). Usu-
ally alternative is given in the result object, but it can be specified with this
argument.

plot Use lattice function densityplot or ggmath.

xlab, ylab, axislab
Label for the axis displaying permutation values.

observed Add observed statistic among permutations.

sd.scale Scale permutations to unit standard deviation and observed statistic to standard-
ized effect size.

data Ignored.

scale Use standardized effect size (SES).

names Names of boxes (default: names of statistics).

Other arguments passed to the function. In density these are passed to density.default,
and in boxplot to boxplot.default.
Details

The permustats function extracts permutation results and observed statistics from several vegan
functions that perform permutations or simulations.
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The summary method of permustats estimates the standardized effect sizes (SES) as the difference
of observed statistic and mean of permutations divided by the standard deviation of permutations
(also known as z-values). It also prints the the mean, median, and limits which contain interval
percent of permuted values. With the default (interval = 0. 95), for two-sided test these are (2.5%,
97.5%) and for one-sided tests either 5% or 95% quantile and the p-value depending on the test
direction. The mean, quantiles and 2z values are evaluated from permuted values without observed
statistic, but the p-value is evaluated with the observed statistic. The intervals and the p-value are
evaluated with the same test direction as in the original test, but this can be changed with argument
alternative. Several permustats objects can be combined with ¢ function. The c function checks
that statistics are equal, but performs no other sanity tests.

The results can be displayed either as conventional graphics or lattice graphics. Lattice graphics
can be used either with function permulattice or directly with lattice functions densityplot or
ggmath. Function permulattice can be used directly, but for densityplot and qgmath lattice
must be first loaded and attached with library(lattice)

The density and densityplot methods display the kernel density estimates of permuted values.
When observed value of the statistic is included in the permuted values, the densityplot method
marks the observed statistic as a vertical line. However the density method uses its standard plot
method and cannot mark the observed value. Only one statistic can be displayed with density and
for several statistics permulattice or densityplot must be used.

The qgnorm and qgmath methods display Q-Q plots of permutations, optionally together with the
observed value (default) which is shown as horizontal line in plots. ggnorm plots permutation values
against standard Normal variate. qgmath defaults to the standard Normal as well, but can accept
other alternatives (see standard qgmath). The qgmath function can also plot observed statistic as
standardized effect size (SES) with standandized permutations (argument sd.scale). The permu-
tations are standardized without the observed statistic, similarly as in summary. Only one statistic
can be shown with qgnorm and for several statistics permulattice or ggmath must be used.

Function boxplot draws the box-and-whiskers plots of effect size, or the difference of permutations
and observed statistic. If scale = TRUE, permutations are standardized to unit standard deviation,
and the plot will show the standardized effect sizes.

Function pairs plots permutation values of statistics against each other. The function passes extra
arguments to pairs.

The permustats can extract permutation statistics from the results of adonis2, anosim, anova. cca,
mantel, mantel.partial, mrpp, oecosimu, ordiareatest, permutest.cca, protest, and permutest.betadisper.

Value

The permustats function returns an object of class "permustats”. Thisis alist of items "statistic”
for observed statistics, permutations which contains permuted values, and alternative which
contains text defining the character of the test ("two.sided”, "less” or "greater”). The qgnorm
and density methods return their standard result objects.

Author(s)

Jari Oksanen with contributions from Gavin L. Simpson (permustats.permutest.betadisper
method and related modifications to summary.permustats and the print method) and Eduard
Szocs (permustats.anova.cca).
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See Also

density, densityplot, ggnorm, qgmath, boxplot.

Examples

data(dune, dune.env)

mod <- adonis2(dune ~ Management + A1, data = dune.env)

## use permustats

perm <- permustats(mod)

summary (perm)

## lattice graphics

permulattice(perm, "densityplot”)

permulattice(perm, "qgmath")

boxplot(perm, scale=TRUE, lty=1, pch=16, cex=0.6, col="hotpink”, ylab="SES")
abline(h=0, col="skyblue")

## example of multiple types of statistic

mod <- with(dune.env, betadisper(vegdist(dune), Management))
pmod <- permutest(mod, nperm = 99, pairwise = TRUE)

perm <- permustats(pmod)

summary(perm, interval = 0.90)

permutations Permutation tests in Vegan

Description

From version 2.2-0, vegan has significantly improved access to restricted permutations which brings
it into line with those offered by Canoco. The permutation designs are modelled after the permuta-
tion schemes of Canoco 3.1 (ter Braak, 1990).

vegan currently provides for the following features within permutation tests:

. Free permutation of DATA, also known as randomisation,

. Free permutation of DATA within the levels of a grouping variable,

. Restricted permutations for line transects or time series,

. Permutation of groups of samples whilst retaining the within-group ordering,
. Restricted permutations for spatial grids,

. Blocking, samples are never permuted between blocks, and

~N N L AW =

. Split-plot designs, with permutation of whole plots, split plots, or both.

Above, we use DATA to mean either the observed data themselves or some function of the data, for
example the residuals of an ordination model in the presence of covariables.

These capabilities are provided by functions from the permute package. The user can request
a particular type of permutation by supplying the permutations argument of a function with an
object returned by how, which defines how samples should be permuted. Alternatively, the user can
simply specify the required number of permutations and a simple randomisation procedure will be
performed. Finally, the user can supply a matrix of permutations (with number of rows equal to the
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number of permutations and number of columns equal to the number of observations in the data)
and vegan will use these permutations instead of generating new permutations.

The majority of functions in vegan allow for the full range of possibilities outlined above. Excep-
tions include kendall.post and kendall.global.

The Null hypothesis for the first two types of permutation test listed above assumes free exchange-
ability of DATA (within the levels of the grouping variable, if specified). Dependence between ob-
servations, such as that which arises due to spatial or temporal autocorrelation, or more-complicated
experimental designs, such as split-plot designs, violates this fundamental assumption of the test and
requires more complex restricted permutation test designs. It is these designs that are available via
the permute package and to which vegan provides access from version 2.2-0 onwards.

Unless otherwise stated in the help pages for specific functions, permutation tests in vegan all follow
the same format/structure:

1. An appropriate test statistic is chosen. Which statistic is chosen should be described on the
help pages for individual functions.

2. The value of the test statistic is evaluate for the observed data and analysis/model and recorded.
Denote this value x.

3. The DATA are randomly permuted according to one of the above schemes, and the value of
the test statistic for this permutation is evaluated and recorded.

4. Step 3 is repeated a total of n times, where n is the number of permutations requested. Denote
these values as x;, where t = 1,....,n

5. Count the number of values of the test statistic, z;, in the Null distribution that are as extreme
as test statistic for the observed data x. Denote this count as V.
We use the phrase as extreme to include cases where a two-sided test is performed and large
negative values of the test statistic should be considered.

6. The permutation p-value is computed as

_N+1
Con+1

The above description illustrates why the default number of permutations specified in vegan func-
tions takes values of 199 or 999 for example. Pretty p values are achieved because the 41 in the
denominator results in division by 200 or 1000, for the 199 or 999 random permutations used in the
test.

The simple intuition behind the presence of +1 in the numerator and denominator is that these
represent the inclusion of the observed value of the statistic in the Null distribution (e.g. Manly
2006). Phipson & Smyth (2010) present a more compelling explanation for the inclusion of +1 in
the numerator and denominator of the p value calculation.

Fisher (1935) had in mind that a permutation test would involve enumeration of all possible per-
mutations of the data yielding an exact test. However, doing this complete enumeration may not
be feasible in practice owing to the potentially vast number of arrangements of the data, even in
modestly-sized data sets with free permutation of samples. As a result we evaluate the p value as
the tail probability of the Null distribution of the test statistic directly from the random sample of
possible permutations. Phipson & Smyth (2010) show that the naive calculation of the permutation
p value is
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p=—
n

which leads to an invalid test with incorrect type I error rate. They go on to show that by replacing
the unknown tail probability (the p value) of the Null distribution with the biased estimator

_ N+1
Con+1

that the positive bias induced is of just the right size to account for the uncertainty in the estimation
of the tail probability from the set of randomly sampled permutations to yield a test with the correct
type I error rate.

The estimator described above is correct for the situation where permutations of the data are samples
randomly without replacement. This is not strictly what happens in vegan because permutations are
drawn pseudo-randomly independent of one another. Note that the actual chance of this happen-
ing is practice is small but the functions in permute do not guarantee to generate a unique set of
permutations unless complete enumeration of permutations is requested. This is not feasible for all
but the smallest of data sets or restrictive of permutation designs, but in such cases the chance of
drawing a set of permutations with repeats is lessened as the sample size, and thence the size of set
of all possible permutations, increases.

Under the situation of sampling permutations with replacement then, the tail probability p calculated
from the biased estimator described above is somewhat conservative, being too large by an amount
that depends on the number of possible values that the test statistic can take under permutation of the
data (Phipson & Smyth, 2010). This represents a slight loss of statistical power for the conservative
p value calculation used here. However, unless sample sizes are small and the the permutation
design such that the set of values that the test statistic can take is also small, this loss of power is
unlikely to be critical.

The minimum achievable p-value is

1
n+1

Pmin =

and hence depends on the number of permutations evaluated. However, one cannot simply increase
the number of permutations (n) to achieve a potentially lower p-value unless the number of obser-
vations available permits such a number of permutations. This is unlikely to be a problem for all but
the smallest data sets when free permutation (randomisation) is valid, but in restricted permutation
designs with a low number of observations, there may not be as many unique permutations of the
data as you might desire to reach the required level of significance.

It is currently the responsibility of the user to determine the total number of possible permutations
for their DATA. The number of possible permutations allowed under the specified design can be
calculated using numPerms from the permute package. Heuristics employed within the shuffleSet
function used by vegan can be triggered to generate the entire set of permutations instead of a
random set. The settings controlling the triggering of the complete enumeration step are contained
within a permutation design created using link[permute]{how} and can be set by the user. See
how for details.

Limits on the total number of permutations of DATA are more severe in temporally or spatially
ordered data or experimental designs with low replication. For example, a time series of n = 100
observations has just 100 possible permutations including the observed ordering.
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In situations where only a low number of permutations is possible due to the nature of DATA or the
experimental design, enumeration of all permutations becomes important and achievable computa-
tionally.

Above, we have provided only a brief overview of the capabilities of vegan and permute. To get
the best out of the new functionality and for details on how to set up permutation designs using how,
consult the vignette Restricted permutations; using the permute package supplied with permute
and accessible via vignette(”"permutations”, package = "permute”).

Random Number Generation

The permutations are based on the random number generator provided by R. This may change in
R releases and change the permutations and vegan test results. One such change was in R release
3.6.0. The new version is clearly better for permutation tests and you should use it. However, if
you need to reproduce old results, you can set the R random number generator to a previous version
with RNGversion.

Author(s)

Gavin L. Simpson

References
Manly, B. F. J. (2006). Randomization, Bootstrap and Monte Carlo Methods in Biology, Third
Edition. Chapman and Hall/CRC.

Phipson, B., & Smyth, G. K. (2010). Permutation P-values should never be zero: calculating exact
P-values when permutations are randomly drawn. Statistical Applications in Genetics and Molecu-
lar Biology, 9, Article 39. DOI: 10.2202/1544-6115.1585

ter Braak, C. J. F. (1990). Update notes: CANOCO version 3.1. Wageningen: Agricultural Mathe-
matics Group. (UR).

See also:

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and their Application. Cambridge
University Press.

See Also

permutest for the main interface in vegan. See also how for details on permutation design specifi-
cation, shuffleSet for the code used to generate a set of permutations, numPerms for a function to
return the size of the set of possible permutations under the current design.

permutest.betadisper  Permutation test of multivariate homogeneity of groups dispersions
(variances)

Description

Implements a permutation-based test of multivariate homogeneity of group dispersions (variances)
for the results of a call to betadisper.
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Usage

## S3 method for class 'betadisper'
permutest(x, pairwise = FALSE,
permutations = 999,
parallel = getOption("mc.cores"),

)
Arguments
X an object of class "betadisper”, the result of a call to betadisper.
pairwise logical; perform pairwise comparisons of group means?

permutations a list of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

parallel Number of parallel processes or a predefined socket cluster. With parallel =1
uses ordinary, non-parallel processing.

Arguments passed to other methods.

Details

To test if one or more groups is more variable than the others, ANOVA of the distances to group
centroids can be performed and parametric theory used to interpret the significance of F. An alter-
native is to use a permutation test. permutest.betadisper permutes model residuals to generate
a permutation distribution of F under the Null hypothesis of no difference in dispersion between
groups.

Pairwise comparisons of group mean dispersions can be performed by setting argument pairwise
to TRUE. A classical t test is performed on the pairwise group dispersions. This is combined with a
permutation test based on the t statistic calculated on pairwise group dispersions. An alternative to
the classical comparison of group dispersions, is to calculate Tukey’s Honest Significant Differences
between groups, via TukeyHSD.betadisper.

Value

permutest.betadisper returns a list of class "permutest.betadisper"” with the following com-

ponents:

tab the ANOVA table which is an object inheriting from class "data. frame"”.

pairwise a list with components observed and permuted containing the observed and
permuted p-values for pairwise comparisons of group mean distances (disper-
sions or variances).

groups character; the levels of the grouping factor.

control a list, the result of a call to how.

Author(s)

Gavin L. Simpson
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References

Anderson, M.J. (2006) Distance-based tests for homogeneity of multivariate dispersions. Biomet-
rics 62(1), 245-253.

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006) Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9(6), 683—693.

See Also

For the main fitting function see betadisper. For an alternative approach to determining which
groups are more variable, see TukeyHSD.betadisper.

Examples

data(varespec)

## Bray-Curtis distances between samples
dis <- vegdist(varespec)

## First 16 sites grazed, remaining 8 sites ungrazed
groups <- factor(c(rep(1,16), rep(2,8)), labels = c("grazed"”, "ungrazed"))

## Calculate multivariate dispersions
mod <- betadisper(dis, groups)
mod

## Perform test
anova(mod)

## Permutation test for F
pmod <- permutest(mod, permutations = 99, pairwise = TRUE)

## Tukey's Honest Significant Differences
(mod.HSD <- TukeyHSD(mod))
plot(mod.HSD)

## lattice graphics with permustats

pstat <- permustats(pmod)

permulattice(pstat, "densityplot”, scale = list(x=list(relation="free")))
permulattice(pstat, "qgmath”, scales = list(relation = "free"))

plot.cca Plot or Extract Results of Constrained Correspondence Analysis or
Redundancy Analysis

Description

Functions to plot or extract results of constrained correspondence analysis (cca), redundancy anal-
ysis (rda), distance-based redundancy analysis (dbrda) or constrained analysis of principal coordi-
nates (capscale).
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Usage

## S3 method for class 'cca'

plot(x, choices = c(1, 2), display = c("sp"”, "wa", "cn"),
scaling = "species”, type, xlim, ylim, const,
correlation = FALSE, hill = FALSE, optimize = FALSE, arrows = FALSE,
spe.par = list(), sit.par = list(), con.par = list(), bip.par = list(),
cen.par = list(), reg.par = list(), ...)

## S3 method for class 'cca'

text(x, display = "sites”, labels, choices = c(1, 2),

scaling = "species"”, arrow.mul, head.arrow = 0.05, select, const,
correlation = FALSE, hill = FALSE, ...)
## S3 method for class 'cca'
points(x, display = "sites"”, choices = c(1, 2),
scaling = "species”, arrow.mul, head.arrow = 0.05, select, const,
correlation = FALSE, hill = FALSE, ...)
## S3 method for class 'cca'
scores(x, choices = c¢(1,2), display = "all",
scaling = "species”, hill = FALSE, tidy = FALSE, droplist = TRUE,
)
## S3 method for class 'rda'
scores(x, choices = c(1,2), display = "all",
scaling = "species”, const, correlation = FALSE, tidy = FALSE,
droplist = TRUE, ...)
## S3 method for class 'cca'
summary(object, digits = max(3, getOption("digits”) - 3), ...)
## S3 method for class 'cca'
labels(object, display, ...)
Arguments
x, object A cca result object.
choices Axes shown.
display Scores shown. These must include some of the alternatives "species” or "sp”
for species scores, sites or "wa" for site scores, "1c” for linear constraints or
LC scores, or "bp" for biplot arrows or "cn"” for centroids of factor constraints
instead of an arrow, and "reg" for regression coefficients (a.k.a. canonical co-
efficients). The alternative "all” selects all available scores.
scaling Scaling for species and site scores. Either species (2) or site (1) scores are scaled

by eigenvalues, and the other set of scores is left unscaled, or with 3 both are
scaled symmetrically by square root of eigenvalues. Corresponding negative
values can be used in cca to additionally multiply results with 1/(1/(1 — \)).
This scaling is know as Hill scaling (although it has nothing to do with Hill’s
rescaling of decorana). With corresponding negative values in rda, species
scores are divided by standard deviation of each species and multiplied with an
equalizing constant. Unscaled raw scores stored in the result can be accessed
with scaling = 0.

n n n n

The type of scores can also be specified as one of "none"”, "sites", "species”,
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or "symmetric"”, which correspond to the values 9, 1, 2, and 3 respectively. Ar-
guments correlation and hill in scores.rda and scores.cca respectively
can be used in combination with these character descriptions to get the corre-
sponding negative value.

correlation, hill
logical; if scaling is a character description of the scaling type, correlation
or hill are used to select the corresponding negative scaling type; either correlation-
like scores or Hill’s scaling for PCA/RDA and CA/CCA respectively. See argu-
ment scaling for details.

optimize Optimize locations of text to reduce overlap and plot point in the actual locations
of the scores. Uses ordipointlabel.

arrows Draw arrows from the origin. This will always be TRUE for biplot and regression
scores in constrained ordination (cca etc.). Setting this TRUE will draw arrows
for any type of scores. This allows, e.g, using biplot arrows for species. The
arrow head will be at the value of scores, and possible text is moved outwards.

spe.par, sit.par, con.par, bip.par, cen.par, reg.par
Lists of graphical parameters for species, sites, constraints (Ic scores), biplot and
text, centroids and regression. These take precedence over globally set parame-
ters and defaults.

tidy Return scores that are compatible with ggplot2: all scores are in a single data. frame,

score type is identified by factor variable score, the names by variable label,
and weights (in CCA) are in variable weight. The possible values of score
are species, sites (for WA scores), constraints (LC scores for sites cal-
culated directly from the constraining variables), biplot (for biplot arrows),
centroids (for levels of factor variables), factorbiplot (biplot arrows that
model centroids), regression (for regression coefficients to find LC scores
from constraints). These scores cannot be used with conventional plot, but
they are directly suitable to be used with the ggplot2 package.

type Type of plot: partial match to text for text labels, points for points, and none
for setting frames only. If omitted, text is selected for smaller data sets, and
points for larger.

xlim, ylim the x and y limits (min,max) of the plot.

labels Optional text to be used for selected items instead of row names. If you use this,
it is good to check the default labels and their order using labels command. If
select is given, give labels only to the selected items.

arrow.mul Factor to expand arrows in the graph. Arrows will be scaled automatically to fit
the graph if this is missing.

head. arrow Default length of arrow heads.

select Items to be displayed. This can either be a logical vector which is TRUE for

displayed items or a vector of indices of displayed items.

const General scaling constant to rda scores. The default is to use a constant that
gives biplot scores, that is, scores that approximate original data (see vignette
on ‘Design Decisions’ with browseVignettes("vegan”) for details and dis-
cussion). If const is a vector of two items, the first is used for species, and the
second item for site scores.
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droplist Return a matrix instead of a named list when only one kind of scores were
requested.
digits Number of digits in output.

Parameters passed to graphical functions. These will be applied to all score
types, but will be superseded by score type parameters list (except type = "none’
which will only draw the frame).

Details

Same plot function will be used for cca, rda, dbrda and capscale. This produces a quick, stan-
dard plot with current scaling.

The plot function sets colours (col), plotting characters (pch) and character sizes (cex) to default
values for each score type. The defaults can be changed with global parameters (“dot arguments’)
applied to all score types, or a list of parameters for a specified score type (spe.par, sit.par etc.)
which take precedence over global parameters and defaults. This allows full control of graphics.
The scores are plotted with text.ordiplot and points.ordiplot and accept paremeters of these
functions. In addition to standard graphical parameters, text can be plotted over non-transparent
label with arbument bg = <colour>, and location of text can be optimized to avoid over-writing with
argument optimize = TRUE, and argument arrows = TRUE to draw arrows pointing to the ordination
scores.

the plot function returns (invisible) ordiplot object. You can save this object and use it to con-
struct your plot with ordiplot functions points and text. These functions can be used in pipe (|>)
which allows incremental building of plots with full control of graphical parameters for each score
type. With pipe it is best to first create an empty plot with plot(<cca-result>, type = "n") and
then add elements with points, text of ordiplot or ordilabel. Within pipe, the first argument
should be a quoted score type, and then the grapcical parameters. The full object may contain scores
with names ‘species’, ‘sites’, ‘constraints’, ‘biplot’, ‘regression’, ‘centroids’ (some of these may be
missing depending on your model and are only available if given in display). The first plot will
set the dimensions of graph, and if you do not use some score type there may be empty white space.
In addition to ordiplot text and points, you can also use ordilabel and ordipointlabel in a
pipe. Unlike in basic plot, there are no defaults for score types, but all graphical parameters must
be set in the command in pipe. On the other hand, there may be more flexibility in these settings
than in plot arguments, in particular in ordilabel and ordipointlabel.

Environmental variables receive a special treatment. With display="bp", arrows will be drawn.
These are labelled with text and unlabelled with points. The arrows have basically unit scaling,
but if sites were scaled (scaling "sites” or "symmetric"), the scores of requested axes are ad-
justed to the plotting area. With scaling = "species” or scaling = "none”, the arrows will be
consistent with vectors fitted to linear combination scores (display = "1c"” in function envfit),
but with other scaling alternatives they will differ. The basic plot function uses a simple heuristics
for adjusting the unit-length arrows to the current plot area, but the user can give the expansion
factor in arrow.mul. With display="cn" the centroids of levels of factor variables are displayed.
With this option continuous variables still are presented as arrows and ordered factors as arrows and
centroids. With display = "reg" arrows will be drawn for regression coefficients (a.k.a. canonical
coefficients) of constraints and conditions. Biplot arrows can be interpreted individually, but regres-
sion coefficients must be interpreted all together: the LC score for each site is the sum of regressions
displayed by arrows. The partialled out conditions are zero and not shown in biplot arrows, but they
are shown for regressions, and show the effect that must be partialled out to get the LC scores. The
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biplot arrows are more standard and more easily interpreted, and regression arrows should be used
only if you know that you need them.

The ordination object has text and points methods that can be used to add items to an existing
plot from the ordination result directly. These should be used with extreme care, because you must
set scaling and other graphical parameters exactly similarly as in the original plot command. It is
best to avoid using these historic functions and instead configure plot command or use pipe.

Palmer (1993) suggested using linear constraints (“LC scores”) in ordination diagrams, because
these gave better results in simulations and site scores (“WA scores”) are a step from constrained
to unconstrained analysis. However, McCune (1997) showed that noisy environmental variables
(and all environmental measurements are noisy) destroy “LC scores” whereas “WA scores” were
little affected. Therefore the plot function uses site scores (“WA scores”) as the default. This is
consistent with the usage in statistics and other functions in R (1da, cancor).

Value

The plot function returns invisibly a plotting structure which can be used by function identify.ordiplot
to identify the points or other functions in the ordiplot family or in a pipe to add new graphicael
elements with ordiplot text and points or with ordilabel and ordipointlabel.

Author(s)

Jari Oksanen

See Also

The function builds upon ordiplot and its text and points functions. See these to find new
graphical parameters such as arrows (for drawing arrows), bg (for writing text on non-transparent
label) and optimize (to move text labels of points to avoid overwriting).

