
Package ‘ttservice’
July 10, 2025

Type Package

Title A Service for Tidy Transcriptomics Software Suite

Version 0.5.3

Description It provides generic methods that are used by more than one package, avoiding con-
flicts. This package will be imported by 'tidySingleCellExperiment' and 'tidyseurat'.

License GPL-3

Depends R (>= 4.0.0)

Imports dplyr, Matrix, plotly

Suggests methods

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Stefano Mangiola [aut, cre]

Maintainer Stefano Mangiola <mangiolastefano@gmail.com>

Repository CRAN

Date/Publication 2025-07-10 12:30:02 UTC

Contents

aggregate_cells . 2
append_samples . 3
bind_rows . 3
join_features . 5
plot_ly . 6

Index 10

1

2 aggregate_cells

aggregate_cells Aggregate cells

Description

Combine cells into groups based on shared variables and aggregate feature counts.

Usage

aggregate_cells(
.data,
.sample = NULL,
slot = "data",
assays = NULL,
aggregation_function = Matrix::rowSums,
...

)

Arguments

.data A tidySingleCellExperiment object

.sample A vector of variables by which cells are aggregated

slot The slot to which the function is applied

assays The assay to which the function is applied

aggregation_function

The method of cell-feature value aggregation

... Used for future extendibility

Value

A tibble object

Examples

print("pbmc_small |> aggregate_cells(c(groups, ident), assays = \"counts\")")

append_samples 3

append_samples Append samples

Description

Append multiple samples or datasets together, combining their data while preserving sample-specific
information.

Usage

append_samples(x, ...)

Arguments

x A genomic data container to combine with others

... Additional genomic data containers to combine
Each argument should be a genomic data object such as a SummarizedExperi-
ment, SingleCellExperiment, SpatialExperiment, or Seurat object (provided that
the appropriate method extensions are available). You may also provide a list of
such objects.
When row-binding, features (e.g., genes) are matched by name, and any missing
features will be filled with NA or zero as appropriate for the container.
When column-binding, samples (e.g., cells) are matched by position, so all ob-
jects must have the same number of features. To match by value, not position,
see mutate-joins.

Value

A combined genomic object

Examples

print("combined_data <- append_samples(sample1, sample2, .id = \"sample\")")

bind_rows Efficiently bind multiple data frames by row and column

Description

This is an efficient implementation of the common pattern of ‘do.call(rbind, dfs)‘ or ‘do.call(cbind,
dfs)‘ for binding many data frames into one.

This is an efficient implementation of the common pattern of ‘do.call(rbind, dfs)‘ or ‘do.call(cbind,
dfs)‘ for binding many data frames into one.

4 bind_rows

Usage

bind_rows(..., .id = NULL, add.cell.ids = NULL)

bind_cols(..., .id = NULL)

Arguments

... Data frames to combine.
Each argument can either be a data frame, a list that could be a data frame, or a
list of data frames.
When row-binding, columns are matched by name, and any missing columns
will be filled with NA.
When column-binding, rows are matched by position, so all data frames must
have the same number of rows. To match by value, not position, see mutate-
joins.

.id Data frame identifier.
When ‘.id‘ is supplied, a new column of identifiers is created to link each row
to its original data frame. The labels are taken from the named arguments to
‘bind_rows()‘. When a list of data frames is supplied, the labels are taken from
the names of the list. If no names are found a numeric sequence is used instead.

add.cell.ids from Seurat 3.0 A character vector of length(x = c(x, y)). Appends the corre-
sponding values to the start of each objects’ cell names.

Details

The output of ‘bind_rows()‘ will contain a column if that column appears in any of the inputs.

The output of ‘bind_rows()‘ will contain a column if that column appears in any of the inputs.

Value

‘bind_rows()‘ and ‘bind_cols()‘ return the same type as the first input, either a data frame, ‘tbl_df‘,
or ‘grouped_df‘.

‘bind_rows()‘ and ‘bind_cols()‘ return the same type as the first input, either a data frame, ‘tbl_df‘,
or ‘grouped_df‘.

Examples

print("small_pbmc |> bind_rows(small_pbmc)")

print("small_pbmc |> bind_cols(annotation_column)")

join_features 5

join_features join_features

Description

join_features() extracts and joins information for specific features

Usage

join_features(
.data,
features = NULL,
all = FALSE,
exclude_zeros = FALSE,
shape = "long",
...

