Package 'varoc'

June 21, 2025

Type Package

Title Value Added Receiver Operating Characteristics Curve

Version 0.4.0

Date 2025-06-20

Description

A continuous version of the receiver operating characteristics (ROC) curve to assess both classification and continuity performances of biomarkers, diagnostic tests, or risk prediction models.

License GPL (≥ 2)

Depends R (>= 4.2.0), pROC, corrplot, grDevices, graphics, stats,

NeedsCompilation no

utils

Author Yunro Chung [aut, cre] (ORCID: <https://orcid.org/0000-0001-9125-9277>)

Maintainer Yunro Chung <yunro.chung@asu.edu>

Repository CRAN

Date/Publication 2025-06-21 15:00:02 UTC

Contents

Index

varoc

VAROC: value added receiver operating characteristics (ROC) curve

4

Description

ROC curve to visualize classification and continuity performances of biomarkers, diagnostic tests, or risk prediction models.

Usage

varoc(y,x,tmd.range=NULL,legend="right",lwd=3,digits=2)

Arguments

У	binary outcome, where y=1 if disease (or case) and y=0 if non-disease (or con- trol).
x	continuous score, e.g. biomarker, diagnostic test, risk score.
tmd.range	minimum and maximum values of TMD, displayed on the plot.
legend	legend location, "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center".
lwd	line width.
digits	number of decimals.

Details

The varoc function summarizes a continuity performance of x at each cutoff c using two key metrics: (i) tail mean difference (TMD) and (ii) intergrated TMD (ITMD). For (i), TMD(c) is true positive mean(TPM)(c) minus false positive mean(FPM)(c), where TPM(c) is E(x>cly=1) and FPM(c) is E(x>cly=0). For (ii), ITMD is a global measure of evaluating continuity performance of x over all thresholds.

These measures are continuous versions of ROC curve-based measures. Specifically, TPM(c) and FPM(c) are continuous versions of true positive fraction (TPF)(c) and false positive fraction (FPF)(c), where TPF(c)=P(x>cly=1) and FPF(c)=P(x>cly=0). Thus, the useful (or useless) x has TPF(c)-FPF(c)>0 and TMD(c)>0 (or TPF(c)-FPF(c)=0 and TMD(c)=0); and useful (or useless) x has area under the ROC curve (AUC)>0.5 and ITMD(c)>0 (or AUC=0.5 and ITMD(c)=0).

Value

th	Threshold values.
tpf	True positive fraction at each threshold.
fpf	False positive fraction at each th.
tpm	True positive mean at each th.
fpm	False positive fraction at each th.
tmd	Tail mean difference, i.e., tpm-fpm, at each th.
auc	Area under the ROC curve.
itmd	Integrated tmd over all theresholds.

Author(s)

Yunro Chung [aut, cre]

References

Danielle Brister and Yunro Chung, Value added receiver operating characteristics curve (in-progress)

varoc

Examples

```
set.seed(100)
```

```
n1=100
n0=100
y=c(rep(1,n1),rep(0,n0))
```

```
#1. useless marker
x1=abs(c(rnorm(n1,0,1),rnorm(n0,0,1)))
fit1=varoc(y=y,x=x1)
```

```
#2. useful marker
x2=abs(c(rnorm(n1,2,1),rnorm(n0,0,1)))
fit2=varoc(y=y,x=x2)
```

```
#4. markers 1 vs 2
opar=par(mfrow=c(1,2))
tmd.range=range(c(fit1$tmd,fit2$tmd))
fit1=varoc(y=y,x=x1,tmd.range=tmd.range)
fit2=varoc(y=y,x=x2,tmd.range=tmd.range)
on.exit(par(opar))
```

Index

varoc, 1