Examples

data(dune, dune.env)
mod <- cca(dune ~ Moisture + Management, dune.env)

## default and modified plot

plot(mod, scaling="sites")

plot(mod, scaling="sites”, type = "text",
sit.par = list(type = "points”, pch=21, col="red"”, bg="yellow", cex=1.2),
spe.par = list(col="blue", cex=0.8),
cen.par = list(bg="white"))

## same with pipe
plot(mod, type="n", scaling="sites") |>
points("sites”, pch=21, col="red"”, bg = "yellow"”, cex=1.2) |>
text("species”, col="blue", cex=0.8) |>
text("biplot”) |>
text("centroids”, bg="white")

## LC scores & factors mean much overplotting: try optimize=TRUE

non

plot(mod, display = c("1c","sp","cn"), optimize = TRUE,
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bip.par = list(optimize = FALSE)) # arrows and optimize mix poorly

## catch the invisible result and use ordiplot support - the example
## will make a biplot with arrows for species and correlation scaling
pca <- rda(dune)
pl <- plot(pca, type="n", scaling="sites", correlation=TRUE)
with(dune.env, points(pl, "site"”, pch=21, col=1, bg=Management))
text(pl, "sp"”, arrow=TRUE, length=0.05, col=4, cex=0.6, xpd=TRUE)
with(dune.env, legend("bottomleft”, levels(Management), pch=21,
pt.bg=1:4, bty="n"))

## Pipe

plot(pca, type="n", scaling="sites”, correlation=TRUE) |>
points(”sites”, pch=21, col = 1, cex=1.5, bg = dune.env$Management) |>
text("species”, col = "blue”, arrows = TRUE, xpd = TRUE, font = 3)

## Scaling can be numeric or more user-friendly names

## e.g. Hill's scaling for (C)CA

scrs <- scores(mod, scaling = "sites”, hill = TRUE)

## or correlation-based scores in PCA/RDA

scrs <- scores(rda(dune ~ A1l + Moisture + Management, dune.env),

scaling = "sites"”, correlation = TRUE)
prc Principal Response Curves for Treatments with Repeated Observa-
tions

Description

Principal Response Curves (PRC) are a special case of Redundancy Analysis (rda) for multivariate
responses in repeated observation design. They were originally suggested for ecological commu-
nities. They should be easier to interpret than traditional constrained ordination. They can also be
used to study how the effects of a factor A depend on the levels of a factor B, that is A+ A:B, in a
multivariate response experiment.

Usage
prc(response, treatment, time, ...)
## S3 method for class 'prc'
summary(object, axis = 1, scaling = "sites"”, const,
digits = 4, correlation = FALSE, ...)
## S3 method for class 'prc'
plot(x, species = TRUE, select, scaling = "symmetric”,

axis = 1, correlation = FALSE, const, type = "1", xlab, ylab, ylim,
1ty = 1:5, col = 1:6, pch, legpos, cex = 0.8, ...)
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Arguments

response

treatment
time
object, x
axis

scaling

const

digits

correlation

species

select

type

xlab, ylab
ylim

1ty, col, pch
legpos

cex

Details

prc

Multivariate response data. Typically these are community (species) data. If the
data are counts, they probably should be log transformed prior to the analysis.

A factor for treatments.

An unordered factor defining the observations times in the repeated design.
An prc result object.

Axis shown (only one axis can be selected).

Scaling of species scores, identical to the scaling in scores.rda.

n n n n

The type of scores can also be specified as one of "none”, "sites"”, "species”,
or "symmetric”, which correspond to the values 9, 1, 2, and 3 respectively. Ar-
gument correlation can be used in combination with these character descrip-
tions to get the corresponding negative value.

General scaling constant for species scores (see scores. rda for details). Lower
values will reduce the range of species scores, but will not influence the regres-
sion coefficients.

Number of significant digits displayed.

logical; if scaling is a character description of the scaling type, correlation
can be used to select correlation-like scores for PCA. See argument scaling for
details.

Display species scores.

Vector to select displayed species. This can be a vector of indices or a logical
vector which is TRUE for the selected species

Type of plot: "1" for lines, "p" for points or "b" for both.
Text to replace default axis labels.

Limits for the vertical axis.

Line type, colour and plotting characters (defaults supplied).

The position of the legend. A guess is made if this is not supplied, and NA will
suppress legend.

Character expansion for symbols and species labels.

Other parameters passed to functions.

PRC is a special case of rda with a single factor for treatment and a single factor for time points
in repeated observations. In vegan, the corresponding rda model is defined as rda(response ~
treatment * time + Condition(time)). Since the time appears twice in the model formula, its
main effects will be aliased, and only the main effect of treatment and interaction terms are available,
and will be used in PRC. Instead of usual multivariate ordination diagrams, PRC uses canonical
(regression) coefficients and species scores for a single axis. All that the current functions do is to
provide a special summary and plot methods that display the rda results in the PRC fashion. The
current version only works with default contrasts (contr. treatment) in which the coefficients are
contrasts against the first level, and the levels must be arranged so that the first level is the control
(or a baseline). If necessary, you must change the baseline level with function relevel.
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Function summary prints the species scores and the coefficients. Function plot plots coefficients
against time using matplot, and has similar defaults. The graph (and PRC) is meaningful only if
the first treatment level is the control, as the results are contrasts to the first level when unordered
factors are used. The plot also displays species scores on the right vertical axis using function
linestack. Typically the number of species is so high that not all can be displayed with the default
settings, but users can reduce character size or padding (air) in linestack, or select only a subset
of the species. A legend will be displayed unless suppressed with legpos = NA, and the functions

tries to guess where to put the legend if legpos is not supplied.

Value

The function is a special case of rda and returns its result object (see cca.object). However, a

special summary and plot methods display returns differently than in rda.

Warning

The first level of treatment must be the control: use function relevel to guarantee the correct
reference level. The current version will ignore user setting of contrasts and always use treatment

contrasts (contr. treatment). The time must be an unordered factor.

Author(s)

Jari Oksanen and Cajo ter Braak

References

van den Brink, P.J. & ter Braak, C.J.F. (1999). Principal response curves: Analysis of time-
dependent multivariate responses of biological community to stress. Environmental Toxicology

and Chemistry, 18, 138-148.

See Also

rda, anova. cca.

Examples

## Chlorpyrifos experiment and experimental design: Pesticide

## treatment in ditches (replicated) and followed over from 4 weeks

## before to 24 weeks after exposure

data(pyrifos)

week <- gl(11, 12, labels=c(-4, -1, 0.1, 1, 2, 4, 8, 12, 15, 19, 24))
dose <- factor(rep(c(0.1, @, 0, 0.9, 0, 44, 6, 0.1, 44, 0.9, 0, 6), 11))
ditch <- gl(12, 1, length=132)

## IGNORE_RDIFF_BEGIN

## PRC
mod <- prc(pyrifos, dose, week)
mod # RDA

summary(mod)  # PRC
logabu <- colSums(pyrifos)
plot(mod, select = logabu > 100)
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## IGNORE_RDIFF_END

## Ditches are randomized, we have a time series, and are only

## interested in the first axis

ctrl <- how(plots = Plots(strata = ditch,type = "free"),
within = Within(type = "series”), nperm = 99)

anova(mod, permutations = ctrl, first=TRUE)

predict.cca Prediction Tools for [ Constrained] Ordination (CCA, RDA, DCA, CA,
PCA)

Description

Function predict can be used to find site and species scores or estimates of the response data with
new data sets, Function calibrate estimates values of constraints with new data set. Functions
fitted and residuals return estimates of response data.

Usage

## S3 method for class 'cca'
fitted(object, model = c("CCA", "CA", "pCCA"),
type = c("response”, "working"), ...)
## S3 method for class 'capscale'
fitted(object, model = c("CCA", "CA", "pCCA", "Imaginary"),

type = c("response”, "working"), ...)
## S3 method for class 'cca'
residuals(object, ...)

## S3 method for class 'cca
predict(object, newdata, type = c("response”, "wa", "sp", "lc", "working"),
rank = "full”, model = c("CCA", "CA"), scaling = "none",

hill = FALSE, ...)

## S3 method for class 'rda’

predict(object, newdata, type = c("response”, "wa", "sp", "lc", "working"),
rank = "full”, model = c("CCA", "CA"), scaling = "none",
correlation = FALSE, const, ...)

## S3 method for class 'dbrda’

predict(object, newdata, type = c("response”, "lc", "wa", "working"),
rank = "full”, model = c("CCA", "CA"), scaling = "none"”, const, ...)

## S3 method for class 'cca'

calibrate(object, newdata, rank = "full”, ...)

## S3 method for class 'cca'

coef(object, norm = FALSE, ...)

## S3 method for class 'decorana'

predict(object, newdata, type = c("response”, "sites"”, "species”),

rank = 4, ...)
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Arguments

object A result object from cca, rda, dbrda, capscale or decorana.

model Show constrained ("CCA"), unconstrained ("CA") or conditioned “partial” ("pCCA")
results. For fitted method of capscale this can also be "Imaginary” for
imaginary components with negative eigenvalues

newdata New data frame to be used in prediction or in calibration. Usually this a new
community data frame, but with type = "1c¢" and for constrained component
with type = "response” and type = "working" it must be a data frame of con-
straints. The newdata must have the same number of rows as the original com-
munity data for a cca result with type = "response” or type = "working”. If
the original model had row or column names, then new data must contain rows
or columns with the same names (row names for species scores, column names
for "wa" scores and constraint names of "1c" scores). In other cases the rows or
columns must match directly. The argument is not implemented for "wa" scores
in dbrda.

type The type of prediction, fitted values or residuals: "response” scales results so
that the same ordination gives the same results, and "working" gives the val-
ues used internally, that is after Chi-square standardization in cca and scaling
and centring in rda. In capscale and dbrda the "response” gives the dissim-
ilarities, and "working” the internal data structure analysed in the ordination.
Alternative "wa" gives the site scores as weighted averages of the community
data, "1c" the site scores as linear combinations of environmental data, and
"sp" the species scores. In predict.decorana the alternatives are scores for
"sites"” or "species”.

rank The rank or the number of axes used in the approximation. The default is to use
all axes (full rank) of the "model” or all available four axes in predict.decorana.

scaling logical, character, or numeric; Scaling or predicted scores with the same mean-
ing as in cca, rda, dbrda, and capscale. See scores. cca for further details on
acceptable values.

correlation, hill
logical; correlation-like scores or Hill’s scaling as appropriate for RDA and CCA
respectively. See scores.cca for additional details.

const Constant multiplier for RDA scores. This will be used only when scaling is
not FALSE, and the default value will give similar scaling as in scores. rda.

norm Coefficients for variables that are centred and scaled to unit norm.

Other parameters to the functions.

Details

Function fitted gives the approximation of the original data matrix or dissimilarities from the
ordination result either in the scale of the response or as scaled internally by the function. Function
residuals gives the approximation of the original data from the unconstrained ordination. With
argument type = "response” the fitted.cca and residuals.cca function both give the same
marginal totals as the original data matrix, and fitted and residuals do not add up to the original
data. Functions fitted and residuals for dbrda and capscale give the dissimilarities with type
= "response”, but these are not additive. However, the "working" scores are additive for capscale
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(but not for dbrda). The fitted and residuals for capscale and dbrda will include the additive
constant if that was requested in the function call. All variants of fitted and residuals are defined
so that for model mod <- cca(y ~ x), cca(fitted(mod)) is equal to constrained ordination, and
cca(residuals(mod)) is equal to unconstrained part of the ordination.

Function predict can find the estimate of the original data matrix or dissimilarities (type = "response”)
with any rank. With rank = "full” it is identical to fitted. In addition, the function can find the
species scores or site scores from the community data matrix for cca or rda. The function can be
used with new data, and it can be used to add new species or site scores to existing ordinations. The
function returns (weighted) orthonormal scores by default, and you must specify explicit scaling
to add those scores to ordination diagrams. With type = "wa" the function finds the site scores
from species scores. In that case, the new data can contain new sites, but species must match in
the original and new data. With type="sp" the function finds species scores from site constraints
(linear combination scores). In that case the new data can contain new species, but sites must match
in the original and new data. With type = "1c¢” the function finds the linear combination scores for
sites from environmental data. In that case the new data frame must contain all constraining and
conditioning environmental variables of the model formula. With type = "response” or type =
"working" the new data must contain environmental variables if constrained component is desired,
and community data matrix if residual or unconstrained component is desired. With these types,
the function uses newdata to find new "1c"” (constrained) or "wa" scores (unconstrained) and then
finds the response or working data from these new row scores and species scores. The original
site (row) and species (column) weights are used for type = "response” and type = "working” in
correspondence analysis (cca) and therefore the number of rows must match in the original data
and newdata.

If a completely new data frame is created, extreme care is needed defining variables similarly as
in the original model, in particular with (ordered) factors. If ordination was performed with the
formula interface, the newdata can be a data frame or matrix, but extreme care is needed that the
columns match in the original and newdata.

Function calibrate. cca finds estimates of constraints from community ordination or "wa" scores
from cca, rda and capscale. This is often known as calibration, bioindication or environmen-
tal reconstruction, and it is equivalent to performing Weighted Averaging (see wascores). As a
Weighted Averaging method it uses deshrinking where the sum of weighted prediction errors is
zero. Basically, the method is similar to projecting site scores onto biplot arrows, but it uses regres-
sion coefficients. The function can be called with newdata so that cross-validation is possible. The
newdata may contain new sites, but species must match in the original and new data. The function
does not work with ‘partial’ models with Condition term, and it cannot be used with newdata for
capscale or dbrda results. The results may only be interpretable for continuous variables.

Function coef will give the regression coefficients from centred environmental variables (con-
straints and conditions) to linear combination scores. The coefficients are for unstandardized envi-
ronmental variables. The coefficients will be NA for aliased effects.

Function predict.decorana is similar to predict.cca. However, type = "species” is not avail-
able in detrended correspondence analysis (DCA), because detrending destroys the mutual recipro-
cal averaging (except for the first axis when rescaling is not used). Detrended CA does not attempt
to approximate the original data matrix, so type = "response” has no meaning in detrended anal-
ysis (except with rank = 1).
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Value

The functions return matrices, vectors or dissimilarities as is appropriate.

Author(s)

Jari Oksanen.

References

Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press,
London.

See Also

cca, rda, dbrda, capscale, decorana, goodness. cca.

Examples

data(dune, dune.env)

mod <- cca(dune ~ Al + Management + Condition(Moisture), data=dune.env)

# Definition of the concepts 'fitted' and 'residuals'

mod

cca(fitted(mod))

cca(residuals(mod))

# Remove rare species (freg==1) from 'cca' and find their scores

# 'passively'.

freq <- specnumber(dune, MARGIN=2)

freq

mod <- cca(dune[, freg>1] ~ A1l + Management + Condition(Moisture), dune.env)
## IGNORE_RDIFF_BEGIN

predict(mod, type="sp"”, newdata=dune[, freq==1], scaling="species")

# New sites

predict(mod, type="1lc", new=data.frame(A1l = 3, Management="NM", Moisture="2"), scal=2)
# Calibration and residual plot

mod <- cca(dune ~ A1, dune.env)

head(pred <- calibrate(mod))

## For single variable similar to weighted averaging calibration, but

## different deshrinking

head(wascores(wascores(dune.env$Al, dune, expand=TRUE), t(dune), expand=TRUE))
## IGNORE_RDIFF_END

with(dune.env, plot(Al, pred - A1, ylab="Prediction Error"))

abline(h=0)

procrustes Procrustes Rotation of Two Configurations and PROTEST

Description

Function procrustes rotates a configuration to maximum similarity with another configuration.
Function protest tests the non-randomness (significance) between two configurations.
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procrustes(X, Y, scale = TRUE, symmetric = FALSE, scores = "sites”,

## S3 method for class 'procrustes'
summary(object, digits = getOption("digits"”), ...)
## S3 method for class 'procrustes'
plot(x, kind=1, choices=c(1,2), to.target = TRUE,
type = "p”, xlab, ylab, main, ar.col = "blue"”, length=0.05,
cex = 0.7, ...)
## S3 method for class 'procrustes'
points(x, display = c("target”, "rotated"),
choices = c(1,2), truemean = FALSE, ...)
## S3 method for class 'procrustes'
text(x, display = c("target”, "rotated"”),
choices = c¢(1,2), labels, truemean = FALSE, ...)
## S3 method for class 'procrustes'
lines(x, type = c("segments"”, "arrows"),
choices = c(1, 2), truemean = FALSE, ...)
## S3 method for class 'procrustes'
residuals(object, ...)
## S3 method for class 'procrustes'
fitted(object, truemean = TRUE, ...)
## S3 method for class 'procrustes'
predict(object, newdata, truemean = TRUE, ...)
protest(X, Y, scores = "sites”, permutations = how(nperm = 999),

Arguments

X Target matrix
Y Matrix to be rotated.

scale Allow scaling of axes of Y.

procrustes

.2

L)

symmetric Use symmetric Procrustes statistic (the rotation will still be non-symmetric).

scores Kind of scores used. This is the display argument used with the corresponding
scores function: see scores, scores.cca and scores. cca for alternatives.

x, object An object of class procrustes.
digits Number of digits in the output.
kind For plot function, the kind of plot produced: kind = 1 plots shifts in two con-

figurations, kind = @ draws a corresponding empty plot, and kind = 2 plots an

impulse diagram of residuals.

choices Axes (dimensions) plotted.

xlab, ylab Axis labels, if defaults unacceptable.

main Plot title, if default unacceptable.

display Show only the "target” or "rotated” matrix as points.

to.target Draw arrows to point to target.
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type The type of plot drawn. In plot, the type can be "points” or "text" to select
the marker for the tail of the arrow, or "none” for drawing an empty plot. In
lines the type selects either arrows or line segments to connect target and
rotated configuration.

truemean Use the original range of target matrix instead of centring the fitted values. Func-
tion plot.procrustes needs truemean = FALSE, and adding graphical items to
the plots from the original results may need truemean = TRUE.

newdata Matrix of coordinates to be rotated and translated to the target.

permutations  alist of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

ar.col Arrow colour.

length Width of the arrow head.

labels Character vector of text labels. Rownames of the result object are used as de-
fault.

cex Character expansion for points or text.

Other parameters passed to functions. In procrustes and protest parameters
are passed to scores, in graphical functions to underlying graphical functions.

Details

Procrustes rotation rotates a matrix to maximum similarity with a target matrix minimizing sum of
squared differences. Procrustes rotation is typically used in comparison of ordination results. It is
particularly useful in comparing alternative solutions in multidimensional scaling. If scale=FALSE,
the function only rotates matrix Y. If scale=TRUE, it scales linearly configuration Y for maximum
similarity. Since Y is scaled to fit X, the scaling is non-symmetric. However, with symmetric=TRUE,
the configurations are scaled to equal dispersions and a symmetric version of the Procrustes statistic
is computed.

Instead of matrix, X and Y can be results from an ordination from which scores can extract results.
Function procrustes passes extra arguments to scores, scores.cca etc. so that you can specify
arguments such as scaling.

Function plot plots a procrustes object and returns invisibly an ordiplot object so that function
identify.ordiplot can be used for identifying points. The items in the ordiplot object are
called heads and points with kind=1 (ordination diagram) and sites with kind=2 (residuals).
In ordination diagrams, the arrow heads point to the target configuration if to. target = TRUE, and
to rotated configuration if to. target = FALSE. Target and original rotated axes are shown as cross
hairs in two-dimensional Procrustes analysis, and with a higher number of dimensions, the rotated
axes are projected onto plot with their scaled and centred range. Function plot passes parameters
to underlying plotting functions. For full control of plots, you can draw the axes using plot with
kind = @, and then add items with points or lines. These functions pass all parameters to the
underlying functions so that you can select the plotting characters, their size, colours etc., or you
can select the width, colour and type of line segments or arrows, or you can select the orientation
and head width of arrows.

Function residuals returns the pointwise residuals, and fitted the fitted values, either centred to
zero mean (if truemean=FALSE) or with the original scale (these hardly make sense if symmetric =
TRUE). In addition, there are summary and print methods.
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If matrix X has a lower number of columns than matrix Y, then matrix X will be filled with zero
columns to match dimensions. This means that the function can be used to rotate an ordination
configuration to an environmental variable (most practically extracting the result with the fitted
function). Function predict can be used to add new rotated coordinates to the target. The predict
function will always translate coordinates to the original non-centred matrix. The function cannot
be used with newdata for symmetric analysis.

Function protest performs symmetric Procrustes analysis repeatedly to estimate the significance
of the Procrustes statistic. Function protest uses a correlation-like statistic derived from the sym-
metric Procrustes sum of squares ss as 7 = y/1 — ss, and also prints the sum of squares of the sym-
metric analysis, sometimes called m%Q. Function protest has own print method, but otherwise
uses procrustes methods. Thus plot with a protest object yields a Procrustean superimposition
plot.

Value

Function procrustes returns an object of class procrustes with items. Function protest inherits
from procrustes, but amends that with some new items:

Yrot Rotated matrix Y.

X Target matrix.

ss Sum of squared differences between X and Yrot.

rotation Orthogonal rotation matrix.

translation Translation of the origin.

scale Scaling factor.

xmean The centroid of the target.

symmetric Type of ss statistic.

call Function call.

to This and the following items are only in class protest: Procrustes correlation

from non-permuted solution.

t Procrustes correlations from permutations. The distribution of these correlations
can be inspected with permustats function.

signif Significance of t

permutations  Number of permutations.

control A list of control values for the permutations as returned by the function how.
control the list passed to argument control describing the permutation design.
Note

The function protest follows Peres-Neto & Jackson (2001), but the implementation is still after
Mardia et al. (1979).

Author(s)

Jari Oksanen
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References

Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979). Multivariate Analysis. Academic Press.

Peres-Neto, P.R. and Jackson, D.A. (2001). How well do multivariate data sets match? The advan-
tages of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 169-178.

See Also

monoMDS, for obtaining objects for procrustes, and mantel for an alternative to protest without
need of dimension reduction. See how for details on specifying the type of permutation required.

Examples

## IGNORE_RDIFF_BEGIN

data(varespec)

vare.dist <- vegdist(wisconsin(varespec))
mds.null <- monoMDS(vare.dist, y = cmdscale(vare.dist))
mds.alt <- monoMDS(vare.dist)

vare.proc <- procrustes(mds.alt, mds.null)
vare.proc

summary (vare.proc)

plot(vare.proc)

plot(vare.proc, kind=2)
residuals(vare.proc)

## IGNORE_RDIFF_END

pyrifos Response of Aquatic Invertebrates to Insecticide Treatment

Description
The data are log transformed abundances of aquatic invertebrate in twelve ditches studied in eleven
times before and after an insecticide treatment.

Usage

data(pyrifos)

Format

A data frame with 132 observations on the log-transformed (log(10*x + 1)) abundances of 178
species. There are only twelve sites (ditches, mesocosms), but these were studied repeatedly in
eleven occasions. The treatment levels, treatment times, or ditch ID’s are not in the data frame, but
the data are very regular, and the example below shows how to obtain these external variables.
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Details

This data set was obtained from an experiment in outdoor experimental ditches. Twelve mesocosms
were allocated at random to treatments; four served as controls, and the remaining eight were treated
once with the insecticide chlorpyrifos, with nominal dose levels of 0.1, 0.9, 6, and 44 ug/ L in two
mesocosms each. The example data set invertebrates. Sampling was done 11 times, from week -4
pre-treatment through week 24 post-treatment, giving a total of 132 samples (12 mesocosms times
11 sampling dates), see van den Brink & ter Braak (1999) for details. The data set contains only the
species data, but the example below shows how to obtain the treatment, time and ditch ID variables.

Source

CANOCO 4 example data, with the permission of Cajo J. F. ter Braak.

References

van den Brink, PJ. & ter Braak, C.J.F. (1999). Principal response curves: Analysis of time-
dependent multivariate responses of biological community to stress. Environmental Toxicology
and Chemistry, 18, 138-148.

Examples

data(pyrifos)

ditch <- gl(12, 1, length=132)

week <- gl(11, 12, labels=c(-4, -1, @.1, 1, 2, 4, 8, 12, 15, 19, 24))
dose <- factor(rep(c(0.1, @, 0, 0.9, 0, 44, 6, 0.1, 44, 0.9, 0, 6), 11))

radfit Rank — Abundance or Dominance / Diversity Models

Description

Functions construct rank — abundance or dominance / diversity or Whittaker plots and fit broken-
stick, preemption, log-Normal, Zipf and Zipf-Mandelbrot models of species abundance.

Usage

## Default S3 method:

radfit(x, ...)

rad.null(x, family=poisson, ...)
rad.preempt(x, family = poisson, ...)
rad.lognormal(x, family = poisson, ...)
rad.zipf(x, family = poisson, ...)
rad.zipfbrot(x, family = poisson, ...)
## S3 method for class 'radline’
predict(object, newdata, total, ...)
## S3 method for class 'radfit'

plot(x, BIC = FALSE, legend = TRUE, ...)
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## S3 method for class 'radfit.frame'
plot(x, order.by, BIC = FALSE, model, legend = TRUE,
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as.table = TRUE, ...)

## S3 method for class 'radline’

plot(x, xlab = "Rank”, ylab = "Abundance”, type = "b", ...)

radlattice(x, BIC = FALSE, ...)