)

Arguments

.data A tidy SingleCellExperiment object

features A vector of feature identifiers to join

all If TRUE return all

exclude_zeros If TRUE exclude zero values

shape Format of the returned table "long" or "wide"

... Parameters to pass to join wide, i.e. assay name to extract feature abundance
from and gene prefix, for shape="wide"

Details

This function extracts information for specified features and returns the information in either long
or wide format.

Value

A ‘tbl‘ containing the information.for the specified features

Examples

print("this is a method generics Example is not applicable")
<object> |> join_features(features=c("HLA-DRA", "LYZ"))

6 plot_ly

plot_ly Initiate a plotly visualization

Description

This function maps R objects to plotly.js, an (MIT licensed) web-based interactive charting library.
It provides abstractions for doing common things (e.g. mapping data values to fill colors (via color)
or creating animations (via frame)) and sets some different defaults to make the interface feel more
’R-like’ (i.e., closer to plot() and ggplot2::qplot()).

Usage

plot_ly(
data = data.frame(),
...,
type = NULL,
name = NULL,
color = NULL,
colors = NULL,
alpha = NULL,
stroke = NULL,
strokes = NULL,
alpha_stroke = 1,
size = NULL,
sizes = c(10, 100),
span = NULL,
spans = c(1, 20),
symbol = NULL,
symbols = NULL,
linetype = NULL,
linetypes = NULL,
split = NULL,
frame = NULL,
width = NULL,
height = NULL,
source = "A"

)

Arguments

data A data frame (optional) or crosstalk::SharedData object.

... Arguments (i.e., attributes) passed along to the trace type. See schema() for
a list of acceptable attributes for a given trace type (by going to traces ->
type -> attributes). Note that attributes provided at this level may over-
ride other arguments (e.g. plot_ly(x = 1:10, y = 1:10, color = I("red"),
marker = list(color = "blue"))).

https://plotly.com/javascript/

plot_ly 7

type A character string specifying the trace type (e.g. "scatter", "bar", "box",
etc). If specified, it always creates a trace, otherwise

name Values mapped to the trace’s name attribute. Since a trace can only have one
name, this argument acts very much like split in that it creates one trace for
every unique value.

color Values mapped to relevant ’fill-color’ attribute(s) (e.g. fillcolor, marker.color,
textfont.color, etc.). The mapping from data values to color codes may be con-
trolled using colors and alpha, or avoided altogether via I() (e.g., color =
I("red")). Any color understood by grDevices::col2rgb() may be used in
this way.

colors Either a colorbrewer2.org palette name (e.g. "YlOrRd" or "Blues"), or a vector
of colors to interpolate in hexadecimal "#RRGGBB" format, or a color interpo-
lation function like colorRamp().

alpha A number between 0 and 1 specifying the alpha channel applied to color. De-
faults to 0.5 when mapping to fillcolor and 1 otherwise.

stroke Similar to color, but values are mapped to relevant ’stroke-color’ attribute(s)
(e.g., marker.line.color and line.color for filled polygons). If not specified, stroke
inherits from color.

strokes Similar to colors, but controls the stroke mapping.

alpha_stroke Similar to alpha, but applied to stroke.

size (Numeric) values mapped to relevant ’fill-size’ attribute(s) (e.g., marker.size,
textfont.size, and error_x.width). The mapping from data values to symbols may
be controlled using sizes, or avoided altogether via I() (e.g., size = I(30)).

sizes A numeric vector of length 2 used to scale size to pixels.

span (Numeric) values mapped to relevant ’stroke-size’ attribute(s) (e.g., marker.line.width,
line.width for filled polygons, and error_x.thickness) The mapping from data
values to symbols may be controlled using spans, or avoided altogether via I()
(e.g., span = I(30)).

spans A numeric vector of length 2 used to scale span to pixels.

symbol (Discrete) values mapped to marker.symbol. The mapping from data values to
symbols may be controlled using symbols, or avoided altogether via I() (e.g.,
symbol = I("pentagon")). Any pch value or symbol name may be used in this
way.

symbols A character vector of pch values or symbol names.

linetype (Discrete) values mapped to line.dash. The mapping from data values to sym-
bols may be controlled using linetypes, or avoided altogether via I() (e.g.,
linetype = I("dash")). Any lty (see par) value or dash name may be used in
this way.

linetypes A character vector of lty values or dash names

split (Discrete) values used to create multiple traces (one trace per value).

frame (Discrete) values used to create animation frames.

width Width in pixels (optional, defaults to automatic sizing).

height Height in pixels (optional, defaults to automatic sizing).

