Package ‘unifDAG’

February 6, 2024

Type Package

Title Uniform Sampling of Directed Acyclic Graphs

Version 1.0.4

Date 2024-02-06

Maintainer Markus Kalisch <kalisch@stat.math.ethz.ch>

Author Markus Kalisch [aut, cre],
Manuel Schuerch [ctb]

Description Uniform sampling of Directed Acyclic Graphs (DAG) using exact
enumeration by relating each DAG to a sequence of outpoints (nodes with no
incoming edges) and then to a composition of integers as suggested by
Kuipers, J. and Moffa, G. (2015) <doi:10.1007/s11222-013-9428-y>.

License GPL (>=2)

Encoding UTF-8

Imports graph, gmp, stats, methods
Suggests Rgraphviz, knitr, rmarkdown
VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2024-02-06 16:00:02 UTC

R topics documented:
unifDAG . . . . . . e

Index


https://doi.org/10.1007/s11222-013-9428-y

2 unifDAG
unifDAG Uniform Sampling of Directed Acyclic Graphs (DAG)
Description
Uniform sampling of a labelled directed acyclic graph (DAG) with combinatorial enumeration.
Usage
unifDAG (n, weighted=FALSE, wFUN=list(runif, min=0.1, max=1))
unifDAG.approx(n, n.exact=20, weighted=FALSE, wFUN=list(runif,min=0.1,max=1))
Arguments
n integer larger than 1, indicating the number of nodes in the DAG. unifDAG can
only be used for n up to 100. For larger n, use unifDAG. approx.
weighted logical indicating if weights of the edges are computed according to wFUN.
wFUN a function for computing the weights of the edges in the DAG. It takes as first
argument a number of edges m for which it returns a vector of length m containing
the weights. Alternatively, it could be a list consisting of the function in the first
entry and of further arguments of the function in the additional entries. The
default (only if weighted is true)) is a uniform weight between @.1 and 1. See
the examples.
n.exact an integer, at least n and between 2 and 100, denoting the number of nodes
up to which the exact method is used, followed by an approximation for larger
numbers up to n. See details on the quality of the approximation.
Details
A (weighted) random graph with n nodes is uniformly drawn over the space of all labelled DAGs
with n nodes. The main idea of these two methods is to first sample a random sequence of outpoints,
that is, nodes without incoming edges. This sequence is then used to construct an adjacency matrix,
which is converted to the final DAG. The presented methods differ only in the approach to find this
sequence of outpoints.
The method unifDAG builds the random sequence of outpoints based on precomputed enumeration
tables.
The method unifDAG. approx executes unifDAG up to the number n.exact, for larger number of
nodes an approximation is used instead. The default of n.exact = 20 (40) should get the approxi-
mation within the uniformity limits of a 32 (64) bit integer sampler. See reference for more details.
Value

A graph object of class graphNEL.



unifDAG 3

Note

The main advantage of these algorithms is that they operate on the space of DAGs instead of the
space of undirected graphs with an additional phase of orienting the edges. With this approach the
unintentional bias towards sparse graphs, for instance occurring when sampling adjacency matrices,
can be eliminated.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>) and Manuel Schuerch.

References

Jack Kuipers and Giusi Moffa (2015) Uniform random generation of large acyclic digraphs. Statis-
tics and Computing 25(2), 227-242, Springer; doi:10.1007/s112220139428y

Examples

set.seed(123)
dagl <- unifDAG(n=10)
dag2 <- unifDAG.approx(n=10, n.exact=5)

dag <- unifDAG(n=5)
if (require("Rgraphviz")) plot(dag)
dag@edgeData  ## note the constant weights

dag <- unifDAG(n=5,weighted=TRUE)
if (require("Rgraphviz")) plot(dag)
dag@edgeData  ## note the uniform weights between 0.1 and 1

wFUN <- function(m,1B,uB) { runif(m,1B,uB) }
dag <- unifDAG(n=5,weighted=TRUE,wFUN=1ist(wFUN,1,4))
dag@edgeData  ## note the uniform weights between 1 and 4


https://doi.org/10.1007/s11222-013-9428-y

Index

* exact enumeration
unifDAG, 2

* graphs
unifDAG, 2

+« models
unifDAG, 2

function, 2
graphNEL, 2

unifDAG, 2



	unifDAG
	Index