## S3 method for class 'radfit'

lines(x,

## S3 method for class 'radfit'

points(x,

as.rad(x)

## S3 method for class 'rad'

plot(x, xlab = "Rank”, ylab = "Abundance”", log = "y", ...)
Arguments

X Data frame, matrix or a vector giving species abundances, or an object to be

family

object

newdata

total

order.by

BIC

model

legend
as.table
xlab, ylab

type

log

plotted.

Error distribution (passed to glm). All alternatives accepting link = "log” in
family can be used, although not all make sense.

A fitted result object.

Ranks used for ordinations. All models can interpolate to non-integer “ranks”
(although this may be approximate), but extrapolation may fail

The new total used for predicting abundance. Observed total count is used if this
is omitted.

A vector used for ordering sites in plots.

Use Bayesian Information Criterion, BIC, instead of Akaike’s AIC. The penalty
in BIC is £ = log(S) where S is the number of species, whereas AIC uses
k=2

Show only the specified model. If missing, AIC is used to select the model. The
model names (which can be abbreviated) are Null, Preemption, Lognormal,
Zipf, Mandelbrot.

Add legend of line colours.
Arrange panels starting from upper left corner (passed to xyplot).
Labels for x and y axes.

Type of the plot, "b" for plotting both observed points and fitted lines, "p" for
only points, "1" for only fitted lines, and "n" for only setting the frame.

non

Use logarithmic scale for given axis. The default log = "y" gives the traditional
plot of community ecology where the preemption model is a straight line, and
with log = "xy" Zipf model is a straight line. With log = "" both axes are in the
original arithmetic scale.

Other parameters to functions.
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Details

Rank—Abundance Dominance (RAD) or Dominance/Diversity plots (Whittaker 1965) display log-
arithmic species abundances against species rank order. These plots are supposed to be effective in
analysing types of abundance distributions in communities. These functions fit some of the most
popular models mainly following Wilson (1991).

Functions rad.null, rad.preempt, rad.lognormal, rad.zipf and zipfbrot fit the individual
models (described below) for a single vector (row of data frame), and function radfit fits all
models. The argument of the function radfit can be either a vector for a single community or a
data frame where each row represents a distinct community.

Function rad.null fits a brokenstick model where the expected abundance of species at rank 7 is
ar = (J/9) ijr(l /x) (Pielou 1975), where J is the total number of individuals (site total) and
S is the total number of species in the community. This gives a Null model where the individu-
als are randomly distributed among observed species, and there are no fitted parameters. Function
rad.preempt fits the niche preemption model, a.k.a. geometric series or Motomura model, where
the expected abundance a of species at rank r is a,, = Ja(1 —a)”~!. The only estimated parameter
is the preemption coefficient o which gives the decay rate of abundance per rank. The niche preemp-
tion model is a straight line in a RAD plot. Function rad. lognormal fits a log-Normal model which
assumes that the logarithmic abundances are distributed Normally, or a,, = exp(log u + log o N),
where IV is a Normal deviate. Function rad. zipf fits the Zipf model a, = Jpir” where p; is the
fitted proportion of the most abundant species, and + is a decay coefficient. The Zipf—-Mandelbrot
model (rad.zipfbrot) adds one parameter: a, = Jc(r 4+ ()7 after which p; of the Zipf model
changes into a meaningless scaling constant c.

Log-Normal and Zipf models are generalized linear models (glm) with logarithmic link function.
Zipf-Mandelbrot adds one nonlinear parameter to the Zipf model, and is fitted using nlm for the
nonlinear parameter and estimating other parameters and log-Likelihood with glm. Preemption
model is fitted as a purely nonlinear model. There are no estimated parameters in the Null model.

The default family is poisson which is appropriate only for genuine counts (integers), but other
families that accept 1ink = "1og" can be used. Families Gamma or gaussian may be appropriate for
abundance data, such as cover. The best model is selected by AIC. Therefore ‘quasi’ families such
as quasipoisson cannot be used: they do not have AIC nor log-Likelihood needed in non-linear
models.

All these functions have their own plot functions. When radfit was applied for a data frame, plot
uses Lattice graphics, and other plot functions use ordinary graphics. The ordinary graphics func-
tions return invisibly an ordiplot object for observed points, and function identify.ordiplot
can be used to label selected species. Alternatively, radlattice uses Lattice graphics to display
each radfit model of a single site in a separate panel together with their AIC or BIC values.

Function as.rad is a base function to construct ordered RAD data. Its plot is used by other RAD
plot functions which pass extra arguments (such as xlab and log) to this function. The function
returns an ordered vector of taxa occurring in a site, and a corresponding attribute "index" of
included taxa.

Value

Functions rad.null, rad.preempt, rad.lognormal, zipf and zipfbrot fit each a single RAD
model to a single site. The result object has class "radline” and inherits from glm, and can be
handled by some (but not all) glm methods.
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Function radfit fits all models either to a single site or to all rows of a data frame or a matrix.
When fitted to a single site, the function returns an object of class "radfit"” with items y (observed
values), family, and models which is a list of fitted "radline” models. When applied for a data
frame or matrix, radfit function returns an object of class "radfit.frame” which is a list of
"radfit"” objects, each item names by the corresponding row name.

All result objects ("radline”, "radfit”, "radfit.frame") can be accessed with same method
functions. The following methods are available: AIC, coef, deviance, logLik. In addition the fit
results can be accessed with fitted, predict and residuals (inheriting from residuals.glm).
The graphical functions were discussed above in Details.

Note

The RAD models are usually fitted for proportions instead of original abundances. However, noth-
ing in these models seems to require division of abundances by site totals, and original observations
are used in these functions. If you wish to use proportions, you must standardize your data by site
totals, e.g. with decostand and use appropriate family such as Gamma.

The lognormal model is fitted in a standard way, but I do think this is not quite correct — at least it is
not equivalent to fitting Normal density to log abundances like originally suggested (Preston 1948).

Some models may fail. In particular, estimation of the Zipf-Mandelbrot model is difficult. If the
fitting fails, NA is returned.

Wilson (1991) defined preemption model as a, = Jp1 (1 — a)r_l, where p; is the fitted proportion
of the first species. However, parameter p; is completely defined by a since the fitted proportions
must add to one, and therefore I handle preemption as a one-parameter model.

Veiled log-Normal model was included in earlier releases of this function, but it was removed
because it was flawed: an implicit veil line also appears in the ordinary log-Normal. The latest
release version with rad.veil was 1.6-10.

Author(s)

Jari Oksanen

References
Pielou, E.C. (1975) Ecological Diversity. Wiley & Sons.
Preston, EW. (1948) The commonness and rarity of species. Ecology 29, 254-283.
Whittaker, R. H. (1965) Dominance and diversity in plant communities. Science 147, 250-260.

Wilson, J. B. (1991) Methods for fitting dominance/diversity curves. Journal of Vegetation Science
2, 35-46.

See Also

fisherfit and prestonfit. An alternative approach is to use ggnorm or qgplot with any distri-
bution. For controlling graphics: Lattice, xyplot, 1set.
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Examples

data(BCI)

rankindex

mod <- rad.lognormal(BCI[5,1])

mod
plot(mod)

mod <- radfit(BCI[1,])

## Standard

plot overlaid for all models

## Preemption model is a line

plot(mod)

## log for both axes: Zipf model is a line
plot(mod, log = "xy")

## Lattice graphics separately for each model
radlattice(mod)

# Take a subset of BCI to save time and nerves
mod <- radfit(BCI[3:5,1])

mod

plot(mod, pch=".")

rankindex

Compares Dissimilarity Indices for Gradient Detection

Description

Rank correlations between dissimilarity indices and gradient separation.

Usage

rankindex(

metric =
>
Arguments

grad
veg

indices

stepacross

method

metric

grad, veg, indices = c("euc”, "man", "gow", "bra", "kul"),
stepacross = FALSE, method = "spearman”,
c("euclidean”, "mahalanobis”, "manhattan”, "gower"),

The gradient variable or matrix.
The community data matrix.

Dissimilarity indices compared, partial matches to alternatives in vegdist. Al-
ternatively, it can be a (named) list of functions returning objects of class ’dist’.

Use stepacross to find a shorter path dissimilarity. The dissimilarities for site
pairs with no shared species are set NA using no. shared so that indices with no
fixed upper limit can also be analysed.

Correlation method used.
Metric to evaluate the gradient separation. See Details.

Other parameters to stepacross.
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Details

A good dissimilarity index for multidimensional scaling should have a high rank-order similarity
with gradient separation. The function compares most indices in vegdist against gradient sep-
aration using rank correlation coefficients in cor. The gradient separation between each point is
assessed using given metric. The default is to use Euclidean distance of continuous variables
scaled to unit variance, or to use Gower metric for mixed data using function daisy when grad has
factors. The other alternatives are Mahalanabis distances which are based on grad matrix scaled so
that columns are orthogonal (uncorrelated) and have unit variance, or Manhattan distances of grad
variables scaled to unit range.

The indices argument can accept any dissimilarity indices besides the ones calculated by the
vegdist function. For this, the argument value should be a (possibly named) list of functions.
Each function must return a valid ’dist’ object with dissimilarities, similarities are not accepted and
should be converted into dissimilarities beforehand.

Value

Returns a named vector of rank correlations.

Note

There are several problems in using rank correlation coefficients. Typically there are very many
ties when n(n — 1)/2 gradient separation values are derived from just n observations. Due to
floating point arithmetics, many tied values differ by machine epsilon and are arbitrarily ranked
differently by rank used in cor. test. Two indices which are identical with certain transformation
or standardization may differ slightly (magnitude 10~'°) and this may lead into third or fourth
decimal instability in rank correlations. Small differences in rank correlations should not be taken
too seriously. Probably this method should be replaced with a sounder method, but I do not yet
know which. .. You may experiment with mantel, anosim or even protest.

Earlier version of this function used method = "kendall”, but that is far too slow in large data sets.

The functions returning dissimilarity objects should be self contained, because the ... argument
passes additional parameters to stepacross and not to the functions supplied via the indices
argument.

Author(s)

Jari Oksanen, with additions from Peter Solymos

References
Faith, F.P.,, Minchin, P.R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure of
ecological distance. Vegetatio 69, 57-68.

See Also

vegdist, stepacross, no.shared, monoMDS, cor, Machine, and for alternatives anosim, mantel
and protest.
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Examples

data(varespec)

data(varechem)

## The variables are automatically scaled

rankindex(varechem, varespec)

rankindex(varechem, wisconsin(varespec))

## Using non vegdist indices as functions

funs <- list(Manhattan=function(x) dist(x, "manhattan”),
Gower=function(x) cluster:::daisy(x, "gower"),
Ochiai=function(x) designdist(x, "1-J/sqrt(AxB)"))

rankindex(scale(varechem), varespec, funs)

rarefy Rarefaction Species Richness

Description

Rarefied species richness for community ecologists.

Usage

rarefy(x, sample, se = FALSE, MARGIN = 1)

rrarefy(x, sample)

drarefy(x, sample)

rarecurve(x, step = 1, sample, xlab = "Sample Size", ylab = "Species”,
label = TRUE, col, 1lty, tidy = FALSE, ...)

rareslope(x, sample)

Arguments
X Community data, a matrix-like object or a vector.
MARGIN Margin for which the index is computed.
sample Subsample size for rarefying community, either a single value or a vector.
se Estimate standard errors.
step Step size for sample sizes in rarefaction curves.
xlab, ylab Axis labels in plots of rarefaction curves.
label Label rarefaction curves by rownames of x (logical).
col, 1ty plotting colour and line type, see par. Can be a vector of length nrow(x), one
per sample, and will be extended to such a length internally.
tidy Instead of drawing a plot, return a “tidy” data frame than can be used in ggplot2

graphics. The data frame has variables Site (factor), Sample and Species.

Parameters passed to nlm, or to plot, lines and ordilabel in rarecurve.


https://CRAN.R-project.org/package=ggplot2
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Details

Function rarefy gives the expected species richness in random subsamples of size sample from
the community. The size of sample should be smaller than total community size, but the function
will work for larger sample as well (with a warning) and return non-rarefied species richness (and
standard error = 0). If sample is a vector, rarefaction of all observations is performed for each
sample size separately. Rarefaction can be performed only with genuine counts of individuals. The
function rarefy is based on Hurlbert’s (1971) formulation, and the standard errors on Heck et al.
(1975).

Function rrarefy generates one randomly rarefied community data frame or vector of given sample
size. The sample can be a vector giving the sample sizes for each row. If the sample size is
equal to or larger than the observed number of individuals, the non-rarefied community will be
returned. The random rarefaction is made without replacement so that the variance of rarefied
communities is rather related to rarefaction proportion than to the size of the sample. Random
rarefaction is sometimes used to remove the effects of different sample sizes. This is usually a bad
idea: random rarefaction discards valid data, introduces random error and reduces the quality of
the data (McMurdie & Holmes 2014). It is better to use normalizing transformations (decostand
in vegan) possible with variance stabilization (decostand and dispweight in vegan) and methods
that are not sensitive to sample sizes.

Function drarefy returns probabilities that species occur in a rarefied community of size sample.
The sample can be a vector giving the sample sizes for each row. If the sample is equal to or larger
than the observed number of individuals, all observed species will have sampling probability 1.

Function rarecurve draws a rarefaction curve for each row of the input data. The rarefaction curves
are evaluated using the interval of step sample sizes, always including 1 and total sample size. If
sample is specified, a vertical line is drawn at sample with horizontal lines for the rarefied species
richnesses.

Function rareslope calculates the slope of rarecurve (derivative of rarefy) at given sample size;
the sample need not be an integer.

Rarefaction functions should be used for observed counts. If you think it is necessary to use a
multiplier to data, rarefy first and then multiply. Removing rare species before rarefaction can also
give biased results. Observed count data normally include singletons (species with count 1), and if
these are missing, functions issue warnings. These may be false positives, but it is recommended to
check that the observed counts are not multiplied or rare taxa are not removed.

Value

A vector of rarefied species richness values. With a single sample and se = TRUE, function rarefy
returns a 2-row matrix with rarefied richness (S) and its standard error (se). If sample is a vector in
rarefy, the function returns a matrix with a column for each sample size, and if se = TRUE, rarefied
richness and its standard error are on consecutive lines.

Function rarecurve returns invisible list of rarefy results corresponding each drawn curve.
Alternatively, with tidy = TRUE it returns a data frame that can be used in ggplot2 graphics.

Author(s)

Jari Oksanen


https://CRAN.R-project.org/package=ggplot2
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References

Heck, K.L., van Belle, G. & Simberloff, D. (1975). Explicit calculation of the rarefaction diversity
measurement and the determination of sufficient sample size. Ecology 56, 1459-1461.

Hurlbert, S.H. (1971). The nonconcept of species diversity: a critique and alternative parameters.
Ecology 52, 577-586.

McMurdie, PJ. & Holmes, S. (2014). Waste not, want not: Why rarefying microbiome data is
inadmissible. PLoS Comput Biol 10(4): €1003531. doi:10.1371/journal.pcbi.1003531

See Also

Use specaccum for species accumulation curves where sites are sampled instead of individuals.
specpool extrapolates richness to an unknown sample size.

Examples

data(BCI)

S <- specnumber(BCI) # observed number of species

(raremax <- min(rowSums(BCI)))

Srare <- rarefy(BCI, raremax)

plot(S, Srare, xlab = "Observed No. of Species”, ylab = "Rarefied No. of Species"”)
abline(o, 1)

rarecurve(BCI, step = 20, sample = raremax, col = "blue”, cex = 0.6)
raupcrick Raup-Crick Dissimilarity with Unequal Sampling Densities of Species
Description

Function finds the Raup-Crick dissimilarity which is a probability of number of co-occurring species
with species occurrence probabilities proportional to species frequencies.

Usage
raupcrick(comm, null = "r1", nsimul = 999, chase = FALSE, ...)
Arguments
comm Community data which will be treated as presence/absence data.
null Null model used as the method in oecosimu.
nsimul Number of null communities for assessing the dissimilarity index.
chase Use the Chase et al. (2011) method of tie handling (not recommended except

for comparing the results against the Chase script).

Other parameters passed to oecosimu.


https://doi.org/10.1371/journal.pcbi.1003531

raupcrick 225

Details

Raup-Crick index is the probability that compared sampling units have non-identical species com-
position. This probability can be regarded as a dissimilarity, although it is not metric: identical
sampling units can have dissimilarity slightly above 0, the dissimilarity can be nearly zero over a
range of shared species, and sampling units with no shared species can have dissimilarity slightly
below 1. Moreover, communities sharing rare species appear as more similar (lower probability of
finding rare species together), than communities sharing the same number of common species.

The function will always treat the data as binary (presence/ absence).

The probability is assessed using simulation with oecosimu where the test statistic is the observed
number of shared species between sampling units evaluated against a community null model (see
Examples). The default null model is "r1" where the probability of selecting species is proportional
to the species frequencies.

The vegdist function implements a variant of the Raup-Crick index with equal sampling probabil-
ities for species using exact analytic equations without simulation. This corresponds to null model
"r@" which also can be used with the current function. All other null model methods of oecosimu
can be used with the current function, but they are new unpublished methods.

Value

The function returns an object inheriting from dist which can be interpreted as a dissimilarity
matrix.

Note

The test statistic is the number of shared species, and this is typically tied with a large number of
simulation results. The tied values are handled differently in the current function and in the function
published with Chase et al. (2011). In vegan, the index is the number of simulated values that are
smaller or equal than the observed value, but smaller than observed value is used by Chase et al.
(2011) with option split = FALSE in their script; this can be achieved with chase = TRUE in vegan.
Chase et al. (2011) script with split = TRUE uses half of tied simulation values to calculate a
distance measure, and that choice cannot be directly reproduced in vegan (it is the average of vegan
raupcrick results with chase = TRUE and chase = FALSE).

Author(s)

The function was developed after Brian Inouye contacted us and informed us about the method in
Chase et al. (2011), and the function takes its idea from the code that was published with their
paper. The current function was written by Jari Oksanen.

References

Chase, J.M., Kraft, N.J.B., Smith, K.G., Vellend, M. and Inouye, B.D. (2011). Using null models to
disentangle variation in community dissimilarity from variation in a-diversity. Ecosphere 2:art24
doi:10.1890/ES1000117.1

See Also

The function is based on oecosimu. Function vegdist with method = "raup” implements a related
index but with equal sampling densities of species, and designdist demonstrates its calculation.


https://doi.org/10.1890/ES10-00117.1
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Examples

## data set with variable species richness

data(sipoo)

## default raupcrick

dr1 <- raupcrick(sipoo)

## use null model "r@" of oecosimu

dr@ <- raupcrick(sipoo, null = "re")

## vegdist(..., method = "raup”) corresponds to 'null = "ro"'

d <- vegdist(sipoo, "raup")

op <- par(mfrow=c(2,1), mar=c(4,4,1,1)+.1)

plot(dr1 ~ d, xlab = "Raup-Crick with Null R1", ylab="vegdist")
plot(dr@ ~ d, xlab = "Raup-Crick with Null R@", ylab="vegdist")
par(op)

## The calculation is essentially as in the following oecosimu() call,
## except that designdist() is replaced with faster code

## Not run:

oecosimu(sipoo, function(x) designdist(x, "J", "binary"), method = "r1")

## End(Not run)

read.cep Reads a CEP (Canoco) data file

Description

read.cep reads a file formatted with relaxed strict CEP format used in Canoco software, among
others.

Usage
read.cep(file, positive=TRUE)

Arguments

file File name (character variable).

positive Only positive entries, like in community data.
Details

Cornell Ecology Programs (CEP) introduced several data formats designed for punched cards. One
of these was the ‘condensed strict’ format which was adopted by popular software DECORANA
and TWINSPAN. A relaxed variant of this format was later adopted in Canoco software (ter Braak
1984). Function read. cep reads legacy files written in this format.

The condensed CEP and CANOCO formats have:

* Two or three title cards, most importantly specifying the format and the number of items per
record.
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* Data in condensed format: First number on the line is the site identifier (an integer), and it is
followed by pairs (‘couplets’) of numbers identifying the species and its abundance (an integer
and a floating point number).

» Species and site names, given in Fortran format (10A8): Ten names per line, eight columns
for each.

With option positive = TRUE the function removes all rows and columns with zero or negative
marginal sums. In community data with only positive entries, this removes empty sites and species.
If data entries can be negative, this ruins data, and such data sets should be read in with option
positive = FALSE.

Value

Returns a data frame, where columns are species and rows are sites. Column and row names are
taken from the CEP file, and changed into unique R names by make.names after stripping the
blanks.

Note

Function read. cep used Fortran to read data in vegan 2.4-5 and earlier, but Fortran I/O is no longer
allowed in CRAN packages, and the function was re-written in R. The original Fortran code was
more robust, and there are several legacy data sets that may fail with the current version, but could
be read with the previous Fortran version. CRAN package cepreader makes available the original
Fortran-based code run in a separate subprocess. The cepreader package can also read ‘free’ and
‘open’ Canoco formats that are not handled in this function.

The function is based on read.fortran. If the REAL format defines a decimal part for species
abundances (such as F5.1), read. fortran divides the input with the corresponding power of 10
even when the input data had explicit decimal separator. With F5.1, 100 would become 10, and 0.1
become 0.01. Function read. cep tries to undo this division, but you should check the scaling of
results after reading the data, and if necessary, multiply results to the original scale.

Author(s)

Jari Oksanen

References

ter Braak, C.J.E. (1984—): CANOCO - a FORTRAN program for canonical community ordination
by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and re-
dundancy analysis. TNO Inst. of Applied Computer Sci., Stat. Dept. Wageningen, The Netherlands.

Examples

## Provided that you have the file "dune.spe”
## Not run:

theclassic <- read.cep("dune.spe”)

## End(Not run)
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renyi Renyi and Hill Diversities and Corresponding Accumulation Curves

Description

Function renyi find Rényi diversities with any scale or the corresponding Hill number (Hill 1973).
Function renyiaccum finds these statistics with accumulating sites.

Usage

renyi(x, scales = c(0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, Inf),
hill = FALSE)
## S3 method for class 'renyi'

plot(x, ...)
renyiaccum(x, scales = c(0, 0.5, 1, 2, 4, Inf), permutations = 100,
raw = FALSE, collector = FALSE, subset, ...)

## S3 method for class 'renyiaccum'
plot(x, what = c("Collector”, "mean”, "Qnt 0.025", "Qnt ©.975"),

type = Hl” ,
oY)
## S3 method for class 'renyiaccum'
persp(x, theta = 220, col = heat.colors(100), zlim, ...)
Arguments
X Community data matrix or plotting object.
scales Scales of Rényi diversity.
hill Calculate Hill numbers.

permutations  Usually an integer giving the number permutations, but can also be a list of con-
trol values for the permutations as returned by the function how, or a permutation
matrix where each row gives the permuted indices.

raw if FALSE then return summary statistics of permutations, and if TRUE then returns
the individual permutations.

collector Accumulate the diversities in the order the sites are in the data set, and the col-
lector curve can be plotted against summary of permutations. The argument is
ignored if raw = TRUE.

subset logical expression indicating sites (rows) to keep: missing values are taken as
FALSE.

what Items to be plotted.

type Type of plot, where type = "1" means lines.

theta Angle defining the viewing direction (azimuthal) in persp.

col Colours used for surface. Single colour will be passed on, and vector colours

will be selected by the midpoint of a rectangle in persp.
zlim Limits of vertical axis.

Other arguments which are passed to renyi and to graphical functions.
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Details

Common diversity indices are special cases of Rényi diversity

Ha = 1ia10gzp?

where a is a scale parameter, and Hill (1975) suggested to use so-called ‘Hill numbers’ defined
as N, = exp(H,). Some Hill numbers are the number of species with a = 0, exp(H’) or the
exponent of Shannon diversity with a = 1, inverse Simpson with ¢ = 2 and 1/ max(p;) with
a = 0. According to the theory of diversity ordering, one community can be regarded as more
diverse than another only if its Rényi diversities are all higher (Téthmérész 1995).

The plot method for renyi uses lattice graphics, and displays the diversity values against each
scale in separate panel for each site together with minimum, maximum and median values in the
complete data.

Function renyiaccum is similar to specaccum but finds Rényi or Hill diversities at given scales
for random permutations of accumulated sites. Its plot function uses lattice function xyplot to
display the accumulation curves for each value of scales in a separate panel. In addition, it has
a persp method to plot the diversity surface against scale and number and sites. Similar dynamic
graphics can be made with rgl.renyiaccum in vegan3d package.

Value

Function renyi returns a data frame of selected indices. Function renyiaccum with argument raw =
FALSE returns a three-dimensional array, where the first dimension are the accumulated sites, second
dimension are the diversity scales, and third dimension are the summary statistics mean, stdev, min,
max, Qnt @.025 and Qnt @.975. With argument raw = TRUE the statistics on the third dimension are
replaced with individual permutation results.