https://plotly.com/r/reference/#scatter-fillcolor
https://plotly.com/r/reference/#scatter-marker-color
https://plotly.com/r/reference/#scatter-textfont-color
https://plotly.com/r/reference/#scatter-fillcolor
https://plotly.com/r/reference/#scatter-marker-line-color
https://plotly.com/r/reference/#scatter-line-color
https://plotly.com/r/reference/#scatter-marker-size
https://plotly.com/r/reference/#scatter-textfont-size
https://plotly.com/r/reference/#scatter-error_x-width
https://plotly.com/r/reference/#scatter-marker-line-width
https://plotly.com/r/reference/#scatter-line-width
https://plotly.com/r/reference/#scatter-error_x-thickness
https://plotly.com/r/reference/#scatter-marker-symbol
https://plotly.com/r/reference/#scatter-marker-symbol
https://plotly.com/r/reference/#scatter-marker-symbol
https://plotly.com/r/reference/#scatter-line-dash
https://plotly.com/r/reference/#scatter-line-dash
https://plotly.com/r/reference/#scatter-line-dash

8 plot_ly

source a character string of length 1. Match the value of this string with the source
argument in event_data() to retrieve the event data corresponding to a specific
plot (shiny apps can have multiple plots).

Details

Unless type is specified, this function just initiates a plotly object with ’global’ attributes that are
passed onto downstream uses of add_trace() (or similar). A formula must always be used when
referencing column name(s) in data (e.g. plot_ly(mtcars, x = ~wt)). Formulas are optional
when supplying values directly, but they do help inform default axis/scale titles (e.g., plot_ly(x =
mtcars$wt) vs plot_ly(x = ~mtcars$wt))

Author(s)

Carson Sievert

References

https://plotly-r.com/overview.html

See Also

• For initializing a plotly-geo object: plot_geo()

• For initializing a plotly-mapbox object: plot_mapbox()

• For translating a ggplot2 object to a plotly object: ggplotly()

• For modifying any plotly object: layout(), add_trace(), style()

• For linked brushing: highlight()

• For arranging multiple plots: subplot(), crosstalk::bscols()

• For inspecting plotly objects: plotly_json()

• For quick, accurate, and searchable plotly.js reference: schema()

Examples

Not run:

plot_ly() tries to create a sensible plot based on the information you
give it. If you don't provide a trace type, plot_ly() will infer one.
plot_ly(economics, x = ~pop)
plot_ly(economics, x = ~date, y = ~pop)
plot_ly() doesn't require data frame(s), which allows one to take
advantage of trace type(s) designed specifically for numeric matrices
plot_ly(z = ~volcano)
plot_ly(z = ~volcano, type = "surface")

plotly has a functional interface: every plotly function takes a plotly
object as it's first input argument and returns a modified plotly object
add_lines(plot_ly(economics, x = ~date, y = ~unemploy/pop))

To make code more readable, plotly imports the pipe operator from magrittr

https://plotly-r.com/overview.html

plot_ly 9

economics %>% plot_ly(x = ~date, y = ~unemploy/pop) %>% add_lines()

Attributes defined via plot_ly() set 'global' attributes that
are carried onto subsequent traces, but those may be over-written
plot_ly(economics, x = ~date, color = I("black")) %>%
add_lines(y = ~uempmed) %>%
add_lines(y = ~psavert, color = I("red"))

Attributes are documented in the figure reference -> https://plotly.com/r/reference
You might notice plot_ly() has named arguments that aren't in this figure
reference. These arguments make it easier to map abstract data values to
visual attributes.
p <- plot_ly(palmerpenguins::penguins, x = ~bill_length_mm, y = ~body_mass_g)
add_markers(p, color = ~bill_depth_mm, size = ~bill_depth_mm)
add_markers(p, color = ~species)
add_markers(p, color = ~species, colors = "Set1")
add_markers(p, symbol = ~species)
add_paths(p, linetype = ~species)

End(Not run)

Index

add_trace(), 8
aggregate_cells, 2
animation, 6
append_samples, 3

bind_cols (bind_rows), 3
bind_rows, 3

crosstalk::bscols(), 8
crosstalk::SharedData, 6

event_data(), 8

formula, 8

ggplot2::qplot(), 6
ggplotly(), 8
grDevices::col2rgb(), 7

highlight(), 8

I(), 7

join_features, 5

layout(), 8

par, 7
pch, 7
plot(), 6
plot_geo(), 8
plot_ly, 6
plot_mapbox(), 8
plotly_json(), 8

schema(), 6, 8
style(), 8
subplot(), 8

10

	aggregate_cells
	append_samples
	bind_rows
	join_features
	plot_ly
	Index