Author(s)

Roeland Kindt and Jari Oksanen

References

Hill, M.O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology 54,
427-473.

Kindt, R., Van Damme, P., Simons, A.J. (2006). Tree diversity in western Kenya: using profiles to
characterise richness and evenness. Biodiversity and Conservation 15, 1253-1270.

Téthmérész, B. (1995). Comparison of different methods for diversity ordering. Journal of Vegeta-
tion Science 6, 283-290.
See Also

diversity for diversity indices, and specaccum for ordinary species accumulation curves, and
xyplot, persp.
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Examples

data(BCI)

i <- sample(nrow(BCI), 12)

mod <- renyi(BCI[i,1])

plot(mod)

mod <- renyiaccum(BCI[i,])

plot(mod, as.table=TRUE, col = c(1, 2, 2))
persp(mod)

reorder.hclust Reorder a Hierarchical Clustering Tree

Description

Function takes a hierarchical clustering tree from hclust and a vector of values and reorders the
clustering tree in the order of the supplied vector, maintaining the constraints on the tree. This is a
method of generic function reorder and an alternative to reordering a "dendrogram” object with
reorder.dendrogram

Usage

## S3 method for class 'hclust'
reorder(x, wts,

agglo.FUN = c("mean”, "min", "max"”, "sum”, "uwmean"), ...)
## S3 method for class 'hclust'
rev(x)
## S3 method for class 'hclust'
scores(x, display = "internal”, ...)

cutreeord(tree, k = NULL, h = NULL)

Arguments
X, tree hierarchical clustering from hclust.
wts numeric vector for reordering.
agglo.FUN a function for weights agglomeration, see below.
display return "internal” nodes or "terminal” nodes (also called "leaves”).
k, h scalars or vectors giving the numbers of desired groups or the heights where the
tree should be cut (passed to function cutree).
additional arguments (ignored).
Details

Dendrograms can be ordered in many ways. The reorder function reorders an hclust tree and
provides an alternative to reorder.dendrogram which can reorder a dendrogram. The current
function will also work differently when the agglo.FUN is "mean”: the reorder.dendrogram will
always take the direct mean of member groups ignoring their sizes, but this function will used
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weighted.mean weighted by group sizes, so that the group mean is always the mean of member
leaves (terminal nodes). If you want to ignore group sizes, you can use unweighted mean with
"uwmean”.

The function accepts only a limited list of agglo.FUN functions for assessing the value of wts for
groups. The ordering is always ascending, but the order of leaves can be reversed with rev.

Function scores finds the coordinates of nodes as a two-column matrix. For terminal nodes (leaves)
this the value at which the item is merged to the tree, and the labels can still hang below this level
(see plot.hclust).

Function cutreeord cuts a tree to groups numbered from left to right in the tree. It is based on
the standard function cutree which numbers the groups in the order they appear in the input data
instead of the order in the tree.

Value

Reordered hclust result object with added item value that gives the value of the statistic at each
merge level.

Note

These functions should really be in base R.

Author(s)

Jari Oksanen

See Also

hclust for getting clustering trees, as.hclust.spantree to change a vegan minimum spanning
tree to an hclust object, and dendrogram and reorder.dendrogram for an alternative implemen-
tation.

Examples

## reorder by water content of soil
data(mite, mite.env)

hc <- hclust(vegdist(wisconsin(sqrt(mite))))
ohc <- with(mite.env, reorder(hc, WatrCont))
plot(hc)

plot(ohc)

## label leaves by the observed value, and each branching point
## (internal node) by the cluster mean

with(mite.env, plot(ohc, labels=round(WatrCont), cex=0.7))
ordilabel (scores(ohc), label=round(ohc$value), cex=0.7)

## Slightly different from reordered 'dendrogram' which ignores group
## sizes in assessing means.

den <- as.dendrogram(hc)

den <- with(mite.env, reorder(den, WatrCont, agglo.FUN = mean))
plot(den)
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RsquareAdj Adjusted R-square

Description

The functions finds the adjusted R-square.

Usage

## Default S3 method:
RsquareAdj(x, n, m, ...)

## S3 method for class 'rda'
RsquareAdj(x, ...)

## S3 method for class 'cca'

RsquareAdj(x, permutations = 1000, ...)
Arguments
X Unadjusted R-squared or an object from which the terms for evaluation or ad-

justed R-squared can be found.
n, m Number of observations and number of degrees of freedom in the fitted model.

permutations  Number of permutations to use when computing the adjusted R-squared for a
cca. The permutations can be calculated in parallel by specifying the number of
cores which is passed to permutest

Other arguments (ignored) except in the case of cca in which these arguments
are passed to permutest.

Details

The default method finds the adjusted R? from the unadjusted R2, number of observations, and
number of degrees of freedom in the fitted model. The specific methods find this information from
the fitted result object. There are specific methods for rda (also used for distance-based RDA), cca,
1m and glm. Adjusted, or even unadjusted, R? may not be available in some cases, and then the
functions will return NA. R? values are available only for gaussian models in glm.

The adjusted, R? of cca is computed using a permutation approach developed by Peres-Neto et al.
(2006). By default 1000 permutations are used.
Value

The functions return a list of items r. squared and adj.r.squared.

References
Legendre, P., Oksanen, J. and ter Braak, C.J.F. (2011). Testing the significance of canonical axes in
redundancy analysis. Methods in Ecology and Evolution 2, 269-2717.

Peres-Neto, P., P. Legendre, S. Dray and D. Borcard. 2006. Variation partitioning of species data
matrices: estimation and comparison of fractions. Ecology 87, 2614-2625.
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See Also

varpart uses RsquareAdj.

Examples

data(mite)

data(mite.env)

## rda

m <- rda(decostand(mite, "hell”) ~ ., mite.env)
RsquareAdj(m)

## cca

m <- cca(decostand(mite, "hell”) ~ ., mite.env)
RsquareAdj(m)

## default method

RsquareAdj(0.8, 20, 5)

scores Get Species or Site Scores from an Ordination

Description

Function to access either species or site scores for specified axes in some ordination methods. The
scores function is generic in vegan, and vegan ordination functions have their own scores func-
tions that are documented separately with the method (see e.g. scores.cca, scores.metaMDS,
scores.decorana). This help file documents the default scores method that is only used for non-
vegan ordination objects.

Usage

## Default S3 method:
scores(x, choices,

display=c("sites”, "species", "both"), tidy = FALSE, ...)
Arguments
X An ordination result.
choices Ordination axes. If missing, default method returns all axes.
display Partial match to access scores for "sites"” or "species” of for "both".
tidy Return "both” scores in data frame that is compatible with ggplot2, with vari-

able score labelling the scores as "sites"” or "species”.

Other parameters (unused).
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Details

Function scores is a generic method in vegan. Several vegan functions have their own scores
methods with their own defaults and with some new arguments. This help page describes only the
default method. For other methods, see, e.g., scores.cca, scores.rda, scores.decorana.

All vegan ordination functions should have a scores method which should be used to extract
the scores instead of directly accessing them. Scaling and transformation of scores should also
happen in the scores function. If the scores function is available, the results can be plotted using
ordiplot, ordixyplot etc., and the ordination results can be compared in procrustes analysis.

The scores.default function is used to extract scores from non-vegan ordination results. Many
standard ordination methods of libraries do not have a specific class, and no specific method can
be written for them. However, scores.default guesses where some commonly used functions
keep their site scores and possible species scores.

If x is a matrix, scores.default returns the chosen columns of that matrix, ignoring whether
species or sites were requested (do not regard this as a bug but as a feature, please). Currently the
function seems to work at least for isoMDS, prcomp, princomp and some ade4 objects. It may work
in other cases or fail mysteriously.

Value

The function returns a matrix of scores if one type is requested, or a named list of matrices if
display = "both", or a ggplot2 compatible data frame if tidy = TRUE.

Author(s)

Jari Oksanen

See Also

Specific scores functions include (but are not limited to) scores. cca, scores.rda, scores.decorana,
scores.envfit, scores.metaMDS, scores.monoMDS and scores.pcnm. These have somewhat
different interface — scores. cca in particular — but all work with keywords display="sites"” and
return a matrix. However, they may also return a list of matrices, and some other scores methods
will have quite different arguments.

Examples

data(varespec)
vare.pca <- prcomp(varespec)
scores(vare.pca, choices=c(1,2))

screeplot.cca Screeplots for Ordination Results and Broken Stick Distributions

Description

Screeplot methods for plotting variances of ordination axes/components and overlaying broken stick
distributions. Also, provides alternative screeplot methods for princomp and prcomp.
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Usage

## S3 method for class 'cca'
screeplot(x, bstick = FALSE, type = c("barplot”, "lines"),
npcs =min(10, if (is.null(x$CCA) || x$CCA$rank == @) x$CA$rank else x$CCA$rank),
ptype = "0", bst.col = "red", bst.lty = "solid",

xlab = "Component”, ylab = "Inertia”,
main = deparse(substitute(x)), legend = bstick,
L)

## S3 method for class 'decorana'
screeplot(x, bstick = FALSE, type = c("barplot”, "lines"),

npcs = 4,

ptype = "0o", bst.col = "red”, bst.lty = "solid",

xlab = "Component”, ylab = "Inertia”,

main = deparse(substitute(x)), legend = bstick,
L)

## S3 method for class 'prcomp'

screeplot(x, bstick = FALSE, type = c("barplot”, "lines"),
npcs = min(10, length(x$sdev)),
ptype = "0", bst.col = "red", bst.lty = "solid",

xlab = "Component”, ylab = "Inertia”,
main = deparse(substitute(x)), legend = bstick,
L)

## S3 method for class 'princomp'

screeplot(x, bstick = FALSE, type = c("barplot”, "lines"),
npcs = min(10, length(x$sdev)),
ptype = "0", bst.col = "red”, bst.lty = "solid",

xlab = "Component”, ylab = "Inertia”,
main = deparse(substitute(x)), legend = bstick,
L)
bstick(n, ...)

## Default S3 method:
bstick(n, tot.var =1, ...)

## S3 method for class 'cca'
bstick(n, ...)

## S3 method for class 'prcomp'
bstick(n, ...)

## S3 method for class 'princomp'
bstick(n, ...)

## S3 method for class 'decorana'
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bstick(n, ...)

Arguments
X an object from which the component variances can be determined.
bstick logical; should the broken stick distribution be drawn?
npcs the number of components to be plotted.
type the type of plot.
ptype if type == "lines” or bstick = TRUE, a character indicating the type of plotting

used for the lines; actually any of the types as in plot.default.

bst.col, bst.1lty
the colour and line type used to draw the broken stick distribution.

xlab, ylab, main graphics parameters.
legend logical; draw a legend?

n an object from which the variances can be extracted or the number of variances
(components) in the case of bstick.default.

tot.var the total variance to be split.

arguments passed to other methods.

Details

The functions provide screeplots for most ordination methods in vegan and enhanced versions with
broken stick for prcomp and princomp.

Function bstick gives the brokenstick values which are ordered random proportions, defined as
pi = (tot/n)>""_.(1/x) (Legendre & Legendre 2012), where tot is the total and n is the number
of brokenstick components (cf. radfit). Broken stick has been recommended as a stopping rule in
principal component analysis (Jackson 1993): principal components should be retained as long as
observed eigenvalues are higher than corresponding random broken stick components.

The bstick function is generic. The default needs the number of components and the total, and
specific methods extract this information from ordination results. There also is a bstick method
for cca. However, the broken stick model is not strictly valid for correspondence analysis (CA),
because eigenvalues of CA are defined to be < 1, whereas brokenstick components have no such
restrictions. The brokenstick components in detrended correspondence analysis (DCA) assume that
input data are of full rank, and additive eigenvalues are used in screeplot (see decorana).

Value

Function screeplot draws a plot on the currently active device, and returns invisibly the xy . coords
of the points or bars for the eigenvalues.

Function bstick returns a numeric vector of broken stick components.

Author(s)

Gavin L. Simpson
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References

Jackson, D. A. (1993). Stopping rules in principal components analysis: a comparison of heuristical
and statistical approaches. Ecology 74, 2204-2214.

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English ed. Elsevier.

See Also

cca, decorana, princomp and prcomp for the ordination functions, and screeplot for the stock
version.

Examples

data(varespec)

vare.pca <- rda(varespec, scale = TRUE)
bstick(vare.pca)

screeplot(vare.pca, bstick = TRUE, type = "lines")

simper Similarity Percentages

Description

Discriminating species between two groups using Bray-Curtis dissimilarities

Usage

simper(comm, group, permutations = 999, parallel =1, ...)
## S3 method for class 'simper'
summary (object, ordered = TRUE,

digits = max(3,getOption("digits”") - 3), ...)
Arguments
comm Community data.
group Factor describing the group structure. If this is missing or has only one level,

contributions are estimated for non-grouped data and dissimilarities only show
the overall heterogeneity in species abundances.

permutations  alist of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

object an object returned by simper.

ordered Logical; Should the species be ordered by their average contribution?

digits Number of digits in output.

parallel Number of parallel processes or a predefined socket cluster. With parallel =1

uses ordinary, non-parallel processing. (Not yet implemented).

Parameters passed to other functions. In simper the extra parameters are passed
to shuffleSet if permutations are used.
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Details

Similarity percentage, simper (Clarke 1993) is based on the decomposition of Bray-Curtis dissim-
ilarity index (see vegdist, designdist). The contribution of individual species ¢ to the overall
Bray-Curtis dissimilarity d;, is given by

|zi; — ikl
dijk = —g—————
> i (@i + Tik)
where z is the abundance of species ¢ in sampling units j and k. The overall index is the sum of the
individual contributions over all S species d;, = Zi:l dijr.

The simper functions performs pairwise comparisons of groups of sampling units and finds the
contribution of each species to the average between-group Bray-Curtis dissimilarity. Although the
method is called “Similarity Percentages”, it really studied dissimilarities instead of similarities
(Clarke 1993).

The function displays most important species for each pair of groups. These species contribute at
least to 70 % of the differences between groups. The function returns much more extensive results
(including all species) which can be accessed directly from the result object (see section Value).
Function summary transforms the result to a list of data frames. With argument ordered = TRUE the
data frames also include the cumulative contributions and are ordered by species contribution.

The results of simper can be very difficult to interpret and they are often misunderstood even in
publications. The method gives the contribution of each species to overall dissimilarities, but these
are caused by variation in species abundances, and only partly by differences among groups. Even
if you make groups that are copies of each other, the method will single out species with high con-
tribution, but these are not contributions to non-existing between-group differences but to random
noise variation in species abundances. The most abundant species usually have highest variances,
and they have high contributions even when they do not differ among groups. Permutation tests
study the differences among groups, and they can be used to find out the species for which the dif-
ferences among groups is an important component of their contribution to dissimilarities. Analysis
without group argument will find species contributions to the average overall dissimilarity among
sampling units. These non-grouped contributions can be compared to grouped contributions to see
how much added value the grouping has for each species.

Value

A list of class "simper” with following items:

species The species names.

average Species contribution to average between-group dissimilarity.

overall The average between-group dissimilarity. This is the sum of the item average.
sd Standard deviation of contribution.

ratio Average to sd ratio.

ava, avb Average abundances per group.

ord An index vector to order vectors by their contribution or order cusum back to the

original data order.

cusum Ordered cumulative contribution. These are based on item average, but they
sum up to total 1.
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p Permutation p-value. Probability of getting a larger or equal average contribu-
tion in random permutation of the group factor. These area only available if
permutations were used (default: not calculated).

Author(s)

Eduard Szo6cs and Jari Oksanen.

References

Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Aus-
tralian Journal of Ecology, 18, 117-143.

See Also

Function meandist shows the average between-group dissimilarities (as well as the within-group
dissimilarities).

Examples

data(dune)

data(dune.env)

(sim <- with(dune.env, simper(dune, Management, permutations = 99)))
## IGNORE_RDIFF_BEGIN

summary (sim)

## IGNORE_RDIFF_END

simulate.rda Simulate Responses with Gaussian Error or Permuted Residuals for
Constrained Ordination

Description

Function simulates a response data frame so that it adds Gaussian error to the fitted responses of
Redundancy Analysis (rda), Constrained Correspondence Analysis (cca) or distance-based RDA
(capscale). The function is a special case of generic simulate, and works similarly as simulate. 1m.

Usage

## S3 method for class 'rda’
simulate(object, nsim = 1, seed = NULL, indx = NULL,
rank = "full”, correlated = FALSE, ...)
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Arguments

object an object representing a fitted rda, cca or capscale model.

nsim number of response matrices to be simulated. Only one dissimilarity matrix is
returned for capscale, and larger nsimis an error.

seed an object specifying if and how the random number generator should be initial-
ized (‘seeded’). See simulate for details.

indx Index of residuals added to the fitted values, such as produced by shuffleSet or
sample. The index can have duplicate entries so that bootstrapping is allowed.
If nsim > 1, the output should be compliant with shuffleSet with one line for
each simulation. If nsimis missing, the number of rows of indx is used to define
the number of simulations, but if nsim is given, it should match number of rows
in indx. If null, parametric simulation is used and Gaussian error is added to the
fitted values.

rank The rank of the constrained component: passed to predict.rdaorpredict.cca.

correlated Are species regarded as correlated in parametric simulation or when indx is not
given? If correlated = TRUE, multivariate Gaussian random error is generated,
and if FALSE, Gaussian random error is generated separately for each species.
The argument has no effect in capscale which has no information on species.

additional optional arguments (ignored).

Details

The implementation follows "1m" method of simulate, and adds Gaussian (Normal) error to the
fitted values (fitted.rda) using function rnormif correlated = FALSE or mvrnormif correlated
= TRUE. The standard deviations (rnorm) or covariance matrices for species (mvrnorm) are estimated
from the residuals after fitting the constraints. Alternatively, the function can take a permutation
index that is used to add permuted residuals (unconstrained component) to the fitted values. Raw
data are used in rda. Internal Chi-square transformed data are used in cca within the function, but
the returned matrix is similar to the original input data. The simulation is performed on internal
metric scaling data in capscale, but the function returns the Euclidean distances calculated from
the simulated data. The simulation uses only the real components, and the imaginary dimensions
are ignored.

Value

If nsim =1, returns a matrix or dissimilarities (in capscale) with similar additional arguments on
random number seed as simulate. If nsim > 1, returns a similar array as returned by simulate.nullmodel
with similar attributes.

Author(s)

Jari Oksanen

See Also

simulate for the generic case and for 1m objects, and simulate.nullmodel for community null
model simulation. Functions fitted.rda and fitted.cca return fitted values without the error
component. See rnorm and mvrnorm (MASS package) for simulating Gaussian random error.
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Examples

data(dune)

data(dune.env)

mod <- rda(dune ~ Moisture + Management, dune.env)

## One simulation

update(mod, simulate(mod) ~ .)

## An impression of confidence regions of site scores

plot(mod, display="sites")

for (i in 1:5) lines(procrustes(mod, update(mod, simulate(mod) ~ .)), col="blue")
## Simulate a set of null communities with permutation of residuals

simulate(mod, indx = shuffleSet(nrow(dune), 99))

sipoo Birds in the Archipelago of Sipoo (Sibbo and Borga)

Description

Land birds on islands covered by coniferous forest in the Sipoo Archipelago, southern Finland.

Usage

data(sipoo)
data(sipoo.map)

Format

The sipoo data frame contains data of occurrences of 50 land bird species on 18 islands in the
Sipoo Archipelago (Simberloff & Martin, 1991, Appendix 3). The species are referred by 4+4
letter abbreviation of their Latin names (but using five letters in two species names to make these
unique).

The sipoo.map data contains the geographic coordinates of the islands in the ETRS89-TM35FIN
coordinate system (EPSG:3067) and the areas of islands in hectares.

Source

Simberloff, D. & Martin, J.-L. (1991). Nestedness of insular avifaunas: simple summary statistics
masking complex species patterns. Ornis Fennica 68:178—192.

Examples

data(sipoo)
data(sipoo.map)
plot(N ~ E, data=sipoo.map, asp = 1)
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spantree Minimum Spanning Tree

Description

Function spantree finds a minimum spanning tree connecting all points, but disregarding dissimi-
larities that are at or above the threshold or NA.

Usage

spantree(d, toolong = @)

## S3 method for class 'spantree'
as.hclust(x, ...)

## S3 method for class 'spantree'
cophenetic(x)

spandepth(x)

## S3 method for class 'spantree'

n.n

plot(x, ord, cex = 0.7, type = "p", labels, dlim,

FUN = sammon, ...)
## S3 method for class 'spantree'
lines(x, ord, display="sites"”, col =1, ...)
Arguments
d Dissimilarity data inheriting from class dist or a an object, such as a matrix,

that can be converted to a dissimilarity matrix. Functions vegdist and dist are
some functions producing suitable dissimilarity data.

toolong Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that dis-
similarities close to the limit will be made NA, too. If toolong = @ (or negative),
no dissimilarity is regarded as too long.

X A spantree result object.

ord An ordination configuration, or an ordination result known by scores.

cex Character expansion factor.

type Observations are plotted as points with type="p" or type="b", or as text label
with type="t". The tree (lines) will always be plotted.

labels Text used with type="t" or node names if this is missing.

dlim A ceiling value used to highest cophenetic dissimilarity.

FUN Ordination function to find the configuration from cophenetic dissimilarities. If
the supplied FUN does not work, supply ordination result as argument ord.

display Type of scores used for ord.

col Colour of line segments. This can be a vector which is recycled for points, and

the line colour will be a mixture of two joined points.

Other parameters passed to functions.
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Details

Function spantree finds a minimum spanning tree for dissimilarities (there may be several min-
imum spanning trees, but the function finds only one). Dissimilarities at or above the threshold
toolong and NAs are disregarded, and the spanning tree is found through other dissimilarities. If
the data are disconnected, the function will return a disconnected tree (or a forest), and the corre-
sponding link is NA. Connected subtrees can be identified using distconnected.

Minimum spanning tree is closely related to single linkage clustering, a.k.a. nearest neighbour clus-
tering, and in genetics as neighbour joining tree available in hclust and agnes functions. The most
important practical difference is that minimum spanning tree has no concept of cluster membership,
but always joins individual points to each other. Function as.hclust can change the spantree
result into a corresponding hclust object.

Function cophenetic finds distances between all points along the tree segments. Function spandepth
returns the depth of each node. The nodes of a tree are either leaves (with one link) or internal nodes
(more than one link). The leaves are recursively removed from the tree, and the depth is the layer
at with the leaf was removed. In disconnected spantree object (in a forest) each tree is analysed
separately and disconnected nodes not in any tree have depth zero.

Function plot displays the tree over a supplied ordination configuration, and 1ines adds a spanning
tree to an ordination graph. If configuration is not supplied for plot, the function ordinates the
cophenetic dissimilarities of the spanning tree and overlays the tree on this result. The default
ordination function is sammon (package MASS), because Sammon scaling emphasizes structure in
the neighbourhood of nodes and may be able to beautifully represent the tree (you may need to set
dlim, and sometimes the results will remain twisted). These ordination methods do not work with
disconnected trees, but you must supply the ordination configuration. Function 1ines will overlay
the tree in an existing plot.

Function spantree uses Prim’s method implemented as priority-first search for dense graphs (Sedgewick
1990). Function cophenetic uses function stepacross with option path = "extended”. The
spantree is very fast, but cophenetic is slow in very large data sets.

Value

Function spantree returns an object of class spantree which is a list with two vectors, each of
length n — 1. The number of links in a tree is one less the number of observations, and the first item
is omitted. The items are

kid The child node of the parent, starting from parent number two. If there is no link
from the parent, value will be NA and tree is disconnected at the node.
dist Corresponding distance. If kid = NA, then dist = @.
labels Names of nodes as found from the input dissimilarities.
call The function call.
Note

In principle, minimum spanning tree is equivalent to single linkage clustering that can be performed
using hclust or agnes. However, these functions combine clusters to each other and the informa-
tion of the actually connected points (the “single link™) cannot be recovered from the result. The
graphical output of a single linkage clustering plotted with ordicluster will look very different
from an equivalent spanning tree plotted with lines.spantree.
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Author(s)

Jari Oksanen

References

Sedgewick, R. (1990). Algorithms in C. Addison Wesley.

See Also

vegdist or dist for getting dissimilarities, and hclust or agnes for single linkage clustering.

Examples

data(dune)

dis <- vegdist(dune)

tr <- spantree(dis)

## Add tree to a metric scaling

plot(tr, cmdscale(dis), type = "t")

## Find a configuration to display the tree neatly
plot(tr, type = "t")

## Depths of nodes

depths <- spandepth(tr)

plot(tr, type = "t"”, label = depths)

## Plot as a dendrogram

cl <- as.hclust(tr)

plot(cl)

## cut hclust tree to classes and show in colours in spantree
plot(tr, col = cutree(cl, 5), pch=16)

specaccum Species Accumulation Curves

Description

Function specaccum finds species accumulation curves or the number of species for a certain num-
ber of sampled sites or individuals.

Usage

specaccum(comm, method = "exact"”, permutations = 100,
conditioned =TRUE, gamma = "jackl1”, w = NULL, subset, ...)

## S3 method for class 'specaccum'

plot(x, add = FALSE, random = FALSE, ci = 2,
ci.type = c("bar”, "line", "polygon"), col = par("fg"), lty =1,
ci.col = col, ci.lty = 1, ci.length = @, xlab, ylab = x$method, ylim,
xvar = c("sites"”, "individuals”, "effort”), ...)

## S3 method for class 'specaccum'

boxplot(x, add = FALSE, ...)
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fitspecaccum(object, model, method = "random”, ...)

## S3 method for class 'fitspecaccum'

plot(x, col = par("fg"), 1ty = 1, xlab = "Sites”,
ylab = x$method, ...)

## S3 method for class 'specaccum'

predict(object, newdata, interpolation = c("linear”, "spline"), ...)
## S3 method for class 'fitspecaccum'
predict(object, newdata, ...)

specslope(object, at)

Arguments

comm
method

permutations

conditioned

gamma

W

subset

add

random

ci

ci.type

col

1ty
ci.col
ci.lty
ci.length

xlab, ylab

Community data set.

Species accumulation method (partial match). Method "collector” adds sites
in the order they happen to be in the data, "random” adds sites in random or-
der, "exact" finds the expected (mean) species richness, "coleman” finds the
expected richness following Coleman et al. 1982, and "rarefaction” finds the
mean when accumulating individuals instead of sites.

Number of permutations with method = "random”. Usually an integer giving the
number permutations, but can also be a list of control values for the permutations
as returned by the function how, or a permutation matrix where each row gives
the permuted indices.

Estimation of standard deviation is conditional on the empirical dataset for the
exact SAC

Method for estimating the total extrapolated number of species in the survey
area by function specpool

Weights giving the sampling effort.

logical expression indicating sites (rows) to keep: missing values are taken as
FALSE.

A specaccum result object
Add to an existing graph.

Draw each random simulation separately instead of drawing their average and
confidence intervals.

Multiplier used to get confidence intervals from standard deviation (standard
error of the estimate). Value ci = @ suppresses drawing confidence intervals.

Type of confidence intervals in the graph: "bar” draws vertical bars, "line"
draws lines, and "polygon"” draws a shaded area.

Colour for drawing lines.

line type (see par).

Colour for drawing lines or filling the "polygon”.

Line type for confidence intervals or border of the "polygon”.

Length of horizontal bars (in inches) at the end of vertical bars with ci.type =
"bar".

Labels for x (defaults xvar) and y axis.
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ylim the y limits of the plot.
xvar Variable used for the horizontal axis: "individuals” can be used only with
method = "rarefaction”.
object Either a community data set or fitted specaccum model.
model Nonlinear regression model (nls). See Details.
newdata Optional data used in prediction interpreted as number of sampling units (sites).

If missing, fitted values are returned.
interpolation Interpolation method used with newdata.
at Number of plots where the slope is evaluated. Can be a real number.

Other parameters to functions.

Details

Species accumulation curves (SAC) are used to compare diversity properties of community data
sets using different accumulator functions. The classic method is "random” which finds the mean
SAC and its standard deviation from random permutations of the data, or subsampling without
replacement (Gotelli & Colwell 2001). The "exact"” method finds the expected SAC using sample-
based rarefaction method that has been independently developed numerous times (Chiarucci et al.
2008) and it is often known as Mao Tau estimate (Colwell et al. 2012). The unconditional standard
deviation for the exact SAC represents a moment-based estimation that is not conditioned on the
empirical data set (sd for all samples > 0). The unconditional standard deviation is based on an
estimation of the extrapolated number of species in the survey area (a.k.a. gamma diversity), as
estimated by function specpool. The conditional standard deviation that was developed by Jari
Oksanen (not published, sd=0 for all samples). Method "coleman” finds the expected SAC and its
standard deviation following Coleman et al. (1982). All these methods are based on sampling sites
without replacement. In contrast, the method = "rarefaction” finds the expected species richness
and its standard deviation by sampling individuals instead of sites. It achieves this by applying
function rarefy with number of individuals corresponding to average number of individuals per
site.

Methods "random” and "collector” can take weights (w) that give the sampling effort for each
site. The weights w do not influence the order the sites are accumulated, but only the value of the
sampling effort so that not all sites are equal. The summary results are expressed against sites even
when the accumulation uses weights (methods "random”, "collector"), or is based on individuals
("rarefaction"”). The actual sampling effort is given as item Effort or Individuals in the
printed result. For weighted "random” method the effort refers to the average effort per site, or sum
of weights per number of sites. With weighted method = "random”, the averaged species richness
is found from linear interpolation of single random permutations. Therefore at least the first value
(and often several first) have NA richness, because these values cannot be interpolated in all cases but
should be extrapolated. The plot function defaults to display the results as scaled to sites, but this
can be changed selecting xvar = "effort” (weighted methods) or xvar = "individuals"” (with
method = "rarefaction”).

The summary and boxplot methods are available for method = "random”.

Function predict for specaccum can return the values corresponding to newdata. With method
"exact”, "rarefaction” and "coleman” the function uses analytic equations for interpolated non-
integer values, and for other methods linear (approx) or spline (spline) interpolation. If newdata

is not given, the function returns the values corresponding to the data. NB., the fitted values with
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method="rarefaction" are based on rounded integer counts, but predict can use fractional non-
integer counts with newdata and give slightly different results.

Function fitspecaccum fits a nonlinear (nls) self-starting species accumulation model. The in-
put object can be a result of specaccum or a community in data frame. In the latter case the
function first fits a specaccum model and then proceeds with fitting the nonlinear model. The func-
tion can apply a limited set of nonlinear regression models suggested for species-area relationship
(Dengler 2009). All these are selfStart models. The permissible alternatives are "arrhenius”
(SSarrhenius), "gleason” (SSgleason), "gitay” (SSgitay), "lomolino” (SSlomolino) of ve-
gan package. In addition the following standard R models are available: "asymp” (SSasymp),
"gompertz" (SSgompertz), "michaelis-menten” (SSmicmen), "logis"” (SSlogis), "weibull”
(SSweibull). See these functions for model specification and details.

When weights w were used the fit is based on accumulated effort and in model = "rarefaction”
on accumulated number of individuals. The plot is still based on sites, unless other alternative is
selected with xvar.

Function predict for fitspecaccum uses predict.nls, and you can pass all arguments to that
function. In addition, fitted, residuals, nobs, coef, AIC, logLik and deviance work on the
result object.

Function specslope evaluates the derivative of the species accumulation curve at given number
of sample plots, and gives the rate of increase in the number of species. The function works
with specaccum result object when this is based on analytic models "exact"”, "rarefaction”
or "coleman”, and with non-linear regression results of fitspecaccum.

Nonlinear regression may fail for any reason, and some of the fitspecaccum models are fragile
and may not succeed.
Value

Function specaccum returns an object of class "specaccum”, and fitspecaccum a model of class
"fitspecaccum” that adds a few items to the "specaccum” (see the end of the list below):

call Function call.
method Accumulator method.
sites Number of sites. For method = "rarefaction” this is the number of sites cor-

responding to a certain number of individuals and generally not an integer, and
the average number of individuals is also returned in item individuals.

effort Average sum of weights corresponding to the number of sites when model was
fitted with argument w

richness The number of species corresponding to number of sites. With method = "collector”
this is the observed richness, for other methods the average or expected richness.

sd The standard deviation of SAC (or its standard error). This is NULL in method
="collector”, and it is estimated from permutations in method = "random”,
and from analytic equations in other methods.

perm Permutation results with method = "random” and NULL in other cases. Each
column in perm holds one permutation.

weights Matrix of accumulated weights corresponding to the columns of the perm matrix
when model was fitted with argument w.
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fitted, residuals, coefficients
Only in fitspecacum: fitted values, residuals and nonlinear model coefficients.
For method = "random” these are matrices with a column for each random ac-
cumulation.

models Only in fitspecaccum: list of fitted nls models (see Examples on accessing
these models).

Note

The SAC with method = "exact” was developed by Roeland Kindt, and its standard deviation by
Jari Oksanen (both are unpublished). The method = "coleman” underestimates the SAC because
it does not handle properly sampling without replacement. Further, its standard deviation does not
take into account species correlations, and is generally too low.

Author(s)

Roeland Kindt <r.kindt@cgiar.org> and Jari Oksanen.

References

Chiarucci, A., Bacaro, G., Rocchini, D. & Fattorini, L. (2008). Discovering and rediscovering the
sample-based rarefaction formula in the ecological literature. Commun. Ecol. 9: 121-123.

Coleman, B.D, Mares, M.A., Willis, M.R. & Hsieh, Y. (1982). Randomness, area and species
richness. Ecology 63: 1121-1133.

Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.Y., Mao, C.X., Chazdon, R.L. & Longino, J.T. (2012).
Models and estimators linking individual-based and sample-based rarefaction, extrapolation and
comparison of assemblages. J. Plant Ecol. 5: 3-21.

Dengler, J. (2009). Which function describes the species-area relationship best? A review and
empirical evaluation. Journal of Biogeography 36, 728-744.

Gotelli, N.J. & Colwell, R.K. (2001). Quantifying biodiversity: procedures and pitfalls in measure-
ment and comparison of species richness. Ecol. Lett. 4, 379-391.

See Also

rarefy and rrarefy are related individual based models. Other accumulation models are poolaccum
for extrapolated richness, and renyiaccum and tsallisaccum for diversity indices. Underlying
graphical functions are boxplot, matlines, segments and polygon.

Examples

data(BCI)

sp1 <- specaccum(BCI)

sp2 <- specaccum(BCI, "random")

sp2

summary (sp2)

plot(spl, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue")
boxplot(sp2, col="yellow”, add=TRUE, pch="+")

## Fit Lomolino model to the exact accumulation

mod1 <- fitspecaccum(spl, "lomolino™)
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coef (mod1)

fitted(mod1)

plot(sp1)

## Add Lomolino model using argument 'add'
plot(mod1, add = TRUE, col=2, lwd=2)

## Fit Arrhenius models to all random accumulations
mods <- fitspecaccum(sp2, "arrh")

plot(mods, col="hotpink")

boxplot(sp2, col = "yellow”, border = "blue”, 1lty=1, cex=0.3, add= TRUE)
## Use nls() methods to the list of models
sapply(mods$models, AIC)

specpool Extrapolated Species Richness in a Species Pool

Description

The functions estimate the extrapolated species richness in a species pool, or the number of un-
observed species. Function specpool is based on incidences in sample sites, and gives a single
estimate for a collection of sample sites (matrix). Function estimateR is based on abundances
(counts) on single sample site.

Usage

specpool (x, pool, smallsample = TRUE)

estimateR(x, ...)

specpool2vect (X, index = c("jack1"”,"jack2", "chao", "boot","Species"))
poolaccum(x, permutations = 100, minsize = 3)

estaccumR(x, permutations = 100, parallel = getOption("mc.cores"))

## S3 method for class 'poolaccum'

summary(object, display, alpha = .05, ...)

## S3 method for class 'poolaccum'

plot(x, alpha = 0.05, type = c("1","g"), ...)

Arguments

X Data frame or matrix with species data or the analysis result for plot function.

pool A vector giving a classification for pooling the sites in the species data. If miss-
ing, all sites are pooled together.

smallsample Use small sample correction (N — 1)/N, where N is the number of sites within
the pool.

X, object A specpool result object.

index The selected index of extrapolated richness.

permutations Usually an integer giving the number permutations, but can also be a list of con-
trol values for the permutations as returned by the function how, or a permutation
matrix where each row gives the permuted indices.
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minsize Smallest number of sampling units reported.

parallel Number of parallel processes or a predefined socket cluster. With parallel =
1 uses ordinary, non-parallel processing. The parallel processing is done with
parallel package.

display Indices to be displayed.

alpha Level of quantiles shown. This proportion will be left outside symmetric limits.

type Type of graph produced in xyplot.

Other parameters (not used).

Details

Many species will always remain unseen or undetected in a collection of sample plots. The function
uses some popular ways of estimating the number of these unseen species and adding them to the
observed species richness (Palmer 1990, Colwell & Coddington 1994).

The incidence-based estimates in specpool use the frequencies of species in a collection of sites.
In the following, Sp is the extrapolated richness in a pool, Sy is the observed number of species
in the collection, a; and as are the number of species occurring only in one or only in two sites in
the collection, p; is the frequency of species ¢, and IV is the number of sites in the collection. The
variants of extrapolated richness in specpool are:

al N-1
Chao Sp =50+ 5= "N
Chao bias-corrected Sp =50+ %%
First order jackknife Sp=5Sy+a e L
2
Second order jackknife Sp = Sy + a; 21\]7\,_3 — ag 12/7153)1)
Bootstrap Sp =S+ Zzszol(l —pi)N

specpool normally uses basic Chao equation, but when there are no doubletons (a2 = 0) it switches
to bias-corrected version. In that case the Chao equation simplifies to Sy + %al(al - 1)%

The abundance-based estimates in estimateR use counts (numbers of individuals) of species in a
single site. If called for a matrix or data frame, the function will give separate estimates for each
site. The two variants of extrapolated richness in estimateR are bias-corrected Chao and ACE
(O’Hara 2005, Chiu et al. 2014). The Chao estimate is similar as the bias corrected one above, but
a; refers to the number of species with abundance ¢ instead of number of sites, and the small-sample
correction is not used. The ACE estimate is defined as:

Srare 2
ACE SP = Sabund + C:ce + Cilce Yace
where Chee =1 — &

rare

2 _ Srare 27121 i(ifl)ai _
Yace = Max [CaceNTare(NT‘a‘l‘e_l) 17 0

Here a; refers to number of species with abundance i and S, is the number of rare species,
Sabund 18 the number of abundant species, with an arbitrary threshold of abundance 10 for rare
species, and N, is the number of individuals in rare species.

Functions estimate the standard errors of the estimates. These only concern the number of added
species, and assume that there is no variance in the observed richness. The equations of stan-
dard errors are too complicated to be reproduced in this help page, but they can be studied in
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the R source code of the function and are discussed in the vignette that can be read with the
browseVignettes("vegan"). The standard error are based on the following sources: Chiu et al.
(2014) for the Chao estimates and Smith and van Belle (1984) for the first-order Jackknife and the
bootstrap (second-order jackknife is still missing). For the variance estimator of S,.. see O’Hara
(2005).

Functions poolaccum and estaccumR are similar to specaccum, but estimate extrapolated richness
indices of specpool or estimateR in addition to number of species for random ordering of sam-
pling units. Function specpool uses presence data and estaccumR count data. The functions share
summary and plot methods. The summary returns quantile envelopes of permutations correspond-
ing the given level of alpha and standard deviation of permutations for each sample size. NB.,
these are not based on standard deviations estimated within specpool or estimateR, but they are
based on permutations. The plot function shows the mean and envelope of permutations with given
alpha for models. The selection of models can be restricted and order changes using the display
argument in summary or plot. For configuration of plot command, see xyplot.

Value

Function specpool returns a data frame with entries for observed richness and each of the indices
for each class in pool vector. The utility function specpool2vect maps the pooled values into
a vector giving the value of selected index for each original site. Function estimateR returns
the estimates and their standard errors for each site. Functions poolaccum and estimateR return
matrices of permutation results for each richness estimator, the vector of sample sizes and a table
of means of permutations for each estimator.

Note

The functions are based on assumption that there is a species pool: The community is closed so
that there is a fixed pool size Sp. In general, the functions give only the lower limit of species
richness: the real richness is S >= Sp, and there is a consistent bias in the estimates. Even the
bias-correction in Chao only reduces the bias, but does not remove it completely (Chiu et al. 2014).

Optional small sample correction was added to specpool in vegan 2.2-0. It was not used in the
older literature (Chao 1987), but it is recommended recently (Chiu et al. 2014).

Author(s)

Bob O’Hara (estimateR) and Jari Oksanen.

References

Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchabil-
ity. Biometrics 43, 783-791.

Chiu, C.H., Wang, Y.T., Walther, B.A. & Chao, A. (2014). Improved nonparametric lower bound
of species richness via a modified Good-Turing frequency formula. Biometrics 70, 671-682.

Colwell, R.K. & Coddington, J.A. (1994). Estimating terrestrial biodiversity through extrapolation.
Phil. Trans. Roy. Soc. London B 345, 101-118.

O’Hara, R.B. (2005). Species richness estimators: how many species can dance on the head of a
pin? J. Anim. Ecol. 74, 375-386.
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Palmer, M.W. (1990). The estimation of species richness by extrapolation. Ecology 71, 1195-1198.

Smith, E.P & van Belle, G. (1984). Nonparametric estimation of species richness. Biometrics 40,
119-129.

See Also

veiledspec, diversity, beals, specaccum.

Examples

data(dune)

data(dune.env)

pool <- with(dune.env, specpool(dune, Management))

pool

op <- par(mfrow=c(1,2))

boxplot (specnumber(dune) ~ Management, data = dune.env,
col = "hotpink”, border = "cyan3")

boxplot (specnumber (dune)/specpool2vect(pool) ~ Management,
data = dune.env, col = "hotpink”, border = "cyan3")

par(op)

data(BCI)

## Accumulation model

pool <- poolaccum(BCI)

summary (pool, display = "chao")

plot(pool)

## Quantitative model

estimateR(BCI[1:5,])

sppscores Add or Replace Species Scores in Distance-Based Ordination

Description

Distance-based ordination (dbrda, capscale, metaMDS, monoMDS, wcmdscale) has no information
on species, but some methods may add species scores if community data were available. However,
the species scores may be missing (and they always are in dbrda and wemdscale), or they may not
have a close relation to used dissimilarity index. This function will add the species scores or replace
the existing species scores in distance-based methods.

Usage

sppscores(object) <- value

Arguments

object Ordination result from capscale, dbrda, metaMDS, monoMDS, pco or wemdscale.

value Community data to find the species scores.
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Details

Distances have no information on species (columns, variables), and hence distance-based ordina-
tion has no information on species scores. However, the species scores can be added as supplemen-
tary information after the analysis to help the interpretation of results. Some ordination methods
(capscale, metaMDS) can supplement the species scores during the analysis if community data were
available in the analysis.

In capscale the species scores are found by projecting the community data to site ordination (linear
combination scores), and the scores are accurate if the analysis used Euclidean distances. If the
dissimilarity index can be expressed as Euclidean distances of transformed data (for instance, Chord
and Hellinger Distances), the species scores based on transformed data will be accurate, but the
function still finds the dissimilarities with untransformed data. Usually community dissimilarities
differ in two significant ways from Euclidean distances: They are bound to maximum 1, and they
use absolute differences instead of squared differences. In such cases, it may be better to use
species scores that are transformed so that their Euclidean distances have a good linear relation to
used dissimilarities. It is often useful to standardize data so that each row has unit total, and perform
squareroot transformation to damp down the effect of squared differences (see Examples).

Functions dbrda and wemdscale never find the species scores, but they mathematically similar to
capscale, and similar rules should be followed when supplementing the species scores.

Functions for species scores in metaMDS and monoMDS use weighted averages (wascores) to find the
species scores. These have better relationship with most dissimilarities than the projection scores
used in metric ordination, but similar transformation of the community data should be used both in
dissimilarities and in species scores.

Value

Replacement function adds the species scores or replaces the old scores in the ordination object.

Author(s)

Jari Oksanen

See Also

Function envfit finds similar scores, but based on correlations. The species scores for non-metric
ordination use wascores which can also used directly on any ordination result.

Examples

data(BCI, BCI.env)

mod <- dbrda(vegdist(BCI) ~ Habitat, BCI.env)

## add species scores

sppscores(mod) <- BCI

## Euclidean distances of BCI differ from used dissimilarity
plot(vegdist(BCI), dist(BCI))

## more linear relationship

plot(vegdist(BCI), dist(sqgrt(decostand(BCI, "total"))))

## better species scores

sppscores(mod) <- sqgrt(decostand(BCI, "total”))
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SSarrhenius Self-Starting nls Species-Area Models

Description

These functions provide self-starting species-area models for non-linear regression (nls). They can
also be used for fitting species accumulation models in fitspecaccum. These models (and many
more) are reviewed by Dengler (2009).

Usage

SSarrhenius(area, k, z)
SSgleason(area, k, slope)
SSgitay(area, k, slope)
SSlomolino(area, Asym, xmid, slope)

Arguments

area Area or size of the sample: the independent variable.
k, z, slope, Asym, xmid
Estimated model parameters: see Details.

Details

All these functions are assumed to be used for species richness (number of species) as the inde-
pendent variable, and area or sample size as the independent variable. Basically, these define least
squares models of untransformed data, and will differ from models for transformed species richness
or models with non-Gaussian error.

The Arrhenius model (SSarrhenius) is the expression k*area”z. This is the most classical model
that can be found in any textbook of ecology (and also in Dengler 2009). Parameter z is the steep-
ness of the species-area curve, and k is the expected number of species in a unit area.

The Gleason model (SSgleason) is a linear expression k + slope*log(area) (Dengler 200). This
is a linear model, and starting values give the final estimates; it is provided to ease comparison with
other models.

The Gitay model (SSgitay) is a quadratic logarithmic expression (k + slopexlog(area))*2 (Gi-
tay et al. 1991, Dengler 2009). Parameter s1lope is the steepness of the species-area curve, and k is
the square root of expected richness in a unit area.

The Lomolino model (SS1omolino)is Asym/ (1 + slope*log(xmid/area)) (Lomolino 2000, Den-
gler 2009). Parameter Asym is the asymptotic maximum number of species, slope is the maximum
slope of increase of richness, and xmid is the area where half of the maximum richness is achieved.

In addition to these models, several other models studied by Dengler (2009) are available in standard
R self-starting models: Michaelis-Menten (SSmicmen), Gompertz (SSgompertz), logistic (SSlogis),
Weibull (SSweibull), and some others that may be useful.
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Value

Numeric vector of the same length as area. It is the value of the expression of each model. If all
arguments are names of objects the gradient matrix with respect to these names is attached as an
attribute named gradient.

Author(s)

Jari Oksanen.

References

Dengler, J. (2009) Which function describes the species-area relationship best? A review and em-
pirical evaluation. Journal of Biogeography 36, 728-744.

Gitay, H., Roxburgh, S.H. & Wilson, J.B. (1991) Species-area relationship in a New Zealand tussock
grassland, with implications for nature reserve design and for community structure. Journal of
Vegetation Science 2, 113-118.

Lomolino, M. V. (2000) Ecology’s most general, yet protean pattern: the species-area relationship.
Journal of Biogeography 27, 17-26.

See Also

nls, fitspecaccum.

Examples

## Get species area data: sipoo.map gives the areas of islands
data(sipoo, sipoo.map)
S <- specnumber (sipoo)
plot(S ~ area, sipoo.map, xlab = "Island Area (ha)",
ylab = "Number of Species”, ylim = c(1, max(S)))
## The Arrhenius model
marr <- nls(S ~ SSarrhenius(area, k, z), data=sipoo.map)
marr
## confidence limits from profile likelihood
confint(marr)
## draw a line
xtmp <- with(sipoo.map, seq(min(area), max(area), len=51))
lines(xtmp, predict(marr, newdata=data.frame(area = xtmp)), lwd=2)
## The normal way is to use linear regression on log-log data,
## but this will be different from the previous:
mloglog <- 1m(log(S) ~ log(area), data=sipoo.map)
mloglog
lines(xtmp, exp(predict(mloglog, newdata=data.frame(area=xtmp))),
1ty=2)
## Gleason: log-linear
mgle <- nls(S ~ SSgleason(area, k, slope), sipoo.map)
lines(xtmp, predict(mgle, newdata=data.frame(area=xtmp)),
lwd=2, col=2)
## Gitay: quadratic of log-linear
mgit <- nls(S ~ SSgitay(area, k, slope), sipoo.map)
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lines(xtmp, predict(mgit, newdata=data.frame(area=xtmp)),
lwd=2, col = 3)

## Lomolino: using original names of the parameters (Lomolino 2000):

mlom <- nls(S ~ SSlomolino(area, Smax, A5@, Hill), sipoo.map)

mlom

lines(xtmp, predict(mlom, newdata=data.frame(area=xtmp)),
lwd=2, col = 4)

## One canned model of standard R:

mmic <- nls(S ~ SSmicmen(area, Asym, slope), sipoo.map)

lines(xtmp, predict(mmic, newdata = data.frame(area=xtmp)),
lwd =2, col = 5)

legend("bottomright”, c("Arrhenius”, "log-log linear”, "Gleason"”, "Gitay",
"Lomolino”, "Michaelis-Menten"), col=c(1,1,2,3,4,5), lwd=c(2,1,2,2,2,2),
lty=c(1,2,1,1,1,1))

## compare models (AIC)

allmods <- list(Arrhenius = marr, Gleason = mgle, Gitay = mgit,
Lomolino = mlom, MicMen= mmic)

sapply(allmods, AIC)

stepacross Stepacross as Flexible Shortest Paths or Extended Dissimilarities

Description

Function stepacross tries to replace dissimilarities with shortest paths stepping across interme-
diate sites while regarding dissimilarities above a threshold as missing data (NA). With path =
"shortest” this is the flexible shortest path (Williamson 1978, Bradfield & Kenkel 1987), and
with path = "extended” an approximation known as extended dissimilarities (De’ath 1999). The
use of stepacross should improve the ordination with high beta diversity, when there are many
sites with no species in common.

Usage
stepacross(dis, path = "shortest”, toolong = 1, trace = TRUE, ...)
Arguments
dis Dissimilarity data inheriting from class dist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functions vegdist and dist are
some functions producing suitable dissimilarity data.
path The method of stepping across (partial match) Alternative "shortest” finds the
shortest paths, and "extended” their approximation known as extended dissim-
ilarities.
toolong Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that
dissimilarities close to the limit will be made NA, too.
trace Trace the calculations.

Other parameters (ignored).
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Details

Williamson (1978) suggested using flexible shortest paths to estimate dissimilarities between sites
which have nothing in common, or no shared species. With path = "shortest” function stepacross
replaces dissimilarities that are toolong or longer with NA, and tries to find shortest paths between
all sites using remaining dissimilarities. Several dissimilarity indices are semi-metric which means
that they do not obey the triangle inequality d;; < d;, +dy;, and shortest path algorithm can replace

these dissimilarities as well, even when they are shorter than toolong.

De’ath (1999) suggested a simplified method known as extended dissimilarities, which are calcu-
lated with path = "extended”. In this method, dissimilarities that are toolong or longer are first
made NA, and then the function tries to replace these NA dissimilarities with a path through single
stepping stone points. If not all NA could be replaced with one pass, the function will make new
passes with updated dissimilarities as long as all NA are replaced with extended dissimilarities. This
mean that in the second and further passes, the remaining NA dissimilarities are allowed to have
more than one stepping stone site, but previously replaced dissimilarities are not updated. Further,
the function does not consider dissimilarities shorter than toolong, although some of these could
be replaced with a shorter path in semi-metric indices, and used as a part of other paths. In optimal
cases, the extended dissimilarities are equal to shortest paths, but they may be longer.

As an alternative to defining too long dissimilarities with parameter toolong, the input dissimilari-
ties can contain NAs. If toolong is zero or negative, the function does not make any dissimilarities
into NA. If there are no NAs in the input and toolong = @, path = "shortest” will find shorter paths
for semi-metric indices, and path = "extended"” will do nothing. Function no. shared can be used
to set dissimilarities to NA.

If the data are disconnected or there is no path between all points, the result will contain NAs and
a warning is issued. Several methods cannot handle NA dissimilarities, and this warning should be
taken seriously. Function distconnected can be used to find connected groups and remove rare
outlier observations or groups of observations.

Alternative path = "shortest"” uses Dijkstra’s method for finding flexible shortest paths, imple-
mented as priority-first search for dense graphs (Sedgewick 1990). Alternative path = "extended”
follows De’ath (1999), but implementation is simpler than in his code.

Value

Function returns an object of class dist with extended dissimilarities (see functions vegdist and
dist). The value of path is appended to the method attribute.

Note

The function changes the original dissimilarities, and not all like this. It may be best to use the
function only when you really must: extremely high beta diversity where a large proportion of
dissimilarities are at their upper limit (no species in common).

Semi-metric indices vary in their degree of violating the triangle inequality. Morisita and Horn—
Morisita indices of vegdist may be very strongly semi-metric, and shortest paths can change these
indices very much. Mountford index violates basic rules of dissimilarities: non-identical sites have
zero dissimilarity if species composition of the poorer site is a subset of the richer. With Mountford
index, you can find three sites i, j, k so that d;; = 0 and d;; = 0, but d;; > 0. The results of
stepacross on Mountford index can be very weird. If stepacross is needed, it is best to try to
use it with more metric indices only.



258 stressplot.wemdscale

Author(s)

Jari Oksanen

References

Bradfield, G.E. & Kenkel, N.C. (1987). Nonlinear ordination using flexible shortest path adjustment
of ecological distances. Ecology 68, 750-753.

De’ath, G. (1999). Extended dissimilarity: a method of robust estimation of ecological distances
from high beta diversity data. Plant Ecol. 144, 191-199.

Sedgewick, R. (1990). Algorithms in C. Addison Wesley.
Williamson, M.H. (1978). The ordination of incidence data. J. Ecol. 66, 911-920.

See Also

Function distconnected can find connected groups in disconnected data, and function no. shared
can be used to set dissimilarities as NA. See swan for an alternative approach. Function stepacross
is an essential component in isomap and cophenetic. spantree.

Examples

# There are no data sets with high beta diversity in vegan, but this
# should give an idea.

data(dune)

dis <- vegdist(dune)

edis <- stepacross(dis)

plot(edis, dis, xlab = "Shortest path”, ylab = "Original")

## Manhattan distance have no fixed upper limit.

dis <- vegdist(dune, "manhattan")

is.na(dis) <- no.shared(dune)

dis <- stepacross(dis, toolong=0)

stressplot.wcmdscale  Display Ordination Distances Against Observed Distances in Eigen-
vector Ordinations

Description

Functions plot ordination distances in given number of dimensions against observed distances or
distances in full space in eigenvector methods. The display is similar as the Shepard diagram
(stressplot for non-metric multidimensional scaling with metaMDS or monoMDS), but shows the
linear relationship of the eigenvector ordinations. The stressplot methods are available for
wcmdscale, rda, cca, capscale, dbrda, prcomp and princomp.

Usage

## S3 method for class 'wcmdscale'
stressplot(object, k = 2, pch, p.col = "blue”, 1.col = "red",
lwd = 2, ...)
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Arguments
object Result object from eigenvector ordination (wcmdscale, rda, cca, dbrda, capscale)
k Number of dimensions for which the ordination distances are displayed.

pch, p.col, 1.col, 1wd
Plotting character, point colour and line colour like in default stressplot

Other parameters to functions, e.g. graphical parameters.

Details

The functions offer a similar display for eigenvector ordinations as the standard Shepard diagram
(stressplot) in non-metric multidimensional scaling. The ordination distances in given number of
dimensions are plotted against observed distances. With metric distances, the ordination distances
in full space (with all ordination axes) are equal to observed distances, and the fit line shows this
equality. In general, the fit line does not go through the points, but the points for observed distances
approach the fit line from below. However, with non-Euclidean distances (in wemdscale, dbrda
or capscale) with negative eigenvalues the ordination distances can exceed the observed distances
in real dimensions; the imaginary dimensions with negative eigenvalues will correct these excess
distances. If you have used dbrda, capscale or wemdscale with argument add to avoid negative
eigenvalues, the ordination distances will exceed the observed dissimilarities.

In partial ordination (cca, rda, and capscale with Condition in the formula), the distances in the
partial component are included both in the observed distances and in ordination distances. With
k=0, the ordination distances refer to the partial ordination. The exception is dbrda where the
distances in partial, constrained and residual components are not additive, and only the first of these
components can be shown, and partial models cannot be shown at all.

Value

Functions draw a graph and return invisibly the ordination distances or the ordination distances.

Author(s)

Jari Oksanen.

See Also

stressplot and stressplot.monoMDS for standard Shepard diagrams.

Examples

data(dune, dune.env)

mod <- rda(dune)

stressplot(mod)

mod <- rda(dune ~ Management, dune.env)
stressplot(mod, k=3)
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taxondive

Indices of Taxonomic Diversity and Distinctness

Description

Function finds indices of taxonomic diversity and distinctness, which are averaged taxonomic dis-
tances among species or individuals in the community (Clarke & Warwick 1998, 2001)

Usage

taxondive(comm, dis, match.force = FALSE)
taxa2dist(x, varstep = FALSE, check = TRUE, labels)

Arguments

comm

dis

match.force

varstep

check

labels

Details

Community data.

Taxonomic distances among taxa in comm. This should be a dist object or a
symmetric square matrix.

Force matching of column names in comm and labels in dis. If FALSE, matching
only happens when dimensions differ, and in that case the species must be in
identical order in both.

Classification table with a row for each species or other basic taxon, and columns
for identifiers of its classification at higher levels.

Vary step lengths between successive levels relative to proportional loss of the
number of distinct classes.

If TRUE, remove all redundant levels which are different for all rows or constant
for all rows and regard each row as a different basal taxon (species). If FALSE
all levels are retained and basal taxa (species) also must be coded as variables
(columns). You will get a warning if species are not coded, but you can ignore
this if that was your intention.

The labels attribute of taxonomic distances. Row names will be used if this
is not given. Species will be matched by these labels in comm and dis in
taxondive if these have different dimensions.

Clarke & Warwick (1998, 2001) suggested several alternative indices of taxonomic diversity or
distinctness. Two basic indices are called taxonomic diversity (A) and distinctness (A*):

A=(C0 wirixs)/(n(n —1)/2)
A= (3] ZKJ- wijziz;)/ (O ZKJ- ;%)

The equations give the index value for a single site, and summation goes over species ¢ and j. Here
w are taxonomic distances among taxa, and x are species abundances, and n is the total abundance
for a site. With presence/absence data both indices reduce to the same index A™, and for this index
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Clarke & Warwick (1998) also have an estimate of its standard deviation. Clarke & Warwick (2001)
presented two new indices: sA™ is the product of species richness and A™, and index of variation
in taxonomic distinctness (A1) defined as

AT = (2w /(n(n = 1)/2) — (A%)?

The dis argument must be species dissimilarities. These must be similar to dissimilarities produced
by dist. It is customary to have integer steps of taxonomic hierarchies, but other kind of dissimi-
larities can be used, such as those from phylogenetic trees or genetic differences. Further, the dis
need not be taxonomic, but other species classifications can be used.

Function taxa2dist can produce a suitable dist object from a classification table. Each species
(or basic taxon) corresponds to a row of the classification table, and columns give the classification
at different levels. With varstep = FALSE the successive levels will be separated by equal steps, and
with varstep = TRUE the step length is relative to the proportional decrease in the number of classes
(Clarke & Warwick 1999). With check = TRUE, the function removes classes which are distinct for
all species or which combine all species into one class, and assumes that each row presents a distinct
basic taxon. The function scales the distances so that longest path length between taxa is 100 (not
necessarily when check = FALSE).

Function plot.taxondive plots A" against Number of species, together with expectation and its
approximate 2*sd limits. Function summary.taxondive finds the z values and their significances
from Normal distribution for AT,

Value

Function returns an object of class taxondive with following items:

Species Number of species for each site.
D, Dstar, Dplus, SDplus, Lambda

A, A*, AT, sAT and AT for each site.
sd.Dplus Standard deviation of AT,

ED, EDstar, EDplus
Expected values of corresponding statistics.

Function taxa2dist returns an object of class "dist”, with an attribute "steps” for the step
lengths between successive levels.
Note

The function is still preliminary and may change. The scaling of taxonomic dissimilarities influ-
ences the results. If you multiply taxonomic distances (or step lengths) by a constant, the values
of all Deltas will be multiplied with the same constant, and the value of AT by the square of the
constant.

Author(s)

Jari Oksanen
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References

Clarke, K.R & Warwick, R.M. (1998) A taxonomic distinctness index and its statistical properties.
Journal of Applied Ecology 35, 523-531.

Clarke, K.R. & Warwick, R.M. (1999) The taxonomic distinctness measure of biodiversity: weight-
ing of step lengths between hierarchical levels. Marine Ecology Progress Series 184: 21-29.

Clarke, K.R. & Warwick, R.M. (2001) A further biodiversity index applicable to species lists: vari-
ation in taxonomic distinctness. Marine Ecology Progress Series 216, 265-278.

See Also

diversity.

Examples

## Preliminary: needs better data and some support functions
data(dune)

data(dune. taxon)

# Taxonomic distances from a classification table with variable step lengths.
taxdis <- taxa2dist(dune.taxon, varstep=TRUE)
plot(hclust(taxdis), hang = -1)

# Indices

mod <- taxondive(dune, taxdis)

mod

summary (mod)

plot(mod)

tolerance Species tolerances and sample heterogeneities

Description

Species tolerances and sample heterogeneities.

Usage

tolerance(x, ...)

## S3 method for class 'cca'
tolerance(x, choices = 1:2, which = c("species”,"sites"),
scaling = "species”, useN2 = TRUE, hill = FALSE, ...)

## S3 method for class 'decorana'
tolerance(x, data, choices = 1:4,
which = c("sites"”, "species”), useN2 = TRUE, ...)
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Arguments

X

choices

which

scaling
hill

useN2

data

Details
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object of class "cca".

numeric; which ordination axes to compute tolerances and heterogeneities for.
Defaults to axes 1 and 2.

character; one of "species” or "sites”, indicating whether species tolerances
or sample heterogeneities respectively are computed.

character or numeric; the ordination scaling to use. See scores. cca for details.

logical; if scaling is a character, these control whether Hill’s scaling is used for
(C)CA respectively. See scores. cca for details.

logical; should the bias in the tolerances / heterogeneities be reduced via scaling
by Hill’s N2?

Original input data used in decorana. If missing, the function tries to get the
same data as used in decorana call.

arguments passed to other methods.

Function to compute species tolerances and site heterogeneity measures from unimodal ordinations
(CCA & CA). Implements Eq 6.47 and 6.48 from the Canoco 4.5 Reference Manual (pages 178—

179).

Function wascores with stdev = TRUE uses the same algebra, but bases the standard deviations on
weighted averages scores instead of linear combinations scores of tolerance.

Value

Matrix of tolerances/heterogeneities with some additional attributes: which, scaling, and N2, the
latter of which will be NA if useN2 = FALSE or N2 could not be estimated.

Author(s)

Gavin L. Simpson and Jari Oksanen (decorana method).

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ ., data = dune.env)

## defaults to species tolerances
tolerance(mod)

## sample heterogeneities for CCA axes 1:6

tolerance(mod, which = "sites”, choices = 1:6)
## average should be 1 with scaling = "sites”, hill = TRUE
tol <- tolerance(mod, which = "sites”, scaling = "sites"”, hill = TRUE,

choices = 1:4)
colMeans(tol)
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apply(tol, 2, sd)

## Rescaling tries to set all tolerances to 1
tol <- tolerance(decorana(dune))
colMeans(tol)

apply(tol, 2, sd)

treedive Functional Diversity and Community Distances from Species Trees

Description

Functional diversity is defined as the total branch length in a trait dendrogram connecting all species,
but excluding the unnecessary root segments of the tree (Petchey and Gaston 2006). Tree distance
is the increase in total branch length when combining two sites.

Usage
treedive(comm, tree, match.force = TRUE, verbose = TRUE)
treeheight(tree)
treedist(x, tree, relative = TRUE, match.force = TRUE, ...)
Arguments
comm, X Community data frame or matrix.
tree A dendrogram which for treedive must be for species (columns).
match.force Force matching of column names in data (comm, x) and labels in tree. If FALSE,

matching only happens when dimensions differ (with a warning or message).
The order of data must match to the order in tree if matching by names is not

done.
verbose Print diagnostic messages and warnings.
relative Use distances relative to the height of combined tree.

Other arguments passed to functions (ignored).

Details

Function treeheight finds the sum of lengths of connecting segments in a dendrogram produced by
hclust, or other dendrogram that can be coerced to a correct type using as.hclust. When applied
to a clustering of species traits, this is a measure of functional diversity (Petchey and Gaston 2002,
2006), and when applied to phylogenetic trees this is phylogenetic diversity.

Function treedive finds the treeheight for each site (row) of a community matrix. The function
uses a subset of dendrogram for those species that occur in each site, and excludes the tree root if
that is not needed to connect the species (Petchey and Gaston 2006). The subset of the dendrogram
is found by first calculating cophenetic distances from the input dendrogram, then reconstructing
the dendrogram for the subset of the cophenetic distance matrix for species occurring in each site.
Diversity is O for one species, and NA for empty communities.
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Function treedist finds the dissimilarities among trees. Pairwise dissimilarity of two trees is found
by combining species in a common tree and seeing how much of the tree height is shared and how
much is unique. With relative = FALSE the dissimilarity is defined as 2(AU B) — A — B, where A
and B are heights of component trees and AU B is the height of the combined tree. With relative
= TRUE the dissimilarity is (2(AU B) — A — B)/(AU B). Although the latter formula is similar to
Jaccard dissimilarity (see vegdist, designdist), it is not in the range 0. . . 1, since combined tree
can add a new root. When two zero-height trees are combined into a tree of above zero height, the
relative index attains its maximum value 2. The dissimilarity is zero from a combined zero-height
tree.

The functions need a dendrogram of species traits or phylogenies as an input. If species traits con-
tain factor or ordered factor variables, it is recommended to use Gower distances for mixed data
(function daisy in package cluster), and usually the recommended clustering method is UPGMA
(method = "average" in function hclust) (Podani and Schmera 2006). Phylogenetic trees can be
changed into dendrograms using function as.hclust.phylo in the ape package.

It is possible to analyse the non-randomness of tree diversity using oecosimu. This needs specifying
an adequate Null model, and the results will change with this choice.

Value

A vector of diversity values or a single tree height, or a dissimilarity structure that inherits from
dist and can be used similarly.

Author(s)

Jari Oksanen

References

Lozupone, C. and Knight, R. 2005. UniFrac: a new phylogenetic method for comparing microbial
communities. Applied and Environmental Microbiology 71, 8228-8235.

Petchey, O.L. and Gaston, K.J. 2002. Functional diversity (FD), species richness and community
composition. Ecology Letters 5, 402—411.

Petchey, O.L. and Gaston, K.J. 2006. Functional diversity: back to basics and looking forward.
Ecology Letters 9, 741-758.

Podani J. and Schmera, D. 2006. On dendrogram-based methods of functional diversity. Oikos 115,
179-185.

See Also

Function treedive is similar to the phylogenetic diversity function pd in the package picante,
but excludes tree root if that is not needed to connect species. Function treedist is similar to
the phylogenetic similarity phylosor in the package picante, but excludes unneeded tree root and
returns distances instead of similarities.

taxondive is something very similar from another bubble.
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Examples

## There is no data set on species properties yet, and we demonstrate
## the methods using phylogenetic trees

data(dune)

data(dune.phylodis)

cl <- hclust(dune.phylodis)

treedive(dune, cl)

## Significance test using Null model communities.

## The current choice fixes numbers of species and picks species
## proportionally to their overall frequency

oecosimu(dune, treedive, "r1", tree = cl, verbose = FALSE)

## Phylogenetically ordered community table

dtree <- treedist(dune, cl)

tabasco(dune, hclust(dtree), cl)

## Use tree distances in distance-based RDA

dbrda(dtree ~ 1)

tsallis Tsallis Diversity and Corresponding Accumulation Curves

Description
Function tsallis find Tsallis diversities with any scale or the corresponding evenness measures.
Function tsallisaccum finds these statistics with accumulating sites.

Usage

tsallis(x, scales = seq(@, 2, 0.2), norm = FALSE, hill = FALSE)
tsallisaccum(x, scales = seq(@, 2, 0.2), permutations = 100,

raw = FALSE, subset, ...)
## S3 method for class 'tsallisaccum'
persp(x, theta = 220, phi = 15, col = heat.colors(100), zlim, ...)
Arguments
X Community data matrix or plotting object.
scales Scales of Tsallis diversity.
norm Logical, if TRUE diversity values are normalized by their maximum (diversity

value at equiprobability conditions).
hill Calculate Hill numbers.

permutations Usually an integer giving the number permutations, but can also be a list of con-
trol values for the permutations as returned by the function how, or a permutation
matrix where each row gives the permuted indices.

raw If FALSE then return summary statistics of permutations, and if TRUE then re-
turns the individual permutations.
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subset logical expression indicating sites (rows) to keep: missing values are taken as
FALSE.

theta, phi angles defining the viewing direction. theta gives the azimuthal direction and
phi the colatitude.

col Colours used for surface.

zlim Limits of vertical axis.

Other arguments which are passed to tsallis and to graphical functions.

Details

The Tsallis diversity (also equivalent to Patil and Taillie diversity) is a one-parametric generalised
entropy function, defined as:

1 S
Hy=—(1=) 1)
i=1

=1

where ¢ is a scale parameter, S' the number of species in the sample (Tsallis 1988, Tothmeresz
1995). This diversity is concave for all ¢ > 0, but non-additive (Keylock 2005). For ¢ = 0 it gives
the number of species minus one, as ¢ tends to 1 this gives Shannon diversity, for ¢ = 2 this gives
the Simpson index (see function diversity).

If norm = TRUE, tsallis gives values normalized by the maximum:

St=a_1
H,(max) = ——
J(maz) =

where S is the number of species. As ¢ tends to 1, maximum is defined as In(S).

If hill = TRUE, tsallis gives Hill numbers (numbers equivalents, see Jost 2007):

D, = (1= (g H)1-

Details on plotting methods and accumulating values can be found on the help pages of the functions
renyi and renyiaccum.

Value

Function tsallis returns a data frame of selected indices. Function tsallisaccum with argument
raw = FALSE returns a three-dimensional array, where the first dimension are the accumulated sites,
second dimension are the diversity scales, and third dimension are the summary statistics mean,
stdev, min, max, Qnt 0.025 and Qnt @.975. With argument raw = TRUE the statistics on the third
dimension are replaced with individual permutation results.

Author(s)

Péter S6lymos, <solymos@ualberta.ca>, based on the code of Roeland Kindt and Jari Oksanen
written for renyi
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References

Tsallis, C. (1988) Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phis. 52, 479-487.

Tothmeresz, B. (1995) Comparison of different methods for diversity ordering. Journal of Vegeta-
tion Science 6, 283-290.

Patil, G. P. and Taillie, C. (1982) Diversity as a concept and its measurement. J. Am. Stat. Ass. 77,
548-567.

Keylock, C. J. (2005) Simpson diversity and the Shannon-Wiener index as special cases of a gener-
alized entropy. Oikos 109, 203-207.

Jost, L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88,
2427-2439.

See Also

Plotting methods and accumulation routines are based on functions renyi and renyiaccum. An
object of class tsallisaccum can be displayed with dynamic 3D function rgl.renyiaccum in the
vegan3d package. See also settings for persp.

Examples

data(BCI)

i <- sample(nrow(BCI), 12)

x1 <- tsallis(BCI[i,])

x1

diversity(BCI[i,],"simpson”) == x1[["2"]]
plot(x1)

x2 <- tsallis(BCI[i,],norm=TRUE)

X2

plot(x2)

mod1 <- tsallisaccum(BCI[i,])

plot(mod1, as.table=TRUE, col = c(1, 2, 2))
persp(mod1)

mod2 <- tsallisaccum(BCI[i,], norm=TRUE)
persp(mod2, theta=100,phi=30)

varespec Vegetation and environment in lichen pastures

Description

The varespec data frame has 24 rows and 44 columns. Columns are estimated cover values of
44 species. The variable names are formed from the scientific names, and are self explanatory for
anybody familiar with the vegetation type. The varechem data frame has 24 rows and 14 columns,
giving the soil characteristics of the very same sites as in the varespec data frame. The chemical
measurements have obvious names. Baresoil gives the estimated cover of bare soil, Humdepth the
thickness of the humus layer.
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Usage
data(varechem)
data(varespec)
References

Vire, H., Ohtonen, R. and

269

Oksanen, J. (1995) Effects of reindeer grazing on understorey vegetation

in dry Pinus sylvestris forests. Journal of Vegetation Science 6, 523-530.

Examples
data(varespec)
data(varechem)
varpart Fartition the Variation of Community Matrix by 2, 3, or 4 Explanatory
Matrices
Description

The function partitions the variation in community data or community dissimilarities with respect to
two, three, or four explanatory tables, using adjusted R? in redundancy analysis ordination (RDA)
or distance-based redundancy analysis. If response is a single vector, partitioning is by partial
regression. Collinear variables in the explanatory tables do NOT have to be removed prior to parti-

tioning.

Usage

varpart(Y, X, ..., data, chisquare = FALSE, transfo, scale = FALSE,
add = FALSE, sqgrt.dist = FALSE, permutations)
## S3 method for class 'varpart'

summary (object, ...)

showvarparts(parts, labels, bg = NULL, alpha = 63, Xnames,

id.size = 1.2,

L)

## S3 method for class 'varpart234'

plot(x, cutoff = @, digits =1, ...)
Arguments
Y Data frame or matrix containing the response data table or dissimilarity structure

inheriting from dist. In community ecology, that table is often a site-by-species
table or a dissimilarity object.

X Two to four explanatory models, variables or tables. These can be defined in
three alternative ways: (1) one-sided model formulae beginning with ~ and then
defining the model, (2) name of a single numeric or factor variable, or (3) name
of matrix with numeric or data frame with numeric and factor variables. The
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model formulae can have factors, interaction terms and transformations of vari-
ables. The names of the variables in the model formula are found in data frame
given in data argument, and if not found there, in the user environment. Single
variables, data frames or matrices are found in the user environment. All entries
till the next argument (data or transfo) are interpreted as explanatory models,
and the names of these extra arguments cannot be abbreviated nor omitted.

Other parameters passed to functions. NB, arguments after dots cannot be ab-
breviated but they must be spelt out completely.

data The data frame with the variables used in the formulae in X.
chisquare Partition Chi-square or the inertia of Correspondence Analysis (cca).
transfo Transformation for Y (community data) using decostand. All alternatives in

decostand can be used, and those preserving Euclidean metric include "hellinger”,
"chi.square”, "total”, "norm”. Ignored if Y are dissimilarities.

scale Should the columns of Y be standardized to unit variance. Ignored if Y are dis-
similarities.
add Add a constant to the non-diagonal values to euclidify dissimilarities (see wemdscale

for details). Choice "lingoes” (or TRUE) use the recommended method of Leg-
endre & Anderson (1999: “method 1) and "cailliez” uses their “method 2”.
The argument has an effect only when Y are dissimilarities.

sqrt.dist Take square root of dissimilarities. This often euclidifies dissimilarities. NB.,
the argument name cannot be abbreviated. The argument has an effect only
when Y are dissimilarities.

permutations If chisquare = TRUE, the adjusted R? is estimated by permutations, and this
paramater can be a list of control values for the permutations as returned by the
function how, or the number of permutations required, or a permutation matrix
where each row gives the permuted indices.

parts Number of explanatory tables (circles) displayed.

labels Labels used for displayed fractions. Default is to use the same letters as in the
printed output.

bg Fill colours of circles or ellipses.

alpha Transparency of the fill colour. The argument takes precedence over possible

transparency definitions of the colour. The value must be in range 0...255, and
low values are more transparent. Transparency is not available in all graphics
devices or file formats.

Xnames Names for sources of variation. Default names are X1, X2, X3 and X4. Xnames=NA,
Xnames=NULL and Xnames="" produce no names. The names can be changed to
other names. It is often best to use short names.

id.size A numerical value giving the character expansion factor for the names of circles
or ellipses.

X, object The varpart result.

cutoff The values below cutoff will not be displayed.

digits The number of significant digits; the number of decimal places is at least one

higher.
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Details

The functions partition the variation in Y into components accounted for by two to four explana-
tory tables and their combined effects. If Y is a multicolumn data frame or matrix, the partition-
ing is based on redundancy analysis (RDA, see rda) or on constrained correspondence analysis
if chisquare = TRUE (CCA, see cca). If Y is a single variable, the partitioning is based on lin-
ear regression. If Y are dissimilarities, the decomposition is based on distance-based redundancy
analysis (db-RDA, see dbrda) following McArdle & Anderson (2001). The input dissimilarities
must be compatible to the results of dist. Vegan functions vegdist, designdist, raupcrick and
betadiver produce such objects, as do many other dissimilarity functions in R packages. Parti-
tioning will be made to squared dissimilarities analogously to using variance with rectangular data
—unless sqrt.dist = TRUE was specified.

The function primarily uses adjusted R? to assess the partitions explained by the explanatory tables
and their combinations (see RsquareAdj), because this is the only unbiased method (Peres-Neto
et al., 2006). The raw R? for basic fractions are also displayed, but these are biased estimates of
variation explained by the explanatory table. In correspondence analysis (chisquare = TRUE), the
adjusted R? are found by permutation and they vary in repeated analyses.

The identifiable fractions are designated by lower case alphabets. The meaning of the symbols
can be found in the separate document (use browseVignettes(”vegan”)), or can be displayed
graphically using function showvarparts.

A fraction is testable if it can be directly expressed as an RDA or db-RDA model. In these cases
the printed output also displays the corresponding RDA model using notation where explanatory
tables after | are conditions (partialled out; see rda for details). Although single fractions can be
testable, this does not mean that all fractions simultaneously can be tested, since the number of
testable fractions is higher than the number of estimated models. The non-testable components are
found as differences of testable components. The testable components have permutation variance
in correspondence analysis (chisquare = TRUE), and the non-testable components have even higher
variance.

An abridged explanation of the alphabetic symbols for the individual fractions follows, but compu-
tational details should be checked in the vignette (readable with browseVignettes("vegan”)) or
in the source code.

With two explanatory tables, the fractions explained uniquely by each of the two tables are [a] and
[b1, and their joint effect is [c].

With three explanatory tables, the fractions explained uniquely by each of the three tables are [a]
to [c], joint fractions between two tables are [d] to [f], and the joint fraction between all three
tables is [g].

With four explanatory tables, the fractions explained uniquely by each of the four tables are [a] to
[d], joint fractions between two tables are [e] to [j], joint fractions between three variables are
[k] to [n1, and the joint fraction between all four tables is [o].

summary will give an overview of unique and and overall contribution of each group of variables.
The overall contribution (labelled as “Contributed”) consists of the unique contribution of the vari-
able and equal shares of each fraction where the variable contributes. The summary tabulates how
each fraction is divided between the variables, and the contributed component is the sum of all these
divided fractions. The summary is based on the idea of Lai et al. (2022), and is similar to the output
of their rdacca.hp package.

There is a plot function that displays the Venn diagram and labels each intersection (individual
fraction) with the adjusted R squared if this is higher than cutoff. A helper function showvarpart
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displays the fraction labels. The circles and ellipses are labelled by short default names or by names
defined by the user in argument Xnames. Longer explanatory file names can be written on the varpart
output plot as follows: use option Xnames=NA, then add new names using the text function. A bit
of fiddling with coordinates (see locator) and character size should allow users to place names of
reasonably short lengths on the varpart plot.

Value

Function varpart returns an object of class "varpart” with items scale and transfo (can be
missing) which hold information on standardizations, tables which contains names of explanatory
tables, and call with the function call. The function varpart calls function varpart2, varpart3
or varpart4 which return an object of class "varpart234” and saves its result in the item part.
The items in this object are:

SS.Y Sum of squares of matrix Y.

n Number of observations (rows).

nsets Number of explanatory tables

bigwarning Warnings on collinearity.

fract Basic fractions from all estimated constrained models.

indfract Individual fractions or all possible subsections in the Venn diagram (see showvarparts).
contri Fractions that can be found after conditioning on single explanatory table in

models with three or four explanatory tables.

contr2 Fractions that can be found after conditioning on two explanatory tables in mod-
els with four explanatory tables.

Fraction Data Frames
Items fract, indfract, contr1 and contr2 are all data frames with items:

Df: Degrees of freedom of numerator of the F'-statistic for the fraction.
R.square: Raw R2. This is calculated only for fract and this is NA in other items.
Adj.R.square: Adjusted R2.

Testable: If the fraction can be expressed as a (partial) RDA model, it is directly Testable, and
this field is TRUE. In that case the fraction label also gives the specification of the testable RDA
model.

Note

You can use command browseVignettes("”vegan") to display document which presents Venn
diagrams showing the fraction names in partitioning the variation of Y with respect to 2, 3, and 4
tables of explanatory variables, as well as the equations used in variation partitioning.

The functions frequently give negative estimates of variation. Adjusted R? can be negative for any
fraction; unadjusted R? of testable fractions of variances will be non-negative. Non-testable frac-
tions cannot be found directly, but by subtracting different models, and these subtraction results
can be negative. The fractions are orthogonal, or linearly independent, but more complicated or
nonlinear dependencies can cause negative non-testable fractions. Any fraction can be negative for
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non-Euclidean dissimilarities because the underlying db-RDA model can yield negative eigenvalues
(see dbrda). These negative eigenvalues in the underlying analysis can be avoided with arguments
sgrt.dist and add which have a similar effect as in dbrda: the square roots of several dissimilar-
ities do not have negative eigenvalues, and no negative eigenvalues are produced after Lingoes or
Cailliez adjustment, which in effect add random variation to the dissimilarities.

A simplified, fast version of RDA, CCA adn dbRDA are used (functions simpleRDA2, simpleCCA
and simpleDBRDA). The actual calculations are done in functions varpart2 to varpart4, but these
are not intended to be called directly by the user.

Author(s)

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal, Canada. Further
developed by Jari Oksanen.

References

(a) References on variation partitioning

Borcard, D., P. Legendre & P. Drapeau. 1992. Partialling out the spatial component of ecological
variation. Ecology 73: 1045-1055.

LaiJ., Y. Zou, J. Zhang & P. Peres-Neto. 2022. Generalizing hierarchical and variation partitioning
in multiple regression and canonical analysis using the rdacca.hp R package. Methods in Ecology
and Evolution, 13: 782-788.

Legendre, P. & L. Legendre. 2012. Numerical ecology, 3rd English edition. Elsevier Science BV,
Amsterdam.

(b) Reference on transformations for species data

Legendre, P. and E. D. Gallagher. 2001. Ecologically meaningful transformations for ordination of
species data. Oecologia 129: 271-280.

(c) Reference on adjustment of the bimultivariate redundancy statistic

Peres-Neto, P., P. Legendre, S. Dray and D. Borcard. 2006. Variation partitioning of species data
matrices: estimation and comparison of fractions. Ecology 87: 2614-2625.

(d) References on partitioning of dissimilarities

Legendre, P. & Anderson, M. J. (1999). Distance-based redundancy analysis: testing multispecies
responses in multifactorial ecological experiments. Ecological Monographs 69, 1-24.

McArdle, B.H. & Anderson, M.J. (2001). Fitting multivariate models to community data: a com-
ment on distance-based redundancy analysis. Ecology 82, 290-297.

See Also

For analysing testable fractions, see rda and anova.cca. For data transformation, see decostand.
Function inertcomp gives (unadjusted) components of variation for each species or site separately.
Function rda displays unadjusted components in its output, but RsquareAdj will give adjusted R?
that are similar to the current function also for partial models.
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Examples

data(mite)
data(mite.env)
data(mite.pcnm)

# Two explanatory data frames -- Hellinger-transform Y
mod <- varpart(mite, mite.env, mite.pcnm, transfo="hel")
mod

summary (mod)

## Use fill colours

showvarparts(2, bg = c("hotpink”,"skyblue"))
plot(mod, bg = c("hotpink”,"skyblue"))
## Test fraction [a] using partial RDA,
## all variables of data mite.env.
aFrac <- rda(decostand(mite, "hel"”), mite.env, mite.pcnm)
anova(aFrac)

## RsquareAdj gives the same result as component [a] of varpart
RsquareAdj(aFrac)

in formula tells to use

## Partition Bray-Curtis dissimilarities
varpart(vegdist(mite), mite.env, mite.pcnm)
## Three explanatory tables with formula interface

mod <- varpart(mite, ~ SubsDens + WatrCont, ~ Substrate + Shrub + Topo,
mite.pcnm, data=mite.env, transfo="hel")

mod

summary (mod)

showvarparts(3, bg=2:4)
plot(mod, bg=2:4)

## Use RDA to test fraction [a]

## Matrix can be an argument in formula

rda.result <- rda(decostand(mite, "hell”) ~ SubsDens + WatrCont +
Condition(Substrate + Shrub + Topo) +
Condition(as.matrix(mite.pcnm)), data = mite.env)

anova(rda.result)

## Four explanatory tables

mod <- varpart(mite, ~ SubsDens + WatrCont, ~Substrate + Shrub + Topo,
mite.pcnm[,1:11], mite.pcnm[,12:22], data=mite.env, transfo="hel")

mod

summary (mod)

plot(mod, bg=2:5)

## Show values for all partitions by putting 'cutoff' low enough:

plot(mod, cutoff = -Inf, cex = 0.7, bg=2:5)

vegan-deprecated

vegan-deprecated Deprecated Functions in vegan package




vegan-deprecated-lattice 275

Description

These functions are provided for compatibility with older versions of vegan only, and may be
defunct as soon as the next release.

Usage

## use toCoda instead
as.mcmc.oecosimu(x)
as.mcmc. permat (x)

Arguments

X object to be transformed.

Details

as.mcmc functions were replaced with toCoda.

See Also

Deprecated

vegan-deprecated-lattice
Deprecated lattice Functions in vegan

Description

Lattice functions are going to be deprecated and removed from vegan as soon as viable alternatives
are available (or if they are unsatisfactory originally).

Usage
ordicloud(x, data = NULL, formula, display = "sites"”, choices = 1:3,
panel = "panel.ordi3d", prepanel = "prepanel.ordi3d”, ...)
ordisplom(x, data = NULL, formula = NULL, display = "sites"”, choices = 1:3,
panel = "panel.ordi”, type = "p", ...)
ordiresids(x, kind = c("residuals”, "scale"”, "qgmath"),
residuals = "working", type = c("p", "smooth", "g"),
formula, ...)
Arguments

X, data, formula, display, choices, panel, prepanel, type, ...
Similar parameters as in ordixyplot.

kind The type of plot: residuals or absolute values of residuals against fitted values,
or quantile plot of residuals with ggmath.

residuals The type of residuals with choices "working"”, "response”, "standardized"
and "studentized”.
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Details

Trellis (or lattice) functions were added to vegan mostly in 2008 to 2009. In that time they were
the only alternative of the kind, but now there are better, more versatile and more user-friendly
alternatives, mainly in ggplot2. The lattice functions will be removed from vegan as soon as we
can propose better modern alternatives.

The following functions are currently deprecated:

* ordicloud was transferred to vegan3d as ordilattice3d.

» ordisplomdesign is bad and deficient. If you want to have something similar, write your own
code.

* ordiresids is not very useful, but you can directly access ordination results with fitted.cca,
residuals.cca, rstandard.cca, rstudent.cca and other functions that were not available
in ordiresids.

vegdist Dissimilarity Indices for Community Ecologists

Description

The function computes dissimilarity indices that are useful for or popular with community ecolo-
gists. All indices use quantitative data, although they would be named by the corresponding binary
index, but you can calculate the binary index using an appropriate argument. If you do not find your
favourite index here, you can see if it can be implemented using designdist. Gower, Bray—Curtis,
Jaccard and Kulczynski indices are good in detecting underlying ecological gradients (Faith et al.
1987). Morisita, Horn—Morisita, Binomial, Cao and Chao indices should be able to handle different
sample sizes (Wolda 1981, Krebs 1999, Anderson & Millar 2004), and Mountford (1962) and Raup-
Crick indices for presence—absence data should be able to handle unknown (and variable) sample
sizes. Most of these indices are discussed by Krebs (1999) and Legendre & Legendre (2012), and
their properties further compared by Wolda (1981) and Legendre & De Céceres (2012). Aitchison
(1986) distance is equivalent to Euclidean distance between CLR-transformed samples ("clr") and
deals with positive compositional data. Robust Aitchison distance by Martino et al. (2019) uses ro-
bust CLR ("rlcr”), making it applicable to non-negative data including zeroes (unlike the standard

Aitchison).
Usage
vegdist(x, method="bray", binary=FALSE, diag=FALSE, upper=FALSE,
na.rm = FALSE, ...)
Arguments
X Community data matrix.
method Dissimilarity index, partial match to "manhattan”, "euclidean”, "canberra”,

non nonz non non

"clark”, "bray”, "kulczynski”, "jaccard”, "gower"”, "altGower", "morisita”,

n on non n on

"horn”, "mountford”, "raup”, "binomial”, "chao”, "cao"”, "mahalanobis”,

non non

"chisqg”, "chord”, "hellinger"”, "aitchison”, or "robust.aitchison”.


https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=vegan3d
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binary Perform presence/absence standardization before analysis using decostand.
diag Compute diagonals.

upper Return only the upper diagonal.

na.rm Pairwise deletion of missing observations when computing dissimilarities (but

some dissimilarities may still be NA, although calculation is handled).

Other parameters. These are ignored, except in method ="gower" which accepts
range.global parameter of decostand, and in method="aitchison"”, which
accepts pseudocount parameter of decostand used in the clr transformation.

Details

Jaccard ("jaccard"), Mountford ("mountford”), Raup—Crick ("raup"”), Binomial and Chao in-
dices are discussed later in this section. The function also finds indices for presence/ absence data
by setting binary = TRUE. The following overview gives first the quantitative version, where x;;
x5, refer to the quantity on species (column) ¢ and sites (rows) 7 and k. In binary versions A and
B are the numbers of species on compared sites, and .J is the number of species that occur on both
compared sites similarly as in designdist (many indices produce identical binary versions):

euclidean  djp = /> ;(@ij — zik)?
binary: VA + B — 2J
manhattan  dj, =, |7ij — ikl
binary: A+ B —2J
gower djr = (1/M) >, %
binary: (A+ B —2J)/M
where M is the number of columns (excluding missing values)
altGower dj = (1/NZ) >, |xij — i
where N Z is the number of non-zero columns excluding double-zeros (Anderson et al. 2006).

: . A+B—2J
binary: 714 - J‘ |
ATij —Tik|
canberra dji = NZ > EIRESE
where N Z is the number of non-zero entries.
: . A+B—2J
binary: 55—
Tij—Tik
clark djg \/NZ > (I”Hw)
where N Z is the number of non-zero entries.
A+B—2J

binary: 57

diy = > i —zal
S
blnary: TAxB _

kulczynski djp=1— 0.5(2 min(wig, i) 4 Z"mm(zij’xm)

bray

D Tij D Tik
binary: 1 — (J/A+ J/B)/2
morisita djxk =1— o +>\2k§zi:”;2“°zizm,where
)\ > mij (i —
Z @i 2 (xij—1)
binary: cannot be calculated
horn Like morisita, but \; = Y7, 22,/ (32, 2i;)?

binary: A£E-27

binomial djr = > ;[wij log (%

) + @i log(5) — nilog(5)]/mi,
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where n; = Tij + Tik
binary: log(2) x (A+ B —2J)
cao djr = >, 1og (%) — (x5 log(zik) + mik log(zij)) /mu,
where S is the number of species in compared sites and n; = z;; + x4,

Jaccard index is computed as 2B/(1 + B), where B is Bray—Curtis dissimilarity.

Binomial index is derived from Binomial deviance under null hypothesis that the two compared
communities are equal. It should be able to handle variable sample sizes. The index does not have
a fixed upper limit, but can vary among sites with no shared species. For further discussion, see
Anderson & Millar (2004).

Cao index or CYd index (Cao et al. 1997) was suggested as a minimally biased index for high
beta diversity and variable sampling intensity. Cao index does not have a fixed upper limit, but
can vary among sites with no shared species. The index is intended for count (integer) data, and it
is undefined for zero abundances; these are replaced with arbitrary value 0.1 following Cao et al.
(1997). Cao et al. (1997) used log,, but the current function uses natural logarithms so that the
values are approximately 2.30 times higher than with 10-based logarithms. Anderson & Thompson
(2004) give an alternative formulation of Cao index to highlight its relationship with Binomial index
(above).

Mountford index is defined as M = 1/« where « is the parameter of Fisher’s logseries as-
suming that the compared communities are samples from the same community (cf. fisherfit,
fisher.alpha). The index M is found as the positive root of equation exp(aM) + exp(bM) =
14 expl(a + b — j)M], where j is the number of species occurring in both communities, and a
and b are the number of species in each separate community (so the index uses presence—absence
information). Mountford index is usually misrepresented in the literature: indeed Mountford (1962)
suggested an approximation to be used as starting value in iterations, but the proper index is defined
as the root of the equation above. The function vegdist solves M with the Newton method. Please
note that if either @ or b are equal to j, one of the communities could be a subset of other, and the
dissimilarity is 0 meaning that non-identical objects may be regarded as similar and the index is
non-metric. The Mountford index is in the range 0. . . log(2).

Raup—Crick dissimilarity (method = "raup") is a probabilistic index based on presence/absence
data. It is defined as 1 — prob(j), or based on the probability of observing at least j species in
shared in compared communities. The current function uses analytic result from hypergeometric
distribution (phyper) to find the probabilities. This probability (and the index) is dependent on the
number of species missing in both sites, and adding all-zero species to the data or removing missing
species from the data will influence the index. The probability (and the index) may be almost zero
or almost one for a wide range of parameter values. The index is nonmetric: two communities
with no shared species may have a dissimilarity slightly below one, and two identical communities
may have dissimilarity slightly above zero. The index uses equal occurrence probabilities for all
species, but Raup and Crick originally suggested that sampling probabilities should be proportional
to species frequencies (Chase et al. 2011). A simulation approach with unequal species sampling
probabilities is implemented in raupcrick function following Chase et al. (2011). The index can
be also used for transposed data to give a probabilistic dissimilarity index of species co-occurrence
(identical to Veech 2013).

Chao index tries to take into account the number of unseen species pairs, similarly as in method =
"chao” in specpool. Function vegdist implements a Jaccard, index defined as 1 — %;
other types can be defined with function chaodist. In Chao equation, U = C;/N;+ (N, —1) /N x

a1/(2a2) x S;/N;, and V is similar except for site index k. C; is the total number of individuals
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in the species of site j that are shared with site k, N; is the total number of individuals at site j, a;
(and ao) are the number of species occurring in site j that have only one (or two) individuals in site
k, and S} is the total number of individuals in the species present at site j that occur with only one
individual in site k£ (Chao et al. 2005).

Morisita index can be used with genuine count data (integers) only. Its Horn—Morisita variant is
able to handle any abundance data.

Mahalanobis distances are Euclidean distances of a matrix where columns are centred, have unit
variance, and are uncorrelated. The index is not commonly used for community data, but it is
sometimes used for environmental variables. The calculation is based on transforming data matrix
and then using Euclidean distances following Mardia et al. (1979). The Mahalanobis transformation
usually fails when the number of columns is larger than the number of rows (sampling units). When
the transformation fails, the distances are nearly constant except for small numeric noise. Users
must check that the returned Mahalanobis distances are meaningful.

Euclidean and Manhattan dissimilarities are not good in gradient separation without proper stan-
dardization but are still included for comparison and special needs.

Chi-square distances ("chisq”) are Euclidean distances of Chi-square transformed data (see decostand).
This is the internal standardization used in correspondence analysis (cca, decorana). Weighted
principal coordinates analysis of these distances with row sums as weights is equal to correspon-
dence analysis (see the Example in wemdscale). Chi-square distance is intended for non-negative
data, such as typical community data. However, it can be calculated as long as all margin sums are
positive, but warning is issued on negative data entries.

Chord distances ("chord") are Euclidean distance of a matrix where rows are standardized to unit
norm (their sums of squares are 1) using decostand. Geometrically this standardization moves row
points to a surface of multidimensional unit sphere, and distances are the chords across the hyper-
sphere. Hellinger distances ("hellinger") are related to Chord distances, but data are standardized
to unit total (row sums are 1) using decostand, and then square root transformed. These distances
have upper limit of v/2.

Bray—Curtis and Jaccard indices are rank-order similar, and some other indices become identical or
rank-order similar after some standardizations, especially with presence/absence transformation of
equalizing site totals with decostand. Jaccard index is metric, and probably should be preferred
instead of the default Bray-Curtis which is semimetric.

Aitchison distance (1986) and robust Aitchison distance (Martino et al. 2019) are metrics that
deal with compositional data. Aitchison distance has been said to outperform Jensen-Shannon
divergence and Bray-Curtis dissimilarity, due to a better stability to subsetting and aggregation, and
it being a proper distance (Aitchison et al., 2000).

The naming conventions vary. The one adopted here is traditional rather than truthful to priority.
The function finds either quantitative or binary variants of the indices under the same name, which
correctly may refer only to one of these alternatives For instance, the Bray index is known also as
Steinhaus, Czekanowski and Sgrensen index. The quantitative version of Jaccard should probably
called Ruzicka index. The abbreviation "horn” for the Horn—Morisita index is misleading, since
there is a separate Horn index. The abbreviation will be changed if that index is implemented in
vegan.

Value

Function is a drop-in replacement for dist function and returns a distance object of the same type.
The result object adds attribute maxdist that gives the theoretical maximum of the index for sam-
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pling units that share no species, or NA when there is no such maximum.

Note

The function is an alternative to dist adding some ecologically meaningful indices. Both methods
should produce similar types of objects which can be interchanged in any method accepting either.
Manhattan and Euclidean dissimilarities should be identical in both methods. Canberra index is
divided by the number of variables in vegdist, but not in dist. So these differ by a constant
multiplier, and the alternative in vegdist is in range (0,1). Function daisy (package cluster)
provides alternative implementation of Gower index that also can handle mixed data of numeric and
class variables. There are two versions of Gower distance ("gower”, "altGower") which differ in
scaling: "gower" divides all distances by the number of observations (rows) and scales each column
to unit range, but "altGower"” omits double-zeros and divides by the number of pairs with at least
one above-zero value, and does not scale columns (Anderson et al. 2006). You can use decostand
to add range standardization to "altGower” (see Examples). Gower (1971) suggested omitting
double zeros for presences, but it is often taken as the general feature of the Gower distances. See
Examples for implementing the Anderson et al. (2006) variant of the Gower index.

Most dissimilarity indices in vegdist are designed for community data, and they will give mislead-
ing values if there are negative data entries. The results may also be misleading or NA or NaN if there
are empty sites. In principle, you cannot study species composition without species and you should
remove empty sites from community data.

Author(s)

Jari Oksanen, with contributions from Tyler Smith (Gower index), Michael Bedward (Raup—Crick
index), and Leo Lahti (Aitchison and robust Aitchison distance).

References

Aitchison, J. The Statistical Analysis of Compositional Data (1986). London, UK: Chapman &
Hall.

Aitchison, J., Barcel6-Vidal, C., Martin-Ferndndez, J.A., Pawlowsky-Glahn, V. (2000). Logratio
analysis and compositional distance. Math. Geol. 32,271-275.

Anderson, M.J. and Millar, R.B. (2004). Spatial variation and effects of habitat on temperate reef
fish assemblages in northeastern New Zealand. Journal of Experimental Marine Biology and Ecol-
ogy 305, 191-221.

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006). Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9, 683—693.

Anderson, M.J & Thompson, A.A. (2004). Multivariate control charts for ecological and environ-
mental monitoring. Ecological Applications 14, 1921-1935.

Cao, Y., Williams, W.P. & Bark, A.-W. (1997). Similarity measure bias in river benthic Auswuchs
community analysis. Water Environment Research 69, 95-106.

Chao, A., Chazdon, R. L., Colwell, R. K. and Shen, T. (2005). A new statistical approach for
assessing similarity of species composition with incidence and abundance data. Ecology Letters 8,
148-159.



vegdist 281

Chase, J.M., Kraft, N.J.B., Smith, K.G., Vellend, M. and Inouye, B.D. (2011). Using null models to
disentangle variation in community dissimilarity from variation in a-diversity. Ecosphere 2:art24
doi:10.1890/ES1000117.1

Faith, D. P, Minchin, P. R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure
of ecological distance. Vegetatio 69, 57-68.

Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics 27,
623-637.

Krebs, C. J. (1999). Ecological Methodology. Addison Wesley Longman.

Legendre, P. & De Ciceres, M. (2012). Beta diversity as the variance of community data: dissimi-
larity coefficients and partitioning. Ecology Letters 16, 951-963. doi:10.1111/ele.12141

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English ed. Elsevier.
Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979). Multivariate analysis. Academic Press.

Martino, C., Morton, J.T., Marotz, C.A., Thompson, L.R., Tripathi, A., Knight, R. & Zengler, K.
(2019) A novel sparse compositional technique reveals microbial perturbations. mSystems 4, 1.

Mountford, M. D. (1962). An index of similarity and its application to classification problems. In:
P.W.Murphy (ed.), Progress in Soil Zoology, 43-50. Butterworths.

Veech, J. A. (2013). A probabilistic model for analysing species co-occurrence. Global Ecology
and Biogeography 22, 252-260.

Wolda, H. (1981). Similarity indices, sample size and diversity. Oecologia 50, 296-302.

See Also

Function designdist can be used for defining your own dissimilarity index. Function betadiver
provides indices intended for the analysis of beta diversity.

Examples

data(varespec)

vare.dist <- vegdist(varespec)

# Orléci's Chord distance: range @ .. sqrt(2)

vare.dist <- vegdist(decostand(varespec, "norm"), "euclidean")

# Anderson et al. (2006) version of Gower

vare.dist <- vegdist(decostand(varespec, "log"), "altGower™)

# Range standardization with "altGower" (that excludes double-zeros)
vare.dist <- vegdist(decostand(varespec, "range"), "altGower")

# Robust Aitchison distance equals to Euclidean distance for rclr transformed data
vare.dist <- vegdist(decostand(varespec, "rclr"), method = "euclidean")
vare.dist <- vegdist(varespec, "robust.aitchison”)


https://doi.org/10.1890/ES10-00117.1
https://doi.org/10.1111/ele.12141
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vegemite Display Compact Ordered Community Tables

Description

Functions vegemite and tabasco display compact community tables. Function vegemite prints
text tables where species are rows, and each site takes only one column without spaces. Function
tabasco provides interface for heatmap for a colour image of the data. The community table can
be ordered by explicit indexing, by environmental variables or results from an ordination or cluster

analysis.
Usage
vegemite(x, use, scale, sp.ind, site.ind, zero=".", select,
diagonalize = FALSE, ...)

tabasco(x, use, sp.ind = NULL, site.ind = NULL, select,
Rowv = TRUE, Colv = TRUE, labRow = NULL, labCol = NULL,
scale, col = heat.colors(12), ...)
coverscale(x, scale=c(”Braun.Blanquet”, "Domin”, "Hult"”, "Hill", "fix","log"),
maxabund, character = TRUE)

Arguments
X Community data.
use Either a numeric vector or a classification factor, or an object from cca, decorana

etc. or hclust or a dendrogram for ordering sites and species.

sp.ind, site.ind
Species and site indices. In tabasco, these can also be hclust tree, agnes
clusterings or dendrograms.

zero Character used for zeros.

select Select a subset of sites. This can be a logical vector (TRUE for selected sites),
or a vector of indices of selected sites. The order of indices does not influence
results, but you must specify use or site.ind to reorder sites.

diagonalize Try to re-order vegemite table to a diagonal pattern when using classification
factor or a dendrogram. Dendrograms are re-orded by the first axis of corre-
spondence analysis. Factor levels and sites within factor levels are re-ordered
by the first axis of (constrained) correspondence analysis.

Rowv, Colv Re-order factors or dendrograms for the rows (sites) or columns (species) of x.
If Rowv = TRUE, factor levels and sites within factors are re-ordered to show di-
agonal pattern using CCA. If Rowv = TRUE, row dendrograms are ordered by the
first axis of correspondence analysis, and when Colv = TRUE column dendro-
grams by the weighted average (wascores) of the row order. Alternatively, the
arguments can be vectors that are used to reorder the dendrogram.

labRow, 1abCol character vectors with row and column labels used in the heatmap instead of the
default. NB., the input matrix is transposed so that row labels will be used for
data columns.
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scale In vegemite and coverscale: cover scale used (can be abbreviated). In tabasco:
scaling of colours in heatmap. The alternatives of coverscale can be used in
tabasco, and in addition "column” or "row” scale columns or rows to equal
maxima (NB., these refer to the transposed data of the heatmap), while "none"
uses original values.

col A vector of colours used for above-zero abundance values.

maxabund Maximum abundance used with scale = "log". Data maximum in the selected
subset will be used if this is missing.

character Return character codes suitable for tabulation in vegemite. If FALSE, returns
corresponding integers suitable for numerical analysis.

Arguments passed to coverscale (i.e., maxabund) in vegemite and to heatmap
in tabasco.

Details

The function vegemite prints a traditional community table. The display is transposed, so that
species are in rows and sites in columns. The table is printed in compact form: only one character
can be used for abundance, and there are no spaces between columns. Species with no occurrences
are dropped from the table.

Function tabasco produces a similar table as vegemite using heatmap, where abundances are
coded by colours. The function scales the abundances to equal intervals for colour palette, but
either rows or columns can be scaled to equal maxima, or the coverscale class systems can be
used. The function can also display dendrograms for sites (columns) or species if these are given as
an argument (use for sites, sp. ind for species).

The parameter use will be used to re-order output. The use can be a vector or an object from hclust
or agnes, a dendrogram or any ordination result recognized by scores (all ordination methods in
vegan and some of those not in vegan). The hclust, agnes and dendrogram must be for sites. The
dendrogram is displayed above the sites in tabasco, but is not shown in vegemite. In tabasco the
species dendrogram can be given in sp. ind.

If use is a numeric vector, it is used for ordering sites, and if it is a factor, it is used to order sites
by classes. If use is an object from ordination, both sites and species are arranged by the first axis
(provided that results are available also for species). When use is an object from hclust, agnes
or a dendrogram, the sites are ordered similarly as in the cluster dendrogram. Function tabasco
re-orders the dendrogram to give a diagonal pattern if Rowv = TRUE. Alternatively, if Rowv is a vector
its values are used to re-order dendrogram. With diagonalize = TRUE the dendrogram will be re-
ordered in vegemite to give a diagonal pattern. If use is a factor, its levels and sites within levels
will be reordered to give a diagonal pattern if diagonalize = TRUE in vegemite or Rowv = TRUE
in tabasco. In all cases where species scores are missing, species are ordered by their weighted
averages (wascores) on site order or site value.

Species and sites can be ordered explicitly giving their indices or names in parameters sp.ind
and site.ind. If these are given, they take precedence over use. A subset of sites can be dis-
played using argument select, but this cannot be used to order sites, but you still must give use or
site.ind. However, tabasco makes two exceptions: site.ind and select cannot be used when
use is a dendrogram (clustering result). In addition, the sp.ind can be an hclust tree, agnes clus-
tering or a dendrogram, and in that case the dendrogram is plotted on the left side of the heatmap.
Phylogenetic trees cannot be directly used, but package ape has tools to transform these to hclust
trees.
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If scale is given, vegemite calls coverscale to transform percent cover scale or some other scales
into traditional class scales used in vegetation science (coverscale can be called directly, too).
Function tabasco can also use these traditional class scales, but it treats the transformed values
as corresponding integers. Braun-Blanquet and Domin scales are actually not strict cover scales,
and the limits used for codes r and + are arbitrary. Scale Hill may be inappropriately named,
since Mark O. Hill probably never intended this as a cover scale. However, it is used as default
“cut levels” in his TWINSPAN, and surprisingly many users stick to this default, and this is a de
facto standard in publications. All traditional scales assume that values are cover percentages with
maximum 100. However, non-traditional alternative log can be used with any scale range. Its class
limits are integer powers of 1/2 of the maximum (argument maxabund), with + used for non-zero
entries less than 1/512 of the maximum (log stands alternatively for logarithmic or logical). Scale
fix is intended for “fixing” 10-point scales: it truncates scale values to integers, and replaces 10
with X and positive values below 1 with +.

Value

The functions are used mainly to display a table, but they return (invisibly) a list with items species
for ordered species index, sites for ordered site index, and table for the final ordered community
table.

These items can be used as arguments sp.ind and site.ind to reproduce the table, or the table
can be further edited. In addition to the table, vegemite prints the numbers of species and sites and
the name of the used cover scale.

Note

The name vegemite was chosen because the output is so compact, and the tabasco because it is
just as compact, but uses heat colours.

Author(s)

Jari Oksanen

References

The cover scales are presented in many textbooks of vegetation science; I used:
Shimwell, D.W. (1971) The Description and Classification of Vegetation. Sidgwick & Jackson.

See Also

cut and approx for making your own ‘cover scales’ for vegemite. Function tabasco is based on
heatmap which in turn is based on image. Both functions order species with weighted averages
using wascores.

Examples

data(varespec)

## Print only more common species

freq <- apply(varespec > 0, 2, sum)

vegemite(varespec, scale="Hult”, sp.ind = freq > 10)

## Order by correspondence analysis, use Hill scaling and layout:
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dca <- decorana(varespec)

vegemite(varespec, dca, "Hill", zero="-")

## Show one class from cluster analysis, but retain the ordering above
clus <- hclust(vegdist(varespec))

cl <- cutree(clus, 3)

sel <- vegemite(varespec, use=dca, select = cl == 3, scale="Br")

## Re-create previous

vegemite(varespec, sp=sel$sp, site=sel$site, scale="Hult")

## Re-order clusters by ordination

clus <- as.dendrogram(clus)

clus <- reorder(clus, scores(dca, choices=1, display="sites"”), agglo.FUN = mean)
vegemite(varespec, clus, scale = "Hult")

## Abundance values have such a wide range that they must be rescaled
tabasco(varespec, dca, scale="Braun")

## Classification trees for species

data(dune, dune.taxon)

taxontree <- hclust(taxa2dist(dune.taxon))

plotree <- hclust(vegdist(dune), "average")

## Automatic reordering of clusters

tabasco(dune, plotree, sp.ind = taxontree)

## No reordering of taxonomy

tabasco(dune, plotree, sp.ind = taxontree, Colv = FALSE)

## Species cluster: most dissimilarity indices do a bad job when
## comparing rare and common species, but Raup-Crick makes sense
sptree <- hclust(vegdist(t(dune), "raup"”), "average")
tabasco(dune, plotree, sptree)

wascores Weighted Averages Scores for Species

Description

Computes Weighted Averages scores of species for ordination configuration or for environmental
variables.

Usage

wascores(x, w, expand = FALSE, stdev = FALSE)
eigengrad(x, w)
## S3 method for class 'wascores'

scores(x, display = c("wa”, "stdev"”, "var"”, "se", "n2", "raw"), ...)
Arguments
X Environmental variables or ordination scores, or for wascores object with stdev
= TRUE.

w Weights: species abundances.
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expand Expand weighted averages so that they have the same weighted variance as the
corresponding environmental variables.

stdev Estimate weighted standard deviation of WA scores.

display Type of scores returned.

Other arguments passed to functions (currently ignored).

Details

Weighted Averages are a classical way of estimating the species optima along continuous environ-
mental variables (a.k.a. gradients). Function wascores is a simple function that is mainly designed
to add species scores to unimodal ordinations (metaMDS, sppscores) or ordering rows or columns
to give diagonal pattern of tabulation (vegemite, tabasco). It can also be used to find species
“optima” or sampling unit calibrations for community data. For this purpose, specialized packages
such analogue are recommended (but see calibrate.cca).

First argument of wascores is the variable or a matrix of variables for which weighted averages are
needed, and the second argument is the matrix of weights. In classical approaches weights are a
community matrix, where taxon abundances define the weights. The number of rows must match.
If the first argument is for taxa (columns), community weight matrix must be transposed.

Weighted averages “shrink™: they cannot be more extreme than values used for calculating the aver-
ages. With expand = TRUE, the function “deshrinks” the weighted averages making their weighted
variance equal to the weighted variance of the corresponding input variable. Specialized packages
(such as analogue) offer a wider range of deshrinking alternatives, but deshrinking can also made
after the analysis (see Examples). Function eigengrad returns the strength of expansion as attribute
shrinkage of the wascores result for each environmental gradient. The shrinkage equal to the con-
strained eigenvalue of cca when only this one gradient was used as a constraint, and describes the
strength of the gradient.

With stdev = TRUE the function estimates the unbiased weighted standard deviation of the WA
estimates using cov.wt. For unbiased standard deviation the virtual number of observations is
equal to inverse Simpson index of diversity also known as Hill number N2 (see diversity). The
numeric results can be accessed with scores function. Function tolerance uses the same algebra
for weighted standard deviation, but bases the variance on linear combination scores (constaints)
variables instead of the weighted averages of the sites like wascores.

Weighted averages are closely linked to correspondence analysis (ca, cca). Repeated use of wascores
will converge to the first axis of unconstrained correspondence analysis (ca) which therefore is also
known as Reciprocal Averaging (Hill 1973). Constrained correspondence analysis (cca) is equiva-
lent to weighted averages and calibrate.cca will return weighted averages of the constraint with
different deshrinking.

Value

If stdev = TRUE, function returns an object of class "wascores” with items

wa A matrix of weighted averages with. If expand=TRUE, attribute shrinkage has
the inverses of squared expansion factors or cca eigenvalues for the variable and
attribute centre for the weighted means of the variables.

stdev a matrix of weighted standard deviations
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n2 effective sample sizes which are equal to inverse Simpson diversity or Hill num-
ber N2

If stdev = FALSE (default), only the plain matrix wa is returned. Function eigengrad returns only
the shrinkage attribute. With stdev = TRUE only a brief summary of the result is printed, and the
individvual scores can be accessed with scores function.

Author(s)

Jari Oksanen

References

Hill, M.O. (1973) Reciprocal averaging: An eigenvector method of ordination. Journal of Ecology
61, 237-249.

See Also

calibrate.cca, tolerance.cca, sppscores.

Examples

data(mite, mite.env)

## add species points to ordination

mod <- monoMDS(vegdist(mite))

plot(mod)

## add species points; sppscores does the same and can also add the

## species scores to mod

points(wascores(scores(mod), mite, expand = TRUE), pch="+", col=2)

## Get taxon optima for WatrCont

head(wascores(mite.env$WatrCont, mite))

## WA calibration: site WA from species WA; NB using transpose for site WA

spwa <- wascores(mite.env$WatrCont, mite, expand = TRUE)

wacalib <- wascores(spwa, t(mite), expand = TRUE)

plot(wacalib ~ WatrCont, data=mite.env)

abline(o, 1)

## use traditional 'inverse' regression deshrinking instead of wascores

## 'expand'

wareg <- fitted(Ilm(WatrCont ~ wacalib, data=mite.env))

head(cbind("WatrCont” = mite.env$WatrCont, "expand” = drop(wacalib),
"regression” = wareg))

## Reciprocal Averaging algorithm for Correspondence Analysis

## start with random values

u <- runif(nrow(mite))

## repeat the following steps so long that the shrinkage converges

v <- wascores(u, mite, expand = TRUE)

u <- wascores(v, t(mite), expand = TRUE)

attr(u, "shrinkage") # current estimate of eigenvalue

## The strengths of two continuous variables in the data set

eigengrad(mite.env[, 1:2], mite)
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wcmdscale Weighted Classical (Metric) Multidimensional Scaling

Description

Weighted classical multidimensional scaling, also known as weighted principal coordinates analy-
SIS.

Usage

wcmdscale(d, k, eig = FALSE, add = FALSE, x.ret = FALSE, w)
## S3 method for class 'wcmdscale'

plot(x, choices = c(1, 2), display = "sites"”, type = "t", ...)

## S3 method for class 'wcmdscale'

scores(x, choices = NA, display = "sites”, tidy = FALSE, ...)

Arguments

d a distance structure such as that returned by dist or a full symmetric matrix
containing the dissimilarities.

k the dimension of the space which the data are to be represented in; must be in
{1,2,...,n — 1}. If missing, all dimensions with above zero eigenvalue.

eig indicates whether eigenvalues should be returned.

add an additive constant c is added to the non-diagonal dissimilarities such that all

n — 1 eigenvalues are non-negative. Alternatives are "lingoes” (default, also
used with TRUE) and "cailliez"” (which is the only alternative in cmdscale).
See Legendre & Anderson (1999).

x.ret indicates whether the doubly centred symmetric distance matrix should be re-
turned.

w Weights of points.

X The wemdscale result object when the function was called with options eig =

TRUE or x.ret = TRUE (See Details).
choices Axes to be returned; NA returns all real axes.

display Kind of scores. Normally only "sites” are available, but "species” can be
supplemented with sppscores.

n.n n.n

type Type of graph which may be "t"ext, "p"oints or "n"one.

tidy Return scores that are compatible with ggplot2: scores are in a data.frame,
score type is in the variable score labelled as "sites"”, weights in variable
weigth, and names in variable label.

Other arguments passed to graphical functions.


https://CRAN.R-project.org/package=ggplot2
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Details

Function wemdscale is based on function cmdscale (package stats of base R), but it uses point
weights. Points with high weights will have a stronger influence on the result than those with low
weights. Setting equal weights w = 1 will give ordinary multidimensional scaling.

With default options, the function returns only a matrix of scores scaled by eigenvalues for all real
axes. If the function is called with eig = TRUE or x.ret = TRUE, the function returns an object of
class "wcmdscale” with print, plot, scores, eigenvals and stressplot methods, and described
in section Value.

The method is Euclidean, and with non-Euclidean dissimilarities some eigenvalues can be negative.
If this disturbs you, this can be avoided by adding a constant to non-diagonal dissimilarities making
all eigenvalues non-negative. The function implements methods discussed by Legendre & Anderson
(1999): The method of Lingoes (add="1lingoes") adds the constant ¢ to squared dissimilarities
d using vd? + 2c and the method of Cailliez (add="cailliez") to dissimilarities using d + c.
Legendre & Anderson (1999) recommend the method of Lingoes, and base R function cmdscale
implements the method of Cailliez.

Value

If eig = FALSE and x.ret = FALSE (default), a matrix with k columns whose rows give the coor-
dinates of points corresponding to positive eigenvalues. Otherwise, an object of class wemdscale
containing the components that are mostly similar as in cmdscale:

points a matrix with k columns whose rows give the coordinates of the points chosen
to represent the dissimilarities.

eig the n — 1 eigenvalues computed during the scaling process if eig is true.

X the doubly centred and weighted distance matrix if x. ret is true.

ac, add additive constant and adjustment method used to avoid negative eigenvalues.

These are NA and FALSE if no adjustment was done.

GOF Goodness of fit statistics for k axes. The first value is based on the sum of
absolute values of all eigenvalues, and the second value is based on the sum of
positive eigenvalues

weights Weights.

negaxes A matrix of scores for axes with negative eigenvalues scaled by the absolute
eigenvalues similarly as points. This is NULL if there are no negative eigenval-
ues or k was specified, and would not include negative eigenvalues.

call Function call.

References
Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika 53, 325-328.

Legendre, P. & Anderson, M. J. (1999). Distance-based redundancy analysis: testing multispecies
responses in multifactorial ecological experiments. Ecology 69, 1-24.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis, London:
Academic Press.



290 wcmdscale

See Also

The function is modelled after cmdscale, but adds weights (hence name) and handles negative
eigenvalues differently. eigenvals.wcmdscale and stressplot.wcmdscale are some specific
methods. Species scores can be added to the result with sppscores. Other multidimensional scaling
methods are monoMDS, and isoMDS and sammon in package MASS.

Examples

## Correspondence analysis as a weighted principal coordinates

## analysis of Euclidean distances of Chi-square transformed data
data(dune)

rs <- rowSums(dune)/sum(dune)

d <- dist(decostand(dune, "chi"))

ord <- wcmdscale(d, w = rs, eig = TRUE)

## Ordinary CA

ca <- cca(dune)

## IGNORE_RDIFF_BEGIN

## Eigevalues are numerically similar

ca$CA$eig - ords$eig

## Configurations are similar when site scores are scaled by
## eigenvalues in CA

procrustes(ord, ca, choices=1:19, scaling = "sites")

## IGNORE_RDIFF_END

plot(procrustes(ord, ca, choices=1:2, scaling="sites"))

## Reconstruction of non-Euclidean distances with negative eigenvalues
d <- vegdist(dune)

ord <- wcmdscale(d, eig = TRUE)

## Only positive eigenvalues:

cor(d, dist(ord$points))

## Correction with negative eigenvalues:

cor(d, sqrt(dist(ord$points)*2 - dist(ord$negaxes)*2))
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density.default, 193

density.permustats (permustats), 192

densityplot, 157, 193, 195
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plot.fisher (fisherfit), 97
plot.fisherfit (fisherfit), 97
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plot.metaMDS (metaMDS), 124
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plot.prc (prc), 205
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plot.renyi (renyi), 228
plot.renyiaccum (renyi), 228
plot.spantree (spantree), 242
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plot.varpart (varpart), 269
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protest, 37, 194, 221
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sigma.cca (influence.cca), 105
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summary.clamtest (clamtest), 52
summary .decorana (decorana), 67
summary.dispweight (dispweight), 81
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summary.mantel (mantel), 116
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summary.mrpp (mrpp), 138
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summary.permat (permat), 188
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summary.procrustes (procrustes), 211
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varpart4 (varpart), 269

veov, 105, 106

vcov.cca, 50

vcov.cca (influence.cca), 105
